Proquest Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

Proquest Dissertations Constraints on the surface composition of Trojan asteroidsfrom near infrared (0.8-4.0 μm) spectroscopy and spectral modeling Item Type text; Dissertation-Reproduction (electronic) Authors Emery, Joshua P. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 06/10/2021 12:07:38 Link to Item http://hdl.handle.net/10150/280170 INFORMATION TO USERS This manuscript has t)een reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 NOTE TO USERS Page(s) missing in number only; text follows. The manuscript was microfilmed as received. 12 This reproduction is the best copy available. UMI' CONSTRAINTS ON THE SURFACE COMPOSITION OF TROJAN ASTEROIDS FROM NEAR INFRARED (0.8 - 4.0 ^m) SPECTROSCOPY AND SPECTRAL MODELING by Joshua Patrick Emery A Dissertation Submitted to the Faculty of the DEPARTMENT OF PLANETARY SCENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2002 UMI Number; 3073216 ® UMI UMI Microform 3073216 Copyright 2003 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor. Ml 48106-1346 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Final Examination Committee, we certify that we have read the dissertation prepared by Joshua P. Emery entitled Constraints on the Surface Composition of Troian Asteroids from Near Infrared (0.8 - 2.4 Lim) Spectroscopy and Spectral Modeling and recommend that it be accepted as fulfilling the dissertation requirements for the Degree of Doctor of Philosophy // R. Date 0 Date /2.•/uh?. Date Date 11-AJosf C. G. Chase Date Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copy of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommerjj^hat it be accept^ as fulfilling the dissertation requirement. Dissertation Director Dafe 3 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of the requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interest of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: 4 ACKNOWLEDGEMENTS Before and during my tenure at LPL. my family and friends had often asked me exactly what the point of graduate school is. Initially I'd just shrug, with a vacant, unknowing expression on my face. After a few years. I might mumble something about gaining experience and intuition or learning to perform independent scientific research. Now that I'm at the end of my graduate career, however. I can clearly see that graduate school is just one prolonged psychological experiment. The PhD is only bestowed when you're no longer entirely (or even mostly) sane. As such, the support, care, guidance, motivation, and friendship of many people have been recognized, and some undeniably insufficient acknowledgement for those efforts is given here, though undoubtedly some will be left out. First and foremost. Karen has been a part of my life ever since I entered graduate school. She provided love and support throughout my time at LPL. It's hard to imagine what the past n years may have been like without her. and I will be forever grateful. My advisor. Bob Brown, gave me the latitude and time to discover my own interests and confidence in my research. In a remarkable balancing act, he was also always open with his time and advice. I would also like to acknowledge Ann Sprague. who proved to be a wonderful friend and colleague. She provided helpful advice and a listening ear for both scientific and personal issues, and has exuded an excitement for science (especially Mercury!) that is refreshing and motivating. Several people graciously accepted a free trip to Hawaii to help me at the telescope and are partially responsible for the good data and fully responsible for any bad data, so thank you Andy. Matt. Pete, and Dave. George and Marcia Rieke. the staff of the IRTF. especially the telescope operators, and the staff at the MMT were also kindly assisted with the data collection. I've had three interestingly unique office mates here at LPL. Unfortunately, this often led to more conversing than working in the office. Without Pete, I probably would have finished 2 years earlier and 50% less insane, and I'll never look at chicken wings or pianos the same again. Eric's romantic exploits gave Pete and I much needed entertainment. Jonathan's sense of humor, contagious laughter, and shared interest in golf and baseball have been a fine counterbalance to Pete's insanity. There are. of course, many others. The Everyday Beers crowd: Ralph, Pete, Dave, Jason. Fred. Gwen. Carl, Curtis, Joe, Rob, Ingrid, Gareth, and Jani. The softball crowd: Jonathan. Jason, the guys from the Red Garter, and the Sunday morning crew. Other remarkable friends: Greg, Nancy. Dave, Cynthia, Ron. Betty. Zibi, Paul, Matt. Matt, .Abby. Devon, Barb, Rachel, Ross, Kevin, and all those I've left out because I'm writing this at the last minute. Last, but certainly not least, my family is a remarkably stable and enduring source of support, even when they (and sometimes I) don't understand quite what it is I'm doing. They may not realize it. but many of the qualities that have led to success for me so far have been instilled by them. So Mom, Dad, Cathy Ann, Mary, Ruth, and Skye, thank you. 5 TABLE OF CONTENTS LIST OF RGURES 8 LIST OF TABLES 11 ABSTRACT 13 1 INTRODUCTION 15 1.1 Motivation 15 1.2 Overview of the Solar System 16 1.3 Previous Studies of Asteroids and Other Small Bodies 21 1.4 Previous Studies of Trojan Asteroids 27 1.5 Chemistry of the Solar Nebula 29 1.6 Outline of Present Work 32 2 OBSERVATIONS OF TROJAN ASTEROIDS 35 2.1 Introduction 35 2.2 Observations 37 2.3 Data Reduction 40 2.4 Description of Data 46 2.4.1 IRTF Fall 1999-NSFCAM 46 2.4.2 IRTF Fall 2000 - SpeX 52 2.4.3 IRTF Spring 2001-SpeX 52 2.4.4 MMT Spring 2001 - SpeX 58 2.4.5 IRTF Fall 2001 - SpeX 59 2.4.6 IRTF Spring 2002 - SpeX 61 2.5 Analysis 68 2.5.1 Possible Surface Components 68 2.5.2 Absorption features in Trojan Spectra 75 2.5.2.1 617Patroclus 76 2.5.2.2 J- and H-band 79 2.5.2.3 5144 Achates 81 2.5.2.4 588 Achilles 81 2.5.2.5 911 Agamemnon 83 2.5.2.6 2797 Teucer 85 2.5.3 Multiple Spectra of the Same Object 86 2.5.4 Spectral Slope 91 2.5.5 K- and L-band Sums 98 2.6 Discussion 100 2.6.1 Space Weathering 101 2.6.2 Water Ice 103 2.6.3 Hydrated Silicates 104 2.6.4 Possible Absorptions 105 2.6.5 Spectral Slope 107 2.7 Conclusion 108 6 TABLE OF CONTENTS - Continued 3 SPECTRAL MODELING OF TROJAN ASTEROID DATA Ill 3.1 Introduction Ill 3.2 Model Description 114 3.2.1 Hapke Scattering Theory 114 3.2.2 Phase Functions/Phase Reddening 120 3.2.3 Optical Constants 121 3.2.4 Technique 123 3.3 Data 125 3.4 Model Runs 128 3.4.1 Pure Materials and Grain Diameter Dependences 128 3.4.1.1 Pyroxene 129 3.4.1.2 Olivine 134 3.4.1.3 Carbon Species 136 3.4.1.4 Organics 138 3.4.1.5 Water Ice and Hydrated Silicates 142 3.4.2 Three-Component Data Fits 145 3.4.2.1 624Hektor 147 3.4.2.2 588 Achilles 155 3.4.2.3 617Patroclus 157 3.4.2.4 911 Agamemnon 159 3.4.2.5 1143 Odysseus 161 3.4.2.6 lI72Aneas 163 3.4.2.7 1437 Diomedes 164 3.4.2.8 1867 Deiphobus 166 3.4.2.9 2759 Idomeneus 168 3.4.2.10 2797Teucer 170 3.4.2.11 3540 Protesilaos 172 3.4.2.12 3793 Leonteus 173 3.4.2.13 4060Deipylos 175 3.4.2.14 4063 Euforbo 176 3.4.2.15 4835 1989 BQ 178 3.4.2.16 5144 Achates 179 3.4.2.17 5254 Ulysses 181 3.4.3 Discussion of Three-Component Model Results 183 3.4.4 Four-Component Models 189 3.4.5 Limits on Organic Abundance 194 3.4.6 Limits on Water Ice and Hydrated
Recommended publications
  • Solar System Tests of the Equivalence Principle and Constraints on Higher-Dimensional Gravity
    Solar system tests of the equivalence principle and constraints on higher-dimensional gravity J. M. Overduin Department of Physics, University of Waterloo, ON, Canada N2L 3G1 and Gravity Probe B, Hansen Experimental Physics Laboratory, Stanford University, California (July 21, 2000) the theory, ξ and αk refer to possible preferred-location In most studies of equivalence principle violation by solar and preferred-frame effects, and the ζk allow for possible system bodies, it is assumed that the ratio of gravitational to violations of momentum conservation (see [1] for discus- inertial mass for a given body deviates from unity by a param- sion). One has η = 0 in standard general relativity, where eter ∆ which is proportional to its gravitational self-energy. γ = β = 1. In 4D scalar-tensor theories, by contrast, Here we inquire what experimental constraints can be set on γ =(1+ω)/(2 + ω)andβ =1+ω /[2(2 + ω)(3 + 2ω)2], ∆ for various solar system objects when this assumption is re- 0 laxed. Extending an analysis originally due to Nordtvedt, we where ω = ω(φ) is the generalized Brans-Dicke parame- obtain upper limits on linearly independent combinations of ter and ω0 = dω/dφ. ∆ for two or more bodies from Kepler’s third law, the position The relative gravitational self-energy U can be cal- of Lagrange libration points, and the phenomenon of orbital culated for most objects in the solar system, subject polarization. Combining our results, we extract numerical to uncertainties in their mass density profiles. Thus, 5 upper bounds on ∆ for the Sun, Moon, Earth and Jupiter, for example, US 10− for the Sun, while Jupiter 8 ∼− using observational data on their orbits as well as those of the has UJ 10− [3].
    [Show full text]
  • Occultation Evidence for a Satellite of the Trojan Asteroid (911) Agamemnon Bradley Timerson1, John Brooks2, Steven Conard3, David W
    Occultation Evidence for a Satellite of the Trojan Asteroid (911) Agamemnon Bradley Timerson1, John Brooks2, Steven Conard3, David W. Dunham4, David Herald5, Alin Tolea6, Franck Marchis7 1. International Occultation Timing Association (IOTA), 623 Bell Rd., Newark, NY, USA, [email protected] 2. IOTA, Stephens City, VA, USA, [email protected] 3. IOTA, Gamber, MD, USA, [email protected] 4. IOTA, KinetX, Inc., and Moscow Institute of Electronics and Mathematics of Higher School of Economics, per. Trekhsvyatitelskiy B., dom 3, 109028, Moscow, Russia, [email protected] 5. IOTA, Murrumbateman, NSW, Australia, [email protected] 6. IOTA, Forest Glen, MD, USA, [email protected] 7. Carl Sagan Center at the SETI Institute, 189 Bernardo Av, Mountain View CA 94043, USA, [email protected] Corresponding author Franck Marchis Carl Sagan Center at the SETI Institute 189 Bernardo Av Mountain View CA 94043 USA [email protected] 1 Keywords: Asteroids, Binary Asteroids, Trojan Asteroids, Occultation Abstract: On 2012 January 19, observers in the northeastern United States of America observed an occultation of 8.0-mag HIP 41337 star by the Jupiter-Trojan (911) Agamemnon, including one video recorded with a 36cm telescope that shows a deep brief secondary occultation that is likely due to a satellite, of about 5 km (most likely 3 to 10 km) across, at 278 km ±5 km (0.0931″) from the asteroid’s center as projected in the plane of the sky. A satellite this small and this close to the asteroid could not be resolved in the available VLT adaptive optics observations of Agamemnon recorded in 2003.
    [Show full text]
  • Thermal-IR Spectral Analysis of Jupiter's Trojan Asteroids
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1238.pdf THERMAL-IR SPECTRAL ANALYSIS OF JUPITER’S TROJAN ASTEROIDS: DETECTING SILICATES. A. C. Martin1, J. P. Emery1, S. S. Lindsay2, 1The University of Tennessee Earth and Planetary Science Department, 1621 Cumberland Avenue, 602 Strong Hall, Knoxville TN, 37996, 2The University of Tennessee, De- partment of Physics, 1408 Circle Drive, Knoxville TN, 37996.. Introduction: Jupiter’s Trojan asteroids (hereafter (e.g., [11],[8]). Had Trojans and JFCs formed in the Trojans) populate Jupiter’s L4 and L5 Lagrange points. same region, Trojans should have fine-grained silicates The L4 and L5 points are dynamically stable over the in primarily amorphous phases. lifetime of the Solar System, and, therefore, Trojans Analysis of TIR spectra by [12] shows that the sur- could have resided in the L4 and L5 regions for nearly faces of three Trojans (624 Hektor, 1172 Aneas, and 911 4.5 Gyr [1]. However, it is still uncertain where the Tro- Agamemnon) have emissivity features similar to fine- jans formed and when they were captured. Asteroid or- grained silicates in comet comae. The TIR wavelength igins provide an effective means of constraining the region is beneficial for silicate mineralogy detection be- events that dynamically shaped the solar system. Tro- cause it contains fundamental Si-O molecular vibrations jans may help in determining the extent of radial mixing (stretching at 9 –12 µm and bending at 14 – 25 µm; that occurred during giant planet migration. [13]). Comets produce optically thin comae that result Trojans are thought to have formed in one of two in strong 10-µm emission features when comprised of locations: (1) in their current position (~5.2 AU), or (2) fine-grained (≤10 to 20 µm) dispersed silicates.
    [Show full text]
  • Occultation Newsletter Volume 8, Number 4
    Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date.
    [Show full text]
  • On the Accuracy of Restricted Three-Body Models for the Trojan Motion
    DISCRETE AND CONTINUOUS Website: http://AIMsciences.org DYNAMICAL SYSTEMS Volume 11, Number 4, December 2004 pp. 843{854 ON THE ACCURACY OF RESTRICTED THREE-BODY MODELS FOR THE TROJAN MOTION Frederic Gabern1, Angel` Jorba1 and Philippe Robutel2 Departament de Matem`aticaAplicada i An`alisi Universitat de Barcelona Gran Via 585, 08007 Barcelona, Spain1 Astronomie et Syst`emesDynamiques IMCCE-Observatoire de Paris 77 Av. Denfert-Rochereau, 75014 Paris, France2 Abstract. In this note we compare the frequencies of the motion of the Trojan asteroids in the Restricted Three-Body Problem (RTBP), the Elliptic Restricted Three-Body Problem (ERTBP) and the Outer Solar System (OSS) model. The RTBP and ERTBP are well-known academic models for the motion of these asteroids, and the OSS is the standard model used for realistic simulations. Our results are based on a systematic frequency analysis of the motion of these asteroids. The main conclusion is that both the RTBP and ERTBP are not very accurate models for the long-term dynamics, although the level of accuracy strongly depends on the selected asteroid. 1. Introduction. The Restricted Three-Body Problem models the motion of a particle under the gravitational attraction of two point masses following a (Keple- rian) solution of the two-body problem (a general reference is [17]). The goal of this note is to discuss the degree of accuracy of such a model to study the real motion of an asteroid moving near the Lagrangian points of the Sun-Jupiter system. To this end, we have considered two restricted three-body problems, namely: i) the Circular RTBP, in which Sun and Jupiter describe a circular orbit around their centre of mass, and ii) the Elliptic RTBP, in which Sun and Jupiter move on an elliptic orbit.
    [Show full text]
  • Comparison of the Physical Properties of the L4 and L5 Trojan Asteroids from ATLAS Data
    Draft version January 13, 2021 Typeset using LATEX default style in AASTeX62 Comparison of the physical properties of the L4 and L5 Trojan asteroids from ATLAS data A. McNeill,1 N. Erasmus,2 D.E. Trilling,1, 2 J.P. Emery,1 J. L. Tonry,3 L. Denneau,3 H. Flewelling,3 A. Heinze,3 B. Stalder,4 and H.J. Weiland3 1Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, AZ 86011, USA 2South African Astronomical Observatory, Cape Town, 7925, South Africa. 3Institute for Astronomy, University of Hawaii, Honolulu, HI 9682, USA. 4Vera C. Rubin Observatory Project Office, 950 N. Cherry Ave, Tucson, AZ, USA ABSTRACT Jupiter has nearly 8000 known co-orbital asteroids orbiting in the L4 and L5 Lagrange points called Jupiter Trojan asteroids. Aside from the greater number density of the L4 cloud the two clouds are in many ways considered to be identical. Using sparse photometric data taken by the Asteroid Terrestrial-impact Last Alert System (ATLAS) for 863 L4 Trojans and 380 L5 Trojans we derive the shape distribution for each of the clouds and find that, on average, the L4 asteroids are more elongated than the L5 asteroids. This shape difference is most likely due to the greater collision rate in the L4 cloud that results from its larger population. We additionally present the phase functions and c − o colours of 266 objects. Keywords: Jupiter trojans | multi-color photometry | sky surveys 1. INTRODUCTION Jupiter Trojans are minor planets that orbit 60 degrees ahead of (L4) and behind (L5) Jupiter in the 1:1 resonant Lagrange points.
    [Show full text]
  • HUBBLE ULTRAVIOLET SPECTROSCOPY of JUPITER TROJANS Ian Wong1†, Michael E
    Draft version March 11, 2019 Preprint typeset using LATEX style emulateapj v. 12/16/11 HUBBLE ULTRAVIOLET SPECTROSCOPY OF JUPITER TROJANS Ian Wong1y, Michael E. Brown2, Jordana Blacksberg3, Bethany L. Ehlmann2,3, and Ahmed Mahjoub3 1Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; [email protected] 2Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 3Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA y51 Pegasi b Postdoctoral Fellow Draft version March 11, 2019 ABSTRACT We present the first ultraviolet spectra of Jupiter Trojans. These observations were carried out using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope and cover the wavelength range 200{550 nm at low resolution. The targets include objects from both of the Trojan color sub- populations (less-red and red). We do not observe any discernible absorption features in these spectra. Comparisons of the averaged UV spectra of less-red and red targets show that the subpopulations are spectrally distinct in the UV. Less-red objects display a steep UV slope and a rollover at around 450 nm to a shallower visible slope, whereas red objects show the opposite trend. Laboratory spectra of irradiated ices with and without H2S exhibit distinct UV absorption features; consequently, the featureless spectra observed here suggest H2S alone is not responsible for the observed color bimodal- ity of Trojans, as has been previously hypothesized. We propose some possible explanations for the observed UV-visible spectra, including complex organics, space weathering of iron-bearing silicates, and masked features due to previous cometary activity.
    [Show full text]
  • Structure and Composition of the Surfaces of Trojan Asteroids from Reflection and Emission Spectroscopy
    Lunar and Planetary Science XXXVII (2006) 2075.pdf STRUCTURE AND COMPOSITION OF THE SURFACES OF TROJAN ASTEROIDS FROM REFLECTION AND EMISSION SPECTROSCOPY. Joshua. P. Emery,1 Dale. P. Cruikshank,2 and Jeffrey Van Cleve3 1NASA Ames / SETI Institute ([email protected]), 2NASA Ames Research Center ([email protected]), 3 Ball Aerospace ([email protected]). Introduction: The orbits of Trojan asteroids (~5.2 AU – beyond the Main Belt) place them in the transi- 1.0 tion region between the rocky inner and icy outer Solar 0.9 1172 Aneas System. Most Trojans were traditionally thought to 0.8 have originated in this region [3], although other loca- 1.0 tions of origin are possible [e.g., 4,5,6]. Possible con- 0.9 nections between Trojans and other groups of objects 911 Agamemnon 0.8 (Jupiter family comets, irregular satellites, Centaurs, Emissivity KBOs) are also important, but only poorly understood 1.0 [4,6,7,9]. The compositions of Trojans thereby hold 0.9 624 Hektor important clues concerning conditions in this critical 0.8 transition region, and the solar nebula as a whole. We discuss emission and reflection spectra of three Trojans 10 15 20 25 30 35 Wavelength (µm) (624 Hektor, 911 Agamemnon, and 1172 Aneas) and implications for surface structure and composition. Figure 2. Mid-IR emissivity spectra of Trojans. Vis-NIR Reflectance Spectroscopy: Reflectance studies of Trojans in the visible and NIR (0.8 – 4.0 Analysis: The Trojans have a similar spectral shape µm) reveal dark surfaces with mild to very red spectral to some carbonaceous meteorites and fine-grained sili- slopes, but no distinct absorption features (Fig.
    [Show full text]
  • Astrocladistics of the Jovian Trojan Swarms
    MNRAS 000,1–26 (2020) Preprint 23 March 2021 Compiled using MNRAS LATEX style file v3.0 Astrocladistics of the Jovian Trojan Swarms Timothy R. Holt,1,2¢ Jonathan Horner,1 David Nesvorný,2 Rachel King,1 Marcel Popescu,3 Brad D. Carter,1 and Christopher C. E. Tylor,1 1Centre for Astrophysics, University of Southern Queensland, Toowoomba, QLD, Australia 2Department of Space Studies, Southwest Research Institute, Boulder, CO. USA. 3Astronomical Institute of the Romanian Academy, Bucharest, Romania. Accepted XXX. Received YYY; in original form ZZZ ABSTRACT The Jovian Trojans are two swarms of small objects that share Jupiter’s orbit, clustered around the leading and trailing Lagrange points, L4 and L5. In this work, we investigate the Jovian Trojan population using the technique of astrocladistics, an adaptation of the ‘tree of life’ approach used in biology. We combine colour data from WISE, SDSS, Gaia DR2 and MOVIS surveys with knowledge of the physical and orbital characteristics of the Trojans, to generate a classification tree composed of clans with distinctive characteristics. We identify 48 clans, indicating groups of objects that possibly share a common origin. Amongst these are several that contain members of the known collisional families, though our work identifies subtleties in that classification that bear future investigation. Our clans are often broken into subclans, and most can be grouped into 10 superclans, reflecting the hierarchical nature of the population. Outcomes from this project include the identification of several high priority objects for additional observations and as well as providing context for the objects to be visited by the forthcoming Lucy mission.
    [Show full text]
  • An Automated Search Procedure to Generate Optimal Low-Thrust Rendezvous Tours of the Sun-Jupiter Trojan Asteroids
    AN AUTOMATED SEARCH PROCEDURE TO GENERATE OPTIMAL LOW-THRUST RENDEZVOUS TOURS OF THE SUN-JUPITER TROJAN ASTEROIDS Jeffrey R. Stuart(1) and Kathleen C. Howell(2) (1)Graduate Student, Purdue University, School of Aeronautics and Astronautics, 701 W. Stadium Ave., West Lafayette, IN, 47907, 765-620-4342, [email protected] (2)Hsu Lo Professor of Aeronautical and Astronautical Engineering, Purdue University, School of Aeronautics and Astronautics, 701 W. Stadium Ave., West Lafayette, IN, 47907, 765-494-5786, [email protected] Abstract: The Sun-Jupiter Trojan asteroid swarms are targets of interest for robotic spacecraft missions, and because of the relatively stable dynamics of the equilateral libration points, low-thrust propulsion systems offer a viable method for realizing tours of these asteroids. This investigation presents a novel scheme for the automated creation of prospective tours under the natural dynamics of the circular restricted three-body problem with thrust provided by a variable specific impulse low-thrust engine. The procedure approximates tours by combining independently generated fuel- optimal rendezvous arcs between pairs of asteroids into a series of coast periods near asteroids and engine operation durations between the asteroids. Propellant costs and departure and arrival times are estimated from performance of the individual thrust arcs. Tours of interest are readily re-converged in higher fidelity ephemeris models. In general, the automation procedure rapidly generates a large number of potential tours and supplies
    [Show full text]
  • The Nordtvedt Effect in the Trojan Asteroids
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server (will be inserted by hand later) AND Your thesaurus codes are: ASTROPHYSICS 10(01.03.1; 01.05.1; 03.02.1; 07.37.1; 18.10.1) 5.7.2002 The Nordtvedt effect in the Trojan asteroids 1; 2; R.B. ORELLANA ∗ and H. VUCETICH ∗ 1 Observatorio Astron´omico de La Plata, Paseo del Bosque, (1900)La Plata, Argentina 2 Departamento de F´isica, Universidad Nacional de La PLata, C.C. 67, (1900)La Plata, Argentina Received October 5, accepted December 15, 1992 Abstract. Bounds to the Nordtvedt parameter are obtained from the motion of the first twelve Trojan asteroids in the period 1906-1990. From the analysis performed, we derive a value for the inverse of the Saturn mass 3497.80 0.81 and the Nordtvedt parameter ± -0.56 0.48, from a simultaneous solution for all asteroids. ± Key words: relativity - gravitation - asteroids - astronomical constants - celestial me- chanics 1. Introduction The asteroids located in the vicinity of the equilateral triangle solutions of Lagrange (L4 and L5), known as the Trojan asteroids, are particularly sensitive to a possible viola- tion of the Principle of Equivalence (Nordtvedt, 1968) because they act as a resonator selecting long period perturbations. Theories of gravitation alternatives to General Rel- ativity predict a difference between inertial (mi ) and passive gravitational (mg ) masses of a planetary-sized body (the so-called Nordtvedt effect) equal to: m g =1+∆; (1) mi For the sun, the correction term ∆ is equal to: 15GM ∆ = η, (2) 2R c2 ?Member of C.O.N.I.C.E.T.
    [Show full text]
  • Colours of Minor Bodies in the Outer Solar System II - a Statistical Analysis, Revisited
    Astronomy & Astrophysics manuscript no. MBOSS2 c ESO 2012 April 26, 2012 Colours of Minor Bodies in the Outer Solar System II - A Statistical Analysis, Revisited O. R. Hainaut1, H. Boehnhardt2, and S. Protopapa3 1 European Southern Observatory (ESO), Karl Schwarzschild Straße, 85 748 Garching bei M¨unchen, Germany e-mail: [email protected] 2 Max-Planck-Institut f¨ur Sonnensystemforschung, Max-Planck Straße 2, 37 191 Katlenburg- Lindau, Germany 3 Department of Astronomy, University of Maryland, College Park, MD 20 742-2421, USA Received —; accepted — ABSTRACT We present an update of the visible and near-infrared colour database of Minor Bodies in the outer Solar System (MBOSSes), now including over 2000 measurement epochs of 555 objects, extracted from 100 articles. The list is fairly complete as of December 2011. The database is now large enough that dataset with a high dispersion can be safely identified and rejected from the analysis. The method used is safe for individual outliers. Most of the rejected papers were from the early days of MBOSS photometry. The individual measurements were combined so not to include possible rotational artefacts. The spectral gradient over the visible range is derived from the colours, as well as the R absolute magnitude M(1, 1). The average colours, absolute magnitude, spectral gradient are listed for each object, as well as their physico-dynamical classes using a classification adapted from Gladman et al., 2008. Colour-colour diagrams, histograms and various other plots are presented to illustrate and in- vestigate class characteristics and trends with other parameters, whose significance are evaluated using standard statistical tests.
    [Show full text]