Solar System Tests of the Equivalence Principle and Constraints on Higher-Dimensional Gravity

Total Page:16

File Type:pdf, Size:1020Kb

Solar System Tests of the Equivalence Principle and Constraints on Higher-Dimensional Gravity Solar system tests of the equivalence principle and constraints on higher-dimensional gravity J. M. Overduin Department of Physics, University of Waterloo, ON, Canada N2L 3G1 and Gravity Probe B, Hansen Experimental Physics Laboratory, Stanford University, California (July 21, 2000) the theory, ξ and αk refer to possible preferred-location In most studies of equivalence principle violation by solar and preferred-frame effects, and the ζk allow for possible system bodies, it is assumed that the ratio of gravitational to violations of momentum conservation (see [1] for discus- inertial mass for a given body deviates from unity by a param- sion). One has η = 0 in standard general relativity, where eter ∆ which is proportional to its gravitational self-energy. γ = β = 1. In 4D scalar-tensor theories, by contrast, Here we inquire what experimental constraints can be set on γ =(1+ω)/(2 + ω)andβ =1+ω /[2(2 + ω)(3 + 2ω)2], ∆ for various solar system objects when this assumption is re- 0 laxed. Extending an analysis originally due to Nordtvedt, we where ω = ω(φ) is the generalized Brans-Dicke parame- obtain upper limits on linearly independent combinations of ter and ω0 = dω/dφ. ∆ for two or more bodies from Kepler’s third law, the position The relative gravitational self-energy U can be cal- of Lagrange libration points, and the phenomenon of orbital culated for most objects in the solar system, subject polarization. Combining our results, we extract numerical to uncertainties in their mass density profiles. Thus, 5 upper bounds on ∆ for the Sun, Moon, Earth and Jupiter, for example, US 10− for the Sun, while Jupiter 8 ∼− using observational data on their orbits as well as those of the has UJ 10− [3]. More precise estimates are avail- ∼− 10 Trojan asteroids. These are applied as a test case to the the- able for the Earth and Moon, UE = 4.64 10− and 11 − × ory of higher-dimensional (Kaluza-Klein) gravity. The results UM = 1.9 10− respectively [10]. With U known, con- are three to six orders of magnitude stronger than previous straints− on× EP violation (in theories of this kind) take the constraints on the theory, confirming earlier suggestions that form of upper limits on the PPN parameter η. The lat- extra dimensions play a negligible role in solar system dynam- est such bounds (from lunar laser ranging, or LLR) are 3 ics and reinforcing the value of equivalence principle tests as of order η 10− [9–12]. a probe of nonstandard gravitational theories. There| exist,|≤ however, theories of gravity in which EP violations are not necessarily related to gravitational self- 04.80.-y,04.50+h,96.35.Fs energy. In such theories, analysis of solar system data can lead only to upper limits on ∆ for the individual bodies involved. These limits will in general differ from object I. INTRODUCTION to object. They will, however, typically be orders of mag- nitude stronger than the above-mentioned experimental bound on η (since they are not diluted by the small fac- We investigate the consequences of possible violations tor U). In what follows, we obtain numerical constraints of the equivalence principle (EP) for solar system bodies on ∆ for the Sun, Moon, Earth and Jupiter, and ap- whose ratio of gravitational mass m to inertial mass m g i ply these as an example to higher-dimensional (Kaluza- is given by Klein) gravity, in which EP violations are related to the curvature of the extra part of the spacetime manifold. mg/mi =1+∆. (1.1) The study of this problem has a long history stretching back to Newton [1,2]. In modern times it has been most II. EQUIVALENCE PRINCIPLE VIOLATIONS IN closely associated with Nordtvedt [3–9], who investigated KALUZA-KLEIN GRAVITY the possibility that ∆ is proportional to the body’s rela- tive gravitational self-energy U Theories of gravity in more than four dimensions are older than general relativity [13], and most often associ- ∆=ηU , (1.2) ated with the names of Kaluza [14] and Klein [15] (for G d3xd3x U = ρ(x) ρ(x ) 0 / ρ(x) d3x, recent reviews, see [16,17]). The extra dimensions have 2 0 −c Z x x0 Z traditionally been assumed to be compact, in order to | − | explain their nonappearance in low-energy physics. The where η is a universal constant made up of parametrized past few years, however, have witnessed an explosion post-Newtonian (PPN) parameters, η 4β γ 3 of new interest in non-compactified theories of higher- 10ξ/3 α +2α /3 2ζ /3 ζ /3 [4].≡ In the− standard− − − 1 2 − 1 − 2 dimensional gravity [18–20]. In such theories the dimen- PPN gauge, γ is related to the amount of space curva- sionality of spacetime may in principle manifest itself at ture per unit mass, β characterizes the nonlinearity of 1 experimentally accessible energies. We examine here the bounds on the metric parameter b, which characterizes theory of Kaluza-Klein gravity [16], and focus on the pro- the departure from flatness of the fifth dimension in the totypical five-dimensional (5D) case, although the exten- vicinity of the central mass. sion to higher dimensions is straightforward in principle. In 5D Kaluza-Klein gravity, objects such as stars and planets are modelled by a static, spherically-symmetric III. THE MODIFIED THIRD LAW OF KEPLER analog of the 4D Schwarzschild solution known as the soliton metric. This may be written (following [21], but Let us now proceed to see what experimental con- switching to nonisotropic form, and defining a 1/α, straints can be placed on the parameter ∆ for solar sys- ≡ b β/α and M 2m) tem bodies. Given any inverse-square law central force ∗ ≡ ≡ 2 2 a 2 a b 2 1 a b (F = κ/r ), it may be shown that the two-body prob- dS = A dt A− − dr A − − − − − × lem admits as solutions elliptical orbits satisfying r2 dθ2 +sin2 θdφ2 Abdy2 , (2.1) − τ =2πa3=2 µ/κ , (3.1) where y is the fifth coordinate, A(r) 1 2M /r, M ≡ − ∗ ∗ p is a parameter related to the mass of the object at the where τ is the orbital period, a the semi-major axis, and center of the geometry, and the constants a, b satisfy a µ mi; mi; /(mi; + mi; ) the reduced mass of the sys- consistency relation a2 + ab + b2 =1,or ≡ 1 2 1 2 tem [27]. (Here mi;k is the inertial mass of the kth body.) a = b/2 (1 3b2/4)1=2 , (2.2) We are concerned in this paper with the case in which − ± − κ = Gmg;1mg;2, where the gravitational masses mg;k are which follows from Einstein’s field equations. Equa- related to the inertial ones mi;k by equation (1.1). Re- tion (2.1) reduces to the 4D Schwarzschild solution on arranging equation (3.1), one then obtains the following hypersurfaces y = const as b 0anda +1. modified form of Kepler’s third law Solitons differ in interesting→ ways from→ 4D black holes, 2 3 as discussed by many authors [16,17,21–23]. Of most rel- G(m1 + m2 + m2∆1 + m1∆2)=ω a , (3.2) evance for our purposes is the fact that a soliton’s gravita- where ω 2π/τ is the mean orbital angular frequency, tional mass (as identified from the asymptotic behaviour ≡ and mk refers (here and elsewhere in the remainder of of g00)isgivenbymg = aM , while its inertial mass (as obtained using the Landau-Lifshitz∗ energy-momentum this paper) to the gravitational mass of the kth body. Equation (3.2) was first obtained by Nordtvedt using a pseudotensor) turns out to be mi =(a + b/2)M .Us- ing equations (1.1) and (2.2), it follows that ∗ somewhat different argument [3]. If all bodies have the same value of ∆, we will not see 2 1=2 ∆= b/2(1 3b /4)− . (2.3) violations of the EP. The common part of ∆1 and ∆2 can ∓ − be absorbed into a rescaled gravitational constant. One It is important to recognize that b is not a universal con- way to see this explicitly is to rewrite equation (3.2) in stant like η, but depends in principle on local physics [23] the form and may vary from soliton to soliton. (Birkhoff’s theorem 2 3 in its usual form does not hold in higher-dimensional gen- G(1 + ∆1)(m1 + m2)+Gm1(∆2 ∆1)=ω a . (3.3) eral relativity [24].) To constrain the theory, one there- − fore hopes to apply as many tests as possible to a given There are two modifications to Kepler’s third law here: astrophysical system. a rescaling of the value of G in the first term, and a The classical tests of general relativity have been completely new second term, which depends only on the worked out for the soliton metric. Data from long- difference ∆ ∆ . This latter term is a clear manifes- 2 − 1 baseline radio interferometry, ranging to the Mars Viking tation of EP violation in the system. lander, and the perihelion precession of Mercury imply Nevertheless, we can put experimental constraints on that b 0.07 in the solar system [25,26]. In what fol- the values of ∆1 and ∆2, even in cases where they are | |≤ lows, therefore, we keep only terms of second order or equal. To see this, divide equation (3.3) through by Gm1 lower in b. We also drop the negative roots in equa- and rearrange to obtain tion (2.2) [ie, the positive roots in equation (2.3)], in 2 3 order to eliminate the possibility of negative gravita- ω a m2 1+ =(∆2 ∆1) tional and/or inertial mass, and to ensure that the 4D Gm1 − m1 − Schwarzschild solution is recovered (for y =const)as m2 b 0 [16].
Recommended publications
  • On the Accuracy of Restricted Three-Body Models for the Trojan Motion
    DISCRETE AND CONTINUOUS Website: http://AIMsciences.org DYNAMICAL SYSTEMS Volume 11, Number 4, December 2004 pp. 843{854 ON THE ACCURACY OF RESTRICTED THREE-BODY MODELS FOR THE TROJAN MOTION Frederic Gabern1, Angel` Jorba1 and Philippe Robutel2 Departament de Matem`aticaAplicada i An`alisi Universitat de Barcelona Gran Via 585, 08007 Barcelona, Spain1 Astronomie et Syst`emesDynamiques IMCCE-Observatoire de Paris 77 Av. Denfert-Rochereau, 75014 Paris, France2 Abstract. In this note we compare the frequencies of the motion of the Trojan asteroids in the Restricted Three-Body Problem (RTBP), the Elliptic Restricted Three-Body Problem (ERTBP) and the Outer Solar System (OSS) model. The RTBP and ERTBP are well-known academic models for the motion of these asteroids, and the OSS is the standard model used for realistic simulations. Our results are based on a systematic frequency analysis of the motion of these asteroids. The main conclusion is that both the RTBP and ERTBP are not very accurate models for the long-term dynamics, although the level of accuracy strongly depends on the selected asteroid. 1. Introduction. The Restricted Three-Body Problem models the motion of a particle under the gravitational attraction of two point masses following a (Keple- rian) solution of the two-body problem (a general reference is [17]). The goal of this note is to discuss the degree of accuracy of such a model to study the real motion of an asteroid moving near the Lagrangian points of the Sun-Jupiter system. To this end, we have considered two restricted three-body problems, namely: i) the Circular RTBP, in which Sun and Jupiter describe a circular orbit around their centre of mass, and ii) the Elliptic RTBP, in which Sun and Jupiter move on an elliptic orbit.
    [Show full text]
  • Astrocladistics of the Jovian Trojan Swarms
    MNRAS 000,1–26 (2020) Preprint 23 March 2021 Compiled using MNRAS LATEX style file v3.0 Astrocladistics of the Jovian Trojan Swarms Timothy R. Holt,1,2¢ Jonathan Horner,1 David Nesvorný,2 Rachel King,1 Marcel Popescu,3 Brad D. Carter,1 and Christopher C. E. Tylor,1 1Centre for Astrophysics, University of Southern Queensland, Toowoomba, QLD, Australia 2Department of Space Studies, Southwest Research Institute, Boulder, CO. USA. 3Astronomical Institute of the Romanian Academy, Bucharest, Romania. Accepted XXX. Received YYY; in original form ZZZ ABSTRACT The Jovian Trojans are two swarms of small objects that share Jupiter’s orbit, clustered around the leading and trailing Lagrange points, L4 and L5. In this work, we investigate the Jovian Trojan population using the technique of astrocladistics, an adaptation of the ‘tree of life’ approach used in biology. We combine colour data from WISE, SDSS, Gaia DR2 and MOVIS surveys with knowledge of the physical and orbital characteristics of the Trojans, to generate a classification tree composed of clans with distinctive characteristics. We identify 48 clans, indicating groups of objects that possibly share a common origin. Amongst these are several that contain members of the known collisional families, though our work identifies subtleties in that classification that bear future investigation. Our clans are often broken into subclans, and most can be grouped into 10 superclans, reflecting the hierarchical nature of the population. Outcomes from this project include the identification of several high priority objects for additional observations and as well as providing context for the objects to be visited by the forthcoming Lucy mission.
    [Show full text]
  • Colours of Minor Bodies in the Outer Solar System II - a Statistical Analysis, Revisited
    Astronomy & Astrophysics manuscript no. MBOSS2 c ESO 2012 April 26, 2012 Colours of Minor Bodies in the Outer Solar System II - A Statistical Analysis, Revisited O. R. Hainaut1, H. Boehnhardt2, and S. Protopapa3 1 European Southern Observatory (ESO), Karl Schwarzschild Straße, 85 748 Garching bei M¨unchen, Germany e-mail: [email protected] 2 Max-Planck-Institut f¨ur Sonnensystemforschung, Max-Planck Straße 2, 37 191 Katlenburg- Lindau, Germany 3 Department of Astronomy, University of Maryland, College Park, MD 20 742-2421, USA Received —; accepted — ABSTRACT We present an update of the visible and near-infrared colour database of Minor Bodies in the outer Solar System (MBOSSes), now including over 2000 measurement epochs of 555 objects, extracted from 100 articles. The list is fairly complete as of December 2011. The database is now large enough that dataset with a high dispersion can be safely identified and rejected from the analysis. The method used is safe for individual outliers. Most of the rejected papers were from the early days of MBOSS photometry. The individual measurements were combined so not to include possible rotational artefacts. The spectral gradient over the visible range is derived from the colours, as well as the R absolute magnitude M(1, 1). The average colours, absolute magnitude, spectral gradient are listed for each object, as well as their physico-dynamical classes using a classification adapted from Gladman et al., 2008. Colour-colour diagrams, histograms and various other plots are presented to illustrate and in- vestigate class characteristics and trends with other parameters, whose significance are evaluated using standard statistical tests.
    [Show full text]
  • 2004 KV18: a Visitor from the Scattered Disc to the Neptune Trojan Population J
    Mon. Not. R. Astron. Soc. 426, 159–166 (2012) doi:10.1111/j.1365-2966.2012.21717.x 2004 KV18: a visitor from the scattered disc to the Neptune Trojan population J. Horner1 and P. S. Lykawka2 1Department of Astrophysics, School of Physics, University of New South Wales, Sydney, NSW 2052, Australia 2Astronomy Group, Faculty of Social and Natural Sciences, Kinki University, Shinkamikosaka 228-3, Higashiosaka-shi, Osaka 577-0813, Japan Accepted 2012 July 12. Received 2012 July 12; in original form 2012 June 14 ABSTRACT Downloaded from We have performed a detailed dynamical study of the recently identified Neptunian Trojan 2004 KV18, only the second object to be discovered librating around Neptune’s trailing Lagrange point, L5. We find that 2004 KV18 is moving on a highly unstable orbit, and was most likely captured from the Centaur population at some point in the last ∼1 Myr, having originated in http://mnras.oxfordjournals.org/ the scattered disc, beyond the orbit of Neptune. The instability of 2004 KV18 is so great that many of the test particles studied leave the Neptunian Trojan cloud within just ∼0.1–0.3 Myr, and it takes just 37 Myr for half of the 91 125 test particles created to study its dynamical behaviour to be removed from the Solar system entirely. Unlike the other Neptunian Trojans previously found to display dynamical instability on 100-Myr time-scales (2001 QR322 and 2008 LC18), 2004 KV18 displays such extreme instability that it must be a temporarily captured Trojan, rather than a primordial member of the Neptunian Trojan population.
    [Show full text]
  • Updated on 1 September 2018
    20813 Aakashshah 12608 Aesop 17225 Alanschorn 266 Aline 31901 Amitscheer 30788 Angekauffmann 2341 Aoluta 23325 Arroyo 15838 Auclair 24649 Balaklava 26557 Aakritijain 446 Aeternitas 20341 Alanstack 8651 Alineraynal 39678 Ammannito 11911 Angel 19701 Aomori 33179 Arsenewenger 9117 Aude 16116 Balakrishnan 28698 Aakshi 132 Aethra 21330 Alanwhitman 214136 Alinghi 871 Amneris 28822 Angelabarker 3810 Aoraki 29995 Arshavsky 184535 Audouze 3749 Balam 28828 Aalamiharandi 1064 Aethusa 2500 Alascattalo 108140 Alir 2437 Amnestia 129151 Angelaboggs 4094 Aoshima 404 Arsinoe 4238 Audrey 27381 Balasingam 33181 Aalokpatwa 1142 Aetolia 19148 Alaska 14225 Alisahamilton 32062 Amolpunjabi 274137 Angelaglinos 3400 Aotearoa 7212 Artaxerxes 31677 Audreyglende 20821 Balasridhar 677 Aaltje 22993 Aferrari 200069 Alastor 2526 Alisary 1221 Amor 16132 Angelakim 9886 Aoyagi 113951 Artdavidsen 20004 Audrey-Lucienne 26634 Balasubramanian 2676 Aarhus 15467 Aflorsch 702 Alauda 27091 Alisonbick 58214 Amorim 30031 Angelakong 11258 Aoyama 44455 Artdula 14252 Audreymeyer 2242 Balaton 129100 Aaronammons 1187 Afra 5576 Albanese 7517 Alisondoane 8721 AMOS 22064 Angelalewis 18639 Aoyunzhiyuanzhe 1956 Artek 133007 Audreysimmons 9289 Balau 22656 Aaronburrows 1193 Africa 111468 Alba Regia 21558 Alisonliu 2948 Amosov 9428 Angelalouise 90022 Apache Point 11010 Artemieva 75564 Audubon 214081 Balavoine 25677 Aaronenten 6391 Africano 31468 Albastaki 16023 Alisonyee 198 Ampella 25402 Angelanorse 134130 Apaczai 105 Artemis 9908 Aue 114991 Balazs 11451 Aarongolden 3326 Agafonikov 10051 Albee
    [Show full text]
  • The Minor Planet Bulletin, We Feel Safe in Al., 1989)
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 43, NUMBER 3, A.D. 2016 JULY-SEPTEMBER 199. PHOTOMETRIC OBSERVATIONS OF ASTEROIDS star, and asteroid were determined by measuring a 5x5 pixel 3829 GUNMA, 6173 JIMWESTPHAL, AND sample centered on the asteroid or star. This corresponds to a 9.75 (41588) 2000 SC46 by 9.75 arcsec box centered upon the object. When possible, the same comparison star and check star were used on consecutive Kenneth Zeigler nights of observation. The coordinates of the asteroid were George West High School obtained from the online Lowell Asteroid Services (2016). To 1013 Houston Street compensate for the effect on the asteroid’s visual magnitude due to George West, TX 78022 USA ever changing distances from the Sun and Earth, Eq. 1 was used to [email protected] vertically align the photometric data points from different nights when constructing the composite lightcurve: Bryce Hanshaw 2 2 2 2 George West High School Δmag = –2.5 log((E2 /E1 ) (r2 /r1 )) (1) George West, TX USA where Δm is the magnitude correction between night 1 and 2, E1 (Received: 2016 April 5 Revised: 2016 April 7) and E2 are the Earth-asteroid distances on nights 1 and 2, and r1 and r2 are the Sun-asteroid distances on nights 1 and 2. CCD photometric observations of three main-belt 3829 Gunma was observed on 2016 March 3-5. Weather asteroids conducted from the George West ISD Mobile conditions on March 3 and 5 were not particularly favorable and so Observatory are described.
    [Show full text]
  • Mission to the Trojan Asteroids: Lessons Learned During a JPL Planetary Science Summer School Mission Design Exercise
    Mission to the Trojan Asteroids: lessons learned during a JPL Planetary Science Summer School mission design exercise Serina Diniegaa, Kunio M. Sayanagib,c,d,Jeffrey Balcerskie, Bryce Carandef, Ricardo A Diaz- Silvag, Abigail A Fraemanh, Scott D Guzewichi, Jennifer Hudsonj,k, Amanda L. Nahml, Sally Potter-McIntyrem, Matthew Routen, Kevin D Urbano, Soumya Vasishtp, Bjoern Bennekeq, Stephanie Gilq, Roberto Livir, , Brian Williamsa, Charles J Budneya, Leslie L Lowesa aJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, bUniversity of California, Los Angeles, CA, cCalifornia Institute of Technology, Pasadena, CA, dCurrent Affilliation: Hampton University, Hampton, VA, eCase Western Reserve University, Cleveland, OH, fArizona State University, Tempe, AZ, gUniversity of California, Davis, CA, hWashington University in Saint Louis, Saint Louis, MO, iJohns Hopkins University, Baltimore, MD, jUniversity of Michigan, Ann Arbor, MI, kCurrent affiliation: Western Michigan University, Kalamazoo, MI, lUniversity of Texas at El Paso, El Paso, TX, mThe University of Utah, Salt Lake City, UT, nPennsylvania State University, University Park, PA, oCenter for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ, pUniversity of Washington, Seattle, WA, qMassachusetts Institute of Technology, Cambridge, MA, rUniversity of Texas at San Antonio, San Antonio, TX Email: [email protected] Published in Planetary and Space Science submitted 21 April 21 2012; accepted 29 November 2012; available online 29 December 2012 doi:10.1016/j.pss.2012.11.011 ABSTRACT The 2013 Planetary Science Decadal Survey identified a detailed investigation of the Trojan asteroids occupying Jupiter’s L4 and L5 Lagrange points as a priority for future NASA missions. Observing these asteroids and measuring their physical characteristics and composition would aid in identification of their source and provide answers about their likely impact history and evolution, thus yielding information about the makeup and dynamics of the early Solar System.
    [Show full text]
  • Arxiv:1606.03013V1 [Astro-Ph.EP] 9 Jun 2016 N-Rie Iiae Eeye L 06.Seta Mod- Spectral of 2006)
    Draft version August 21, 2018 A Preprint typeset using LTEX style emulateapj v. 5/2/11 THE 3-4 µM SPECTRA OF JUPITER TROJAN ASTEROIDS M.E. Brown Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 Draft version August 21, 2018 ABSTRACT To date, reflectance spectra of Jupiter Trojan asteroids have revealed no distinctive absorption fea- tures. For this reason, the surface composition of these objects remains a subject of speculation. Spec- tra have revealed, however, that the Jupiter Trojan asteroids consist of two distinct sub-populations which differ in the optical to near-infrared colors. The origins and compositional differences between the two sub-populations remain unclear. Here we report the results from a 2.2-3.8 µm spectral survey of a collection of 16 Jupiter Trojan asteroids, divided equally between the two sub-populations. We find clear spectral absorption features centered around 3.1 µm in the less red population. Additional absorption consistent with expected from organic materials might also be present. No such features are see in the red population. A strong correlation exists between the strength of the 3.1 µm absorp- tion feature and the optical to near-infrared color of the objects. While traditionally absorptions such as these in dark asteroids are modeled as being due to fine-grain water frost, we find it physically implausible that the special circumstances required to create such fine-grained frost would exist on a substantial fraction of the Jupiter Trojan asteroids. We suggest, instead, that the 3.1 µm absorption on Trojans and other dark asteroids could be due to N-H stretch features.
    [Show full text]
  • Taxonomy of Asteroid Families Among the Jupiter Trojans: Comparison Between Spectroscopic Data and the Sloan Digital Sky Survey Colors
    Astronomy & Astrophysics manuscript no. trojan-final c ESO 2013 February 14, 2013 Taxonomy of asteroid families among the Jupiter Trojans: Comparison between spectroscopic data and the Sloan Digital Sky Survey colors F. Roig1, A. O. Ribeiro1, and R. Gil-Hutton2 1 Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, 20921-400, Brazil 2 Complejo Astronómico El Leoncito (CASLEO) and Univ. Nacional de San Juan, Av. España 1512 sur, San Juan, J5402DSP, Argentina Received / Accepted Abstract Aims. We present a comparative analysis of the spectral slope and color distributions of Jupiter Trojans, with particular attention to asteroid families. We use a sample of data from the Moving Object Catalogue of the Sloan Digital Sky Survey, together with spectra obtained from several surveys. Methods. A first sample of 349 observations, corresponding to 250 Trojan asteroids, were extracted from the Sloan Digital Sky Survey, and we also extracted from the literature a second sample of 91 spectra, corresponding to 71 Trojans. The spectral slopes were computed by means of a least-squares fit to a straight line of the fluxes obtained from the Sloan observations in the first sample, and of the rebinned spectra in the second sample. In both cases the reflectance fluxes/spectra were renormalized to 1 at 6230 Å. Results. We found that the distribution of spectral slopes among Trojan asteroids shows a bimodality. About 2/3 of the objects have reddish slopes compatible with D-type asteroids, while the remaining bodies show less reddish colors compatible with the P-type and C-type classifications. The members of asteroid families also show a bimodal distribution with a very slight predominance of D-type asteroids, but the background is clearly dominated by the D-types.
    [Show full text]
  • Mission to the Trojan Asteroids Lessons Learned During a JPL
    Planetary and Space Science 76 (2013) 68–82 Contents lists available at SciVerse ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Mission to the Trojan asteroids: Lessons learned during a JPL Planetary Science Summer School mission design exercise Serina Diniega a,n, Kunio M. Sayanagi b,c,1, Jeffrey Balcerski d, Bryce Carande e, Ricardo A. Diaz-Silva f, Abigail A. Fraeman g, Scott D. Guzewich h, Jennifer Hudson i,2, Amanda L. Nahm j, Sally Potter-McIntyre k, Matthew Route l, Kevin D. Urban m, Soumya Vasisht n, Bjoern Benneke o, Stephanie Gil o, Roberto Livi p, Brian Williams a, Charles J. Budney a, Leslie L. Lowes a a Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, United States b University of California, Los Angeles, CA 90095, United States c California Institute of Technology, Pasadena, CA 91106, United States d Case Western Reserve University, Cleveland, OH 44106, United States e Arizona State University, Tempe, AZ 85281, United States f University of California, Davis, CA 95616, United States g Washington University in Saint Louis, Saint Louis, MO, United States h Johns Hopkins University, Baltimore, MD 21218, United States i University of Michigan, Ann Arbor, MI 48105, United States j University of Texas at El Paso, El Paso, TX 79968, United States k The University of Utah, Salt Lake City, UT 84112, United States l Pennsylvania State University, University Park, PA 16802, United States m Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07103, United States n University of Washington, Seattle, WA 98195, United States o Massachusetts Institute of Technology, Cambridge, MA 02139, United States p University of Texas at San Antonio, San Antonio, TX 78249, United States article info abstract Article history: The 2013 Planetary Science Decadal Survey identified a detailed investigation of the Trojan asteroids Received 20 April 2012 occupying Jupiter’s L4 and L5 Lagrange points as a priority for future NASA missions.
    [Show full text]
  • Near-Infrared Spectroscopy of Trojan Asteroids: Evidence for Two Compositional Groups
    Near-Infrared Spectroscopy of Trojan Asteroids: Evidence for Two Compositional Groups J. P. Emery1 Earth and Planetary Science Dept & Planetary Geosciences Institute University of Tennessee, Knoxville, TN 37996 D. M. Burr1 Earth and Planetary Science Dept & Planetary Geosciences Institute University of Tennessee, Knoxville, TN 37996 D. P. Cruikshank NASA Ames Research Center, Moffett Field, CA 94035 Astronomical Journal, in press Manuscript pages: 38 Tables: 3 Figures: 7 (color for online, B&W for print) Appendix: 1 Proposed Running Head: Trojan asteroid spectral groups Corresponding author: Joshua P. Emery 306 EPS Building 1412 Circle Dr Knoxville, TN 37996 (865) 974-8039 (office) (865) 974-2368 (fax) E-mail: [email protected] 1 Visiting astronomer at NASA IRTF 2 Abstract The Trojan asteroids, a very substantial population of primitive bodies trapped in Jupiter’s stable Lagrange regions, remain quite poorly understood. Because they occupy these orbits, the physical properties of Trojans provide unique perspective on chemical and dynamical processes that shaped the Solar System. The current study was therefore undertaken to investigate surface compositions of these objects. We present 66 new near-infrared (NIR; 0.7 to 2.5 μm) spectra of 58 Trojan asteroids, including members of both the leading and trailing swarms. We also include in the analysis previously published NIR spectra of 13 Trojans (3 of which overlap with the new sample). This data set permits not only a direct search for compositional signatures, but also a search for patterns that may reveal clues to the origin of the Trojans. We do not report any confirmed absorption features in the new spectra.
    [Show full text]
  • On the Accuracy of Restricted Three-Body Models for the Trojan Motion
    On the accuracy of Restricted Three-Body Models for the Trojan motion Frederic Gabern,∗ Angel` Jorba∗and Philippe Robutel† Abstract In this note we compare the frequencies of the motion of the Trojan asteroids in the Restricted Three-Body Problem (RTBP), the Elliptic Restricted Three-Body Problem (ERTBP) and the Outer Solar System (OSS) model. The RTBP and ERTBP are well-known academic models for the motion of these asteroids, and the OSS is the standard model used for realistic simulations. Our results are based on a systematic frequency analysis of the motion of these asteroids. The main conclusion is that both the RTBP and ERTBP are not very accurate models for the long-term dynamics, although the level of accuracy strongly depends on the selected asteroid. Keywords: Symplectic integrators, frequency analysis, Trojan asteroids. 1 Introduction The Restricted Three-Body Problem models the motion of a particle under the gravit- ational attraction of two point masses following a (Keplerian) solution of the two-body problem (a general reference is [17]). The goal of this note is to discuss the degree of ac- curacy of such a model to study the real motion of an asteroid moving near the Lagrangian points of the Sun-Jupiter system. To this end, we have considered two restricted three-body problems, namely: i) the Circular RTBP, in which Sun and Jupiter describe a circular orbit around their centre of mass, and ii) the Elliptic RTBP, in which Sun and Jupiter move on an elliptic orbit. The realistic model used to test the results from the restricted models is the so-called Outer Solar System (OSS).
    [Show full text]