1990AJ 100. . 933J a) 933 Astron.J.100 (3),September1990 0004-6256/90/030933-12$00.90 © 1990Am. Astron. Soc.933 THE ASTRONOMICALJOURNAL Johnson e/tf/.1987). Astronomy Observatories,operatedby theAssociationofUniversitiesfor VisitingAstronomer,KittPeakNational Observatory,NationalOptical nuclei wouldbenaturallyexplainedifpolymerizedorganic mantle. Thelowalbedosandreddishreflectionspectraofthe P/Halley suggestacarbon-richcomposition(Kisseletal. concentrated inahandfulofactivevents(Kelleretal covered byadark,refractorymantle,andthatoutgassingis the nucleusofP/Halleyconfirmthatmuchsurfaceis which cometaryvolatilesescapeeitherbydiffusionor to anucleus-widemantleofrefractorymatter,through andreddish.Thesepropertiesarethoughttobedue properties, thenucleimaybeeffectivelysummarizedaslow Jewitt andLuu1989;1990b).Intheiroptical Foundation. Research inAstronomyInc.,undercontract withtheNationalScience compounds wereabundantconstituentsofthismantle(e.g., through discretevents.High-resolutionspacecraftimagesof nuclei intheopticalwavelengthrange(4000

© American Astronomical Society • Provided by the NASA Astrophysics Data System 936 D. C. JEWITT AND J. X. LUU: CCD SPECTRA OF ASTEROIDS 936

fô) Wavelength [Á] (d) Wavelength [Â]

(b) Wavelength [Á] (e) Wavelength [Â]

(c) Wavelength [Â] (f) Wavelength [À]

Fig. 2. Reflectivity spectra of 32 Trojan asteroids [(a)-(k)] and of 279 Thule (1). The asteroids are plotted on a common scale to facilitate easy comparison. Spectra of Trojan asteroids within each panel are displaced in normalized reflectivity by AS ' = — 0.5,0.0, and 0.5, respectively, for clarity of presentation. The Trojan spectra are presented in order of increasing reflectivity gradient S'.

© American Astronomical Society • Provided by the NASA Astrophysics Data System 937 ^ Wavelength[Â] © American Astronomical Society • Provided by the NASA Astrophysics Data System NonnaUzed Reflectivity 2 Normalized Reflectivity D. C.JEWITTANDJ.X.LUU:CCDSPECTRAOFASTEROIDS 4000 4500500055006000650070007500 Wavelength [Â] Wavelength [À] Fig. 2.(continued) (I) Wavelength[Á] Wavelength [À] Wavelength [Â] 937 1990AJ 100. . 933J 938 D.C.JEWITTANDJ.X.LUU:CCDSPECTRAOFASTEROIDS © American Astronomical Society • Provided by the NASA Astrophysics Data System a EstimatedfromV(1,1,0) 279 3793 659 624 N 1988BY1 1988BX1 1987WR3 3451 3391 2920 2797 2759 2674 2456 2363 2357 2260 2241 2207 884 (1) 3240 1871 1870 1867 1749 1647 1583 1437 1208 1173 1873 1872 1172 Thule unnamed unnamed Leonteus Glaukos Deiphobus Telamon Antilochus Troilus Hektor Automedon Phereclos Antenor Agenor Helenos Astyanax Menelaus Diomedes Anchises Aneas Priamus Nestor Name 1979HA2 Sinon Laocoon Teucer Idomeneus Pandarus Palamedes Neoptolemus Cebriones 1984HA1 1979WM (2) 1989/Feb/07 1989/Feb/07 1989/Feb/03 1989/Feb/04 1989/Feb/03 1989/Feb/04 1989/Feb/08 1988/Oct/07 1988/Oct/09 1988/Oct/10 1988/Oct/08 1988/Oct/09 1988/Sep/09 1989/Feb/03 1989/Feb/07 1989/Feb/04 1989/Feb/04 1988/Oct/10 1988/Oct/10 1988/Oct/09 1988/Oct/08 1989/Feb/07 1989/Feb/03 1988/Oct/07 1989/Feb/04 1988/Oct/10 1989/Feb/03 1989/Feb/03 1988/Oct/08 1989/Feb/04 1988/Oct/09 1988/Oct/08 1988/Oct/07 UTDate (3) Table I.Observedasteroids. a Airmass IntegrationVS'Fig. 1.0400 1.1200 1.0700 1.1600 1.3100 1.1800 1.0900 1.4800 1.1100 1.5400 1.0500 1.2500 1.1800 1.0100 1.0600 1.1300 1.1800 1.4000 1.3700 1.0800 1.2200 1.0600 1.4400 1.0000 1.0900 1.3500 1.3500 1.1400 1.0600 1.2200 1.3100 1.0000 1.0700 (4) (5)(6)(7)(8) 2000 2400 2000 2300 2100 3000 1400 1900 1800 1800 2000 2000 1400 1200 1600 1800 1600 1300 1000 1200 1400 1800 1200 1800 1800 1800 1350 1800 1800 1800 1900 1800 1400 [s] [mag.][%/1000Â] 14.5 7.1+121 17.1 16.7 16.4 15.5 17.2 18.1 16.9 18.4 17.8 15.6 16.8 15.8 15.1 15.7 15.5 15.1 15.8 16.3 14.3 16.2 14.9 16.1 16.0 16.3 17.2 16.5 16.1 15.4 16.8 16.4 16.5 15.8 24.7 ±1 23.1 ±2 16.2 ±2 10.2 ±1 11.0+1 10.0 ±1 13.6 ±2 11.2 ±1 11.5 ±1 10.2 ±1 11.7 ±1 11.0± 1 4.4 ±1 9.0 ±1 4.8 ±1 9.4 ±1 8.6 ±1 3.1 ±1 3.8 ±1 3.4 ±1 8.8 ±1 8.6 ±1 8.2 ±1 3.5 ±1 5.8 ±2 7.1 ±1 9.8 ±1 9.4 ±1 9.0 ±1 8.9 ±1 8.2 ±1 8.1 ±1 2j 2h 2b 2i 2f 2f 2e 2i 2e 2d 2a 2b 2b 2d 2a 2g 2k 2j 2k 2h 2j 21 2a 2c 2c 2g 2e 2g 2c 2f 2d 2h 938 00 O'!00 939 D. C. JEWITT AND J. X. LUU: CCD SPECTRA OF ASTEROIDS 939 o tribution of the Trojan asteroids. An overabundance of ^0 Trojan red D fragments at small sizes might be expected if oc the dark, red material is more prone to collisional fragmen- O'! tation than its more neutral counterpart. This, in turn, would be qualitatively compatible with the expected low de- gree of metamorphism experienced by the Trojans (Bell et al. 1989). Some evidence exists for differences in the size distributions of main-belt asteroids belonging to different spectral classes (Chapman 1989).

b) Preceding Cloud Versus Following Cloud In Fig. 6 we distinguish the Trojans of the preceding cloud from those of the following cloud ( see column 4 of Table II ). Our sample includes 16 asteroids from each cloud. The fig- Wavelength [À] ure shows that the reflectivity gradients of the asteroids within the two clouds are similar, so that no evidence exists Fig. 3. Reflectivity spectra of Trojan asteroids , 1172 An- for a compositional difference between the two clouds. The eas, and 1173 Anchises compared with multichannel data from Smith et mean gradient in the preceding cloud is_5" = 8.6 + 3.2%/ al. (1981). The multichannel data have been renormalized at 103 A while that in the following cloud is A" = 10.6 + 5.7%/ À = 6000 A. Spectra of 884 Priamus and 1173 Anchises are displaced in 103 A. Within the uncertainties, the difference between the normalized reflectivity by AS" = — 0.5 and 0.5, respectively, for clarity of presentation. Formal error bars in the multichannel data approach two values is zero. Therefore, we conclude that the two Tro- + 0.03-0.05 in the blue. jan clouds are spectrally indistinguishable. c) Comparison with Other Asteroids In Fig. 7 we plot the reflectivity gradient S' versus the recomputed rcorr. The correlation coefficient decreased to r semimajor axis a (AU) for near-Earth and main-belt aster- corr =0.46, which is significant at the P(r^rcorT) =0.01 level (i.e., the correlation retains 1% significance). oids (from Paper I) and Trojan asteroids (this work). Also What might be the cause of this unexpected color-magni- plotted is S' for the asteroid 279 Thule (a = 4.27 AU). As tude trend? The obvious possibility that the trend is an arti- noted earlier, the comparison of data from this paper with fact of an unknown but magnitude-dependent error in the data from Paper I is completely legitimate, since all objects data reduction is effectively eliminated by Fig. 5(b). The were observed and reduced under standardized conditions, figure shows S' versus magnitude for main-belt and near- and systematic errors are likely to be small. The figure shows Earth asteroids (data taken from Paper I). The main-belt that, from the main belt outward to the Trojans, the values of and near-Earth asteroid spectra were taken on the same S ' exhibit a clear trend towards increasing redness with in- dates as the Trojan spectra, using the same telescope and creasing heliocentric distance. The significance of the linear detector, and reduced and measured following the same pro- correlation between S' and a is better than 0.001 (i.e., the cedures. These three datasets should thus suffer identically correlation has high statistical significance). The figure also from any magnitude-dependent error which might be pres- emphasizes that the Trojan population is distinguished from ent. However, Fig. 5(b) gives no evidence for a color-mag- asteroids at smaller distances by the complete absence of nitude trend in either the main-belt or the near-Earth aster- blue asteroids. Specifically, 0 out of 32 Trojans have S'<0 oid data. We conclude that the color-magnitude trend is while 3 out of 19 NEAs and 5 out of 23 main-belt asteroids specific to the Trojans, and is not of instrumental or spectral- fall into this category. What is not clear from Fig. 7 is reduction origin. whether 5" is a smooth function of semimajor axis, or The color-magnitude trend [Fig. 5(a) ] may be plausibly whether the Trojans are simply redder as a group than all interpreted as a color-diameter trend among the Trojans. other asteroids. The former case has been advocated by Vilas The fainter Trojans in Table I have generally smaller diame- and Smith ( 1985). ters than the brighter Trojans, since the geometric albedos vary by only a factor of 2-3 while the apparent magnitudes IV. SPECTRAL FEATURES differ by a factor of 40 (Am—4). This diameter-magnitude Although the reflectivity spectra of most Trojan asteroids correlation may be seen directly from a comparison of the are well fitted by a straight line, deviations from linearity magnitudes (column 6 of Table I) and IRAS diameters exist and fall into two broad categories. (column 6 of Table II) of the Trojans. Therefore, the color- ( 1 ) Several spectra show a downturn in A" at short wave- magnitude trend in Fig. 5(a) may be interpreted as a color- lengths Z, <5000 A relative to a linear extrapolation from diameter trend, with the smaller Trojans being optically red- longer wavelengths. Good (but subtle) examples may be der than their larger counterparts. seen in asteroids 3451 ( 1984 HA1 ), 659 Nestor, 1437 Dio- We postulate that, among the Trojans, the size distribu- medes [all in Fig. 2(a) ], 1208Troilus [Fig. 2(b)] and 2207 tion of the very red D asteroids is peaked towards smaller Antenor [Fig. 2(i) ]. This downturn is seen in the spectra of diameters than are the size distributions of the (less red) C many main-belt asteroids (e.g., Zellner, Tholen, and Tesesco and P asteroids. The size distributions of the main-belt aster- 1985; Paper I) where it is attributed to the presence of an oids are thought to be controlled (at least at diameters ultraviolet charge transfer absorption in a transition metal < 100-200 km) by mutual collisions between asteroids (Da- silicate (Gaffey and McCord 1977). The downturn is stron- vis ei a/. 1979; Dermott, Harris, and Murray 1984). Presum- gest in those Trojan asteroids having relatively neutral re- ably, collisions are also important in controlling the size dis- flectivities, suggesting that the surface abundance of the UV

© American Astronomical Society • Provided by the NASA Astrophysics Data System 1990AJ 100. . 933J 940 © American Astronomical Society • Provided by the NASA Astrophysics Data System D. C.JEWITTANDJ.X.LUU:CCDSPECTRAOFASTEROIDS a b ^ IRASAlbedo,fromAsteroidsIIdatabase. * IRASdiameter,fromAsteroidsIIdatabase. p =preceedingTrojancloud,ffollowing Trojancloud. Spectralclass,fromAsteroidsIIdatabase. 279 1988BY1 1988BX1 1987WR3 3793 3451 3391 2920 2357 2241 3240 2797 2759 2674 2363 2456 2260 2207 659 624 884 o) 1873 1872 1871 1870 1867 1749 1647 1583 1437 1208 1173 1172 N Thule unnamed unnamed Leonteus 1979HA2 Sinon Laocoon Automedon Teucer Idomeneus Pandarus Palamedes Phereclos Neoptolemus Antenor Agenor Helenos Astyanax Glaukos Deiphobus Telamon Troilus Aneas Cebriones Menelaus Antilochus Diomedes Anchises Priamus Nestor Hektor 1984HA1 Name 1979WM (2) 5 4.2694 5.2244 5.2637 5.2634 5.2567 5.1667 5.0936 5.2622 5.1792 5.1665 5.1618 5.1786 5.1871 5.1323 5.1781 5.1905 5.2432 5.1383 5.2671 5.1937 5.3346 5.2459 5.1630 5.2230 5.2493 5.1066 5.2009 5.1036 5.3128 5.1646 5.1576 5.2456 5.1788 a [AU]p/f*Class'DiameterGeometric Table II.Asteroidphysicaldata. (3) (4)(5)(6)(7) Notes toTableII P n/a P P P f P f P P P P P P P P P f f P f f f f f f f f f f P f f D D D D D D D C P D U C 135 73 d 72 92 93 65 85 123 123 115 102 103 103 123 131 109 171 111 135 151 115 [km] Albedo 0.03 0.034 0.024 0.037 0.012 0.028 0.051 0.029 0.036 0.046 0.041 0.041 0.035 0.066 0.042 0.064 0.040 0.058 0.026 0.038 0.040 940 1990AJ 100. . 933J 941 Trojan asteroidsarediverse. against thevalueof5'.Thehistogramemphasizesthatspectra Fig. 4.ThenumberofTrojanshaving5'inaspecifiedrangeisplotted oids (dataarefrom PaperI).Nocolor-magnitudetrendis apparent. line isaleast-squaresfittothedata.The dataaretakenfromTableI. trend towardsreddercolorsissignificant atthe0.005level.Thesolid Fig. 5.(a)Colorvsapparentmagnitude fortheTrojanasteroids.The (b) Colorvsapparentmagnitudeformain-belt andnear-Earthaster- © American Astronomical Society • Provided by the NASA Astrophysics Data System D. C.JEWITTANDJ.X.LUU:CCDSPECTRAOFASTEROIDS 0 24681012141618202224262830 S' [%/1000Â] A ~5100A,whileaweakerfeatureat5900ispartially more prominentamongthelargerTrojans,providinganin- to bethelargestinoursample.Thus,UVabsorberis material. Asnotedabove,themoreneutralTrojansalsotend absorber isanticorrelatedwiththeabundanceofdarkred tral classesmaydifferfromoneanother(seeSec.Ilia). dependent hintthatthesizedistributionsofvariousspec- feature near5900Acanbediscerned.Theestimatedabsorp- obscured byanoisespikeinthedata.In1870Glaukosonly 2 (k)].In1988BY1themostprominentabsorptionoccursat tra ofTrojans1988BY1[Fig.2(j)]and1870Glaukos in bothcasescomparabletothecontinuumpeak-to-peak tainty duetothecontinuumnoise.Theabsorptiondepthsare tion bandwidthsare300-500A,withconsiderableuncer- ^ 10 following clouds.ThefigureshowsthatthedistributionofS''issimilarin the twoclouds. Fig. 6.ColorvssemimajoraxisforTrojanasteroidsintheprecedingand Thule isalsoplotted(denotedbytheX symbol).Thefigureempha- sizes thenetcolordifference betweentheTrojansandother asteroids. Fig. 7.Colorvssemimajoraxisfornear-Earth andmain-beltasteroids (from PaperI)andTrojanasteroids from thiswork.Asteroid279 (2) Broad,shallowabsorptionsareapparentinthespec- -10 20 - 30 o # Semi-major Axisa[AU] a [AU] 3 O NEA(Paper1) * Main-Bell(PaperI) X Thule • Trojan(ThisWork) _L Í 941 1990AJ 100. . 933J 3 3 942 D.CJEWITTANDJ.X.LUU:CCDSPECTRAOFASTEROIDS features isobtained.Significantly,porphyrinsarecarbon- lengths oftheobservedbands. features, eitherinemissionorabsorptionnearthewave- the terrestrialatmospherepossessesnoremarkablespectral star usedtocomputethespectralflux,anddonotdependon and 1870Glaukos. asteroids observedimmediatelybeforeandafter1988BY1 noise, sothatweregardtherealityoffeaturesastenta- oids forcomparisonwithexistingand,especially,future work wasthedesiretoobtainasetofspectradistantaster- asteroids. suspicions regardingthecarbonabundanceofTrojan rich compoundsand,ifpresent,wouldsatisfylong-standing tailed comparisonuntilobservationalconfirmationofthe noted (HoldenandGafFey1987),butwewilldelayade- ing. Asimilaritytothereflectionspectraofporphyrinsis that thefailuretofindotherexamplesisperhapsnotsurpris- to-noise comparabletothatofthepresentdataissmall,so published reflectancespectrahavingresolutionandsignal- tures inthespectraofmain-beltandnear-Earthasteroids the methodofextinctioncorrectionemployed.Inanyevent, tra, andtheyarespecificallyabsentfromthespectraofthose Glaukos spectrainFig.2. grations whichwereaddedtoformthe1988BY1and1870 porting theirrealityincludes: tive, andinneedofindependentconfirmation.Evidencesup- clei havebeenidentifiedtodate,sothatanycomparison tra reportedandinPaperIareavailableonlyforP/Encke with thenewasteroidspectrareportedinthispaper. must beregardedaspreliminaryinnature.Inaddition,the spectra ofcometarynuclei.Onlyahandfulnu- nuclei comparableinspectralresolutiontotheasteroidspec- Encke, P/HalleyandP/Tempel2;seeTableIinJewitt nuclei offivecomets[P/Arend-Rigaux,P/Neujmin1,P/ compare theavailablereflectancedataoncometarynuclei ship amongtheTrojanshasalreadybeendescribedinSec. ered. Infact,empiricalevidenceforasizeversusS'relation- possibility ofsizedependentselectioneffectsmustbeconsid- smaller thanthetypicalTrojanasteroidsstudied,sothat typical cometarynucleiareaboutoneorderofmagnitude ple. and oftheTrojansaresimilar, withintheverysubstantial the twotypesofobject.Evidently, thecolorsofnuclei than anyofthenear-Earthormain-beltasteroidssampledin and Keller1989),toP/Tempel2beingsubstantiallyredder with respecttotheSun(-S^H^y=6+3%/10Â;Thomas varied, rangingfromP/Halleybeingonlyslightlyreddened III. Despitethispotentialcomplication,itisinterestingto uncertainties imposedbythesmall sizeofthenucleussam- of theTrojans,wepresentinFig. 8thecolorhistogramsof Paper I(S^empeiz=20+3%/10 Â;JewittandLuu (Paper I)provedunsuccessful.However,thenumberof 1989). Thevisualcolorsofthenucleiasagrouparequite (Luu andJewitt1990b)P/Tempel2(JewittLuu ( 1990a)forthecolorsofindividualnuclei].CCDspectra 1989). Tocomparethenucleus colordistributionwiththat An attempttoidentifytheasteroidalabsorptionswithfea- As notedintheIntroduction,amajormotivationforthis Broadband visualcolorsarecurrentlyavailableforthe (c) Theabsorptionsarenotdependentonthestandard (b) Comparablefeaturesareabsentfromallotherspec- (a) TheyexistineachofthetwoindependentCCDinte- © American Astronomical Society • Provided by the NASA Astrophysics Data System V. COMPARISONWITHCOMETARYNUCLEI ted intheP/Tempel2spectrum.Figure9showsthat that oftheTrojanasteroid1988BY1isgiveninFig.9.Only cleus ofcometP/Tempel2(fromJewittandLuu1989)with wavelengths believedtobefreeofgaseousemissionareplot- spectra. Jewitt andLuu(1989).Aclosecorrespondence existsbetweenthetwo Tempel 2[blackdotsinFig.9(b)].The P/Tempel2spectrumisfrom Fig. 9.Comparisonofthereflection spectrumofTrojanasteroid 1988BY1 [Fig.9(a)]withthespectrum ofthenucleuscometP/ (b) A moredetailedcomparisonofthespectrumnu- value of5". nuclei (white)having5'inaspecifiedrangeareplottedagainstthe Fig. 8.ThenumbersofTrojans(shadedhistogram)andcometary 0 24681012141618202224262830 S' [%/1000Â] Wavelength [A] Wavelength [Â] 942 1990AJ 100. . 933J of thenucleiandthoseTrojan asteroidscouldpoten- cometary nucleiandtheTrojan asteroids. Table IIIsummarizestheaverage physicalpropertiesofthe cient evidencetodistinguish among theseexplanations. ing suchalignment.Unfortunately, wedonotpossesssuffi- 943 D.C.JEWITTANDJ.X.LUU:CCDSPECTRAOFASTEROIDS plitudes, althoughnoobviousmechanismexistsforproduc- by sublimationtorques(seeJewittandMeech1988).Ifthe the Trojanscouldberesponsibleforlargerotationalam- etal. (1988)haveremarkedthatspinaxisalignmentamong same wayasforthecometarynuclei.Inaddition,Hartmann previous outgassinghasmodifiedthebodyshapesinjust Trojans possesshighwaterabundances,itispossiblethat explanations forthecometsincluderetentionofprimor- bofsky etal.1988).Thephysicalsignificanceoftheaspheri- projection effectduetononprincipalaxisrotationinduced dial bodyshapes,theeffectofanisotropicmasslossanda cal shapesoftheTrojansandnucleiisobscure.Proffered The mantlesmayconsistofcomplexorganicmolecules albedo variations(HartmannandCruikshank1980;Le- curve amplitudeisindicativeofshaperatherthanazimuthal postulated forthemantlesofcomets(Johnsonetal.1987). the Trojans,butsimilarlyhighcarbonabundanceshavebeen scenarios forthecometsareevenlesscertainthanthose thermal-visual photometryprovidesevidencethatthelight- light curvesindicativeofasphericity.Again,simultaneous of theabove-mentionedcometarynucleiareinferredtobe ets andtheTrojansisextendedtophysicalpropertiesby erally reddishreflectionspectraofthesebodies.Formation in carbonabundance,givingrisetothelowalbedosandgen- curves (JewittandMeech1988;JewittLuu1989; highly elongatedfromobservationsoftherotationallight- a comparisonofthegrossshapesthesebodies.The Cruikshank 1987;Johnson^a/.1987). modified byexposuretocosmicrays(Andronicoetal.1987; perienced littlemetamorphisminthenearsurfaceregions well-studied Trojansarecomparable,/>—0.02-0.05(c.f., et al.(1988)foundthattheTrojansdisplaylargerotational pel 2(cf:referencescitedabove).Independently,Hartmann and Jewitt1990b).Evidencethatthelightcurvesarecon- average geometricalbedodeterminedforthenucleiofcom- nuclei shareverylowvaluesofthegeometricalbedo.The hypothesis isclearlynon-unique. are derivedfromasingle-sourcepopulation,althoughthis patible withthehypothesisthatcometsandTrojans spectra ofthenucleusP/Tempel2and1988BY1iscom- material onTrojan1988BY1.Thesimilaritybetweenthe ofP/Arend-Rigaux,P/Neujmin1,andP/Tem- tions) isprovidedbysimultaneousthermalinfrared-visual trolled byshape(ratherthanazimuthalalbedovaria- are primitivebodies,formednearR—5AU,andhavingex- column 7ofTableII).OnepopularbeliefisthattheTrojans Campins 1988;A’Hearnetal.1989).Geometricalbedosof McFadden 1987;KelleretalMillis,A’Hearn,and pel 2is-0.03±0.01(cf.Campins,A’Hearn,and ets P/Arend-Rigaux,P/Neujmin1,P/Halley,andP/Tem- mantle coveringthesurfaceofP/Tempel2and prove, acompositionalsimilaritybetweentherefractory surements. Thisobservationisconsistentwith,butdoesnot with thatof1988BY1,withintheuncertaintiesmea- reflection spectrumofthenucleusP/Tempel2isidentical (Bell etal.1989).Thesurfaceregionsarethoughttobehigh v The similaritiesobservedbetween thephysicalproperties The similaritybetweentheopticalpropertiesofcom- It isalsonoteworthythattheTrojansandcometary © American Astronomical Society • Provided by the NASA Astrophysics Data System 3 3 d 0 a 3 b b0 d cant atthe0.005level,andmay reflectasizedependenceof tude mintherange14