Thermal-IR Spectral Analysis of Jupiter's Trojan Asteroids

Total Page:16

File Type:pdf, Size:1020Kb

Thermal-IR Spectral Analysis of Jupiter's Trojan Asteroids 50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1238.pdf THERMAL-IR SPECTRAL ANALYSIS OF JUPITER’S TROJAN ASTEROIDS: DETECTING SILICATES. A. C. Martin1, J. P. Emery1, S. S. Lindsay2, 1The University of Tennessee Earth and Planetary Science Department, 1621 Cumberland Avenue, 602 Strong Hall, Knoxville TN, 37996, 2The University of Tennessee, De- partment of Physics, 1408 Circle Drive, Knoxville TN, 37996.. Introduction: Jupiter’s Trojan asteroids (hereafter (e.g., [11],[8]). Had Trojans and JFCs formed in the Trojans) populate Jupiter’s L4 and L5 Lagrange points. same region, Trojans should have fine-grained silicates The L4 and L5 points are dynamically stable over the in primarily amorphous phases. lifetime of the Solar System, and, therefore, Trojans Analysis of TIR spectra by [12] shows that the sur- could have resided in the L4 and L5 regions for nearly faces of three Trojans (624 Hektor, 1172 Aneas, and 911 4.5 Gyr [1]. However, it is still uncertain where the Tro- Agamemnon) have emissivity features similar to fine- jans formed and when they were captured. Asteroid or- grained silicates in comet comae. The TIR wavelength igins provide an effective means of constraining the region is beneficial for silicate mineralogy detection be- events that dynamically shaped the solar system. Tro- cause it contains fundamental Si-O molecular vibrations jans may help in determining the extent of radial mixing (stretching at 9 –12 µm and bending at 14 – 25 µm; that occurred during giant planet migration. [13]). Comets produce optically thin comae that result Trojans are thought to have formed in one of two in strong 10-µm emission features when comprised of locations: (1) in their current position (~5.2 AU), or (2) fine-grained (≤10 to 20 µm) dispersed silicates. Though in the primordial Kuiper belt (KB; ~15 – 30 AU) [2]. Trojans do not have comae, the observed emissivity The surface composition of asteroids can be indicative peaks could arise from a fluffy regolith of fine grain sil- of formation region [3]. Analysis of Trojans in the visi- icates, or silicates suspended in a transparent matrix ble and near-infrared (VNIR; 0.8-4.0 µm) show Trojans [12], [14], [15]. have red or less-red sloped spectra, and likely contain Goals and Hypothesis: The goal of this research is anhydrous silicates [4], [5]. By determining the to constrain the formation region of Trojans by analyz- composition and silicate phase on Trojan surfaces with ing silicate features in the TIR. Had Trojans formed in TIR spectra, we can place constraints on where Trojans the main asteroid belt (near their current location), it is accreted and thus further our understanding of the expected that they would be made of similar material as processes of small body formation. main belt asteroids. Had Trojans and Jupiter Family Background: Trojan surface mineralogy provides a Comets (JFCs) formed in the same region, Trojans means to distinguish between a KB or in situ formation. should have fine-grained silicates in primarily amor- If Trojans formed in or near the Main Belt (MB; 2-5 phous phases, similar to that of JFCs. We hypothesis AU), close to their current position, they are expected to Trojans are more consistent with silicates found on be made of similar material to Main Belt Asteroids JFCs. (MBAs). The largest percentage of outer MBAs are Methods: Mineralogical characteristics aid in con- likely made of hydrated silicates, carbon, and organic straining the origin of Trojans. The Fox and Enx value compounds and some anhydrous silicates (e.g., [6], [7]). has been used in comet research to constrain the struc- Common amongst these asteroid types is either carbo- ture and evolution of circumstellar dust (e.g., [16]). The naceous, metallic, or siliceous material, primarily in trend is more Mg-rich crystalline silicates are found in crystalline or altered form (i.e., aqueous or thermal al- the inner Solar System after condensation, and Fe-rich teration). Had Trojans formed in the outer MB it is ex- silicates to be found in the outer solar system. pected that they are made of similar material that has For this study, we analyze Spitzer Space Telescope been altered in a similar way. Infrared Spectrograph spectra of 11 Trojans: 4709 En- The Nice Model predicts that Trojans are dynami- nomos, 3548 Eurybates, 1437 Diomedes, 588 Achilles, cally linked to KBOs as well as Jupiter Family Comets 617 Patroclus, 659 Nestor, 2797 Teucer, 1998 WD, (JFCs) [2]. Therefore, if Trojans accreted in the primor- 1998 XN77, 4060 Deipylos, and 1867 Deiphobus. dial KB, they would have similar compositions to JFCs. Emissivity peaks associated with olivine and pyrox- Comets that pass near Earth have the advantage of high ene shift from shorter to longer wavelengths with de- resolution spectral measurements as opposed to distant creasing Mg/(Mg+Fe) [17], [18], [19]. The exact loca- Trojans and KBOs. JFCs, such as 9P/Tempel, have a tion of the peak is used to determine the Mg/(Mg+Fe) coma made primarily of CO2, H2O, and sub-micron value for each Trojan in this study (Figure 1). sized silicate grains (e.g., [8]). Typically, silicate-rich We compare Trojan TIR spectra to TIR spectra of comae are dominated by amorphous phases [9], [10], JFC comets such as 9P/Tempel, 29P/Schwassmann- though crystalline silicates have also been detected 50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1238.pdf Wachmann, 73P/Schwassmann- Wachmann, 49P/Ar- al. (1993) Mon. Notices Royal Astron. Soc., 264(3), 654- end-Rigaux, and 36P/Whipple. We have used the list of 658. [18] Koike C. et al. (2002) Astron. Astrophys., features identified in [22] to compare Trojan spectral 399(3), 1101-1107. [19] Jager C. et al. (1998) Astron. features to JFC spectral features. These features include Astrophys., 339(3), 904-916. [20] Chihara H. et al. a 15- and 20- µm minimum, a 28 – and 34 – µm maxi- (2002) A&A, 391, 267-273. [21] Koike C. et al. (2003) mum, and the presents and shapes of the 10 µm plateau. A&A, 399, 1101-1107. [22] Kelley M. S. et al. (2017) Results: Olivine emission features in the 10- µm are Icarus, 284, 344-358. consistent with a high iron content for 9 or the 11 Trojan spectra. The remaining three have a low signal to noise, so it could not be determined using this method. The py- roxene mission features in the 10- µm are consistent with a high iron content for up to 5 the 11 Trojan spec- tra, however these five need further analysis. The comparison between Trojans and JFCs shows all Trojans have a 10-µm plateau. However most are round as opposed to the common trapezoid found in JFC spectra. Additionally, most Trojan spectra have 20-µm minima. Unlike JFCs, Trojan spectra tend to not have or have subtle 15-µm minima, 28-µm maxima, and 34-µm maxima. In general JFC spectra tend to be more pro- nounced and sharp. Conclusion: Though Trojan emission features tend to have lower spectral contrast than those of JFCs, the mineralogical results partially suggest an outer solar system origin for Trojans. The sharpness of the features in comet spectra could be due to a higher ratio of crys- talline to amorphous silica as compared to the Trojans or due to observations in two different scattering re- gimes. More work needs to be done on analyzing the spe- cific mineralogy evident in the Trojan spectra. This will be done using a Hapke-Mie radiative transfer code to determine the best fit combination of end-member min- erals. Additionally, lab spectra of end member minerals and of meteorites will be used to compare to Trojan spectra. References: [1] Levison H. F. et al. (1997) Nature, 385, 42-44. [2] Morbidelli A. et al. (2005) Nature, 435(7041), 462-465. [3] Henning Y. (2010) Annu. Rev. Figure 1: (a) TIR spectrum of 9P/Tempel 1 Astron. Astrophys., 48(1), 46. [4] Emery J. P. and with dotted lines indicate crystalline olivine and pyrox- Brown R. H. (2003) Icarus, 164(1), 104-121. [5] Emery ene peaks determined from studies of comet C/1995 O1 J. P. et al. (2011) Astrophys. J, 141(1), 18. [6] DeMeo Hale-Bopp. The variation of peak wavelength position E. E. and Carry B. (2013) Icarus, 226(1), 732-741. [7] with Mg content for crystalline orthopyroxene (b) and Vernazza P. et al. (2017) Astrophys. J, 153(2), 72. [8] olivine (c) peaks observed around 10 µm. The filled Harker D. et al. (2007) Icarus, 190(2), 432-453. [9] symbols mark central wavelengths of strong silicate res- Wooden D. H. (2002) Earth, Moon and Planets, 89, onances and open symbols mark weaker silicate reso- 247-287. [10] Kelley M. S. and Wooden D. H. (2009) nances. Modified from [10], [20], [21]. Planet. Space Sci., 57(10), 1133-1145. [11] Sugita S. et al. (2005) Science, 310, 274-278. [12] Emery J. P. et al. (2006) Icarus, 182(2), 496-512. [13] Salisbury J. W. et al. (1991) Icarus, 92, 280-297. [14] Vernazza P. et al. (2012) Icarus, 221(2), 1162-1172. [15] Yang B. et al. (2013) Icarus, 223(1), 359-366. [16] Hanner M. S. et al. (1994) Astrophys. J, 425(1), 274-285. [17] Koike C. et .
Recommended publications
  • Occultation Evidence for a Satellite of the Trojan Asteroid (911) Agamemnon Bradley Timerson1, John Brooks2, Steven Conard3, David W
    Occultation Evidence for a Satellite of the Trojan Asteroid (911) Agamemnon Bradley Timerson1, John Brooks2, Steven Conard3, David W. Dunham4, David Herald5, Alin Tolea6, Franck Marchis7 1. International Occultation Timing Association (IOTA), 623 Bell Rd., Newark, NY, USA, [email protected] 2. IOTA, Stephens City, VA, USA, [email protected] 3. IOTA, Gamber, MD, USA, [email protected] 4. IOTA, KinetX, Inc., and Moscow Institute of Electronics and Mathematics of Higher School of Economics, per. Trekhsvyatitelskiy B., dom 3, 109028, Moscow, Russia, [email protected] 5. IOTA, Murrumbateman, NSW, Australia, [email protected] 6. IOTA, Forest Glen, MD, USA, [email protected] 7. Carl Sagan Center at the SETI Institute, 189 Bernardo Av, Mountain View CA 94043, USA, [email protected] Corresponding author Franck Marchis Carl Sagan Center at the SETI Institute 189 Bernardo Av Mountain View CA 94043 USA [email protected] 1 Keywords: Asteroids, Binary Asteroids, Trojan Asteroids, Occultation Abstract: On 2012 January 19, observers in the northeastern United States of America observed an occultation of 8.0-mag HIP 41337 star by the Jupiter-Trojan (911) Agamemnon, including one video recorded with a 36cm telescope that shows a deep brief secondary occultation that is likely due to a satellite, of about 5 km (most likely 3 to 10 km) across, at 278 km ±5 km (0.0931″) from the asteroid’s center as projected in the plane of the sky. A satellite this small and this close to the asteroid could not be resolved in the available VLT adaptive optics observations of Agamemnon recorded in 2003.
    [Show full text]
  • Occultation Newsletter Volume 8, Number 4
    Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date.
    [Show full text]
  • On the Accuracy of Restricted Three-Body Models for the Trojan Motion
    DISCRETE AND CONTINUOUS Website: http://AIMsciences.org DYNAMICAL SYSTEMS Volume 11, Number 4, December 2004 pp. 843{854 ON THE ACCURACY OF RESTRICTED THREE-BODY MODELS FOR THE TROJAN MOTION Frederic Gabern1, Angel` Jorba1 and Philippe Robutel2 Departament de Matem`aticaAplicada i An`alisi Universitat de Barcelona Gran Via 585, 08007 Barcelona, Spain1 Astronomie et Syst`emesDynamiques IMCCE-Observatoire de Paris 77 Av. Denfert-Rochereau, 75014 Paris, France2 Abstract. In this note we compare the frequencies of the motion of the Trojan asteroids in the Restricted Three-Body Problem (RTBP), the Elliptic Restricted Three-Body Problem (ERTBP) and the Outer Solar System (OSS) model. The RTBP and ERTBP are well-known academic models for the motion of these asteroids, and the OSS is the standard model used for realistic simulations. Our results are based on a systematic frequency analysis of the motion of these asteroids. The main conclusion is that both the RTBP and ERTBP are not very accurate models for the long-term dynamics, although the level of accuracy strongly depends on the selected asteroid. 1. Introduction. The Restricted Three-Body Problem models the motion of a particle under the gravitational attraction of two point masses following a (Keple- rian) solution of the two-body problem (a general reference is [17]). The goal of this note is to discuss the degree of accuracy of such a model to study the real motion of an asteroid moving near the Lagrangian points of the Sun-Jupiter system. To this end, we have considered two restricted three-body problems, namely: i) the Circular RTBP, in which Sun and Jupiter describe a circular orbit around their centre of mass, and ii) the Elliptic RTBP, in which Sun and Jupiter move on an elliptic orbit.
    [Show full text]
  • Comparison of the Physical Properties of the L4 and L5 Trojan Asteroids from ATLAS Data
    Draft version January 13, 2021 Typeset using LATEX default style in AASTeX62 Comparison of the physical properties of the L4 and L5 Trojan asteroids from ATLAS data A. McNeill,1 N. Erasmus,2 D.E. Trilling,1, 2 J.P. Emery,1 J. L. Tonry,3 L. Denneau,3 H. Flewelling,3 A. Heinze,3 B. Stalder,4 and H.J. Weiland3 1Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, AZ 86011, USA 2South African Astronomical Observatory, Cape Town, 7925, South Africa. 3Institute for Astronomy, University of Hawaii, Honolulu, HI 9682, USA. 4Vera C. Rubin Observatory Project Office, 950 N. Cherry Ave, Tucson, AZ, USA ABSTRACT Jupiter has nearly 8000 known co-orbital asteroids orbiting in the L4 and L5 Lagrange points called Jupiter Trojan asteroids. Aside from the greater number density of the L4 cloud the two clouds are in many ways considered to be identical. Using sparse photometric data taken by the Asteroid Terrestrial-impact Last Alert System (ATLAS) for 863 L4 Trojans and 380 L5 Trojans we derive the shape distribution for each of the clouds and find that, on average, the L4 asteroids are more elongated than the L5 asteroids. This shape difference is most likely due to the greater collision rate in the L4 cloud that results from its larger population. We additionally present the phase functions and c − o colours of 266 objects. Keywords: Jupiter trojans | multi-color photometry | sky surveys 1. INTRODUCTION Jupiter Trojans are minor planets that orbit 60 degrees ahead of (L4) and behind (L5) Jupiter in the 1:1 resonant Lagrange points.
    [Show full text]
  • Structure and Composition of the Surfaces of Trojan Asteroids from Reflection and Emission Spectroscopy
    Lunar and Planetary Science XXXVII (2006) 2075.pdf STRUCTURE AND COMPOSITION OF THE SURFACES OF TROJAN ASTEROIDS FROM REFLECTION AND EMISSION SPECTROSCOPY. Joshua. P. Emery,1 Dale. P. Cruikshank,2 and Jeffrey Van Cleve3 1NASA Ames / SETI Institute ([email protected]), 2NASA Ames Research Center ([email protected]), 3 Ball Aerospace ([email protected]). Introduction: The orbits of Trojan asteroids (~5.2 AU – beyond the Main Belt) place them in the transi- 1.0 tion region between the rocky inner and icy outer Solar 0.9 1172 Aneas System. Most Trojans were traditionally thought to 0.8 have originated in this region [3], although other loca- 1.0 tions of origin are possible [e.g., 4,5,6]. Possible con- 0.9 nections between Trojans and other groups of objects 911 Agamemnon 0.8 (Jupiter family comets, irregular satellites, Centaurs, Emissivity KBOs) are also important, but only poorly understood 1.0 [4,6,7,9]. The compositions of Trojans thereby hold 0.9 624 Hektor important clues concerning conditions in this critical 0.8 transition region, and the solar nebula as a whole. We discuss emission and reflection spectra of three Trojans 10 15 20 25 30 35 Wavelength (µm) (624 Hektor, 911 Agamemnon, and 1172 Aneas) and implications for surface structure and composition. Figure 2. Mid-IR emissivity spectra of Trojans. Vis-NIR Reflectance Spectroscopy: Reflectance studies of Trojans in the visible and NIR (0.8 – 4.0 Analysis: The Trojans have a similar spectral shape µm) reveal dark surfaces with mild to very red spectral to some carbonaceous meteorites and fine-grained sili- slopes, but no distinct absorption features (Fig.
    [Show full text]
  • Astrocladistics of the Jovian Trojan Swarms
    MNRAS 000,1–26 (2020) Preprint 23 March 2021 Compiled using MNRAS LATEX style file v3.0 Astrocladistics of the Jovian Trojan Swarms Timothy R. Holt,1,2¢ Jonathan Horner,1 David Nesvorný,2 Rachel King,1 Marcel Popescu,3 Brad D. Carter,1 and Christopher C. E. Tylor,1 1Centre for Astrophysics, University of Southern Queensland, Toowoomba, QLD, Australia 2Department of Space Studies, Southwest Research Institute, Boulder, CO. USA. 3Astronomical Institute of the Romanian Academy, Bucharest, Romania. Accepted XXX. Received YYY; in original form ZZZ ABSTRACT The Jovian Trojans are two swarms of small objects that share Jupiter’s orbit, clustered around the leading and trailing Lagrange points, L4 and L5. In this work, we investigate the Jovian Trojan population using the technique of astrocladistics, an adaptation of the ‘tree of life’ approach used in biology. We combine colour data from WISE, SDSS, Gaia DR2 and MOVIS surveys with knowledge of the physical and orbital characteristics of the Trojans, to generate a classification tree composed of clans with distinctive characteristics. We identify 48 clans, indicating groups of objects that possibly share a common origin. Amongst these are several that contain members of the known collisional families, though our work identifies subtleties in that classification that bear future investigation. Our clans are often broken into subclans, and most can be grouped into 10 superclans, reflecting the hierarchical nature of the population. Outcomes from this project include the identification of several high priority objects for additional observations and as well as providing context for the objects to be visited by the forthcoming Lucy mission.
    [Show full text]
  • Trajectory Design of the Lucy Mission to Explore the Diversity of the Jupiter Trojans
    70th International Astronautical Congress, Washington, DC. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. IAC–2019–C1.2.11 Trajectory Design of the Lucy Mission to Explore the Diversity of the Jupiter Trojans Jacob A. Englander Aerospace Engineer, Navigation and Mission Design Branch, NASA Goddard Space Flight Center Kevin Berry Lucy Flight Dynamics Lead, Navigation and Mission Design Branch, NASA Goddard Space Flight Center Brian Sutter Totally Awesome Trajectory Genius, Lockheed Martin Space Systems, Littleton, CO Dale Stanbridge Lucy Navigation Team Chief, KinetX Aerospace, Simi Valley, CA Donald H. Ellison Aerospace Engineer, Navigation and Mission Design Branch, NASA Goddard Space Flight Center Ken Williams Flight Director, Space Navigation and Flight Dynamics Practice, KinetX Aerospace, Simi Valley, California James McAdams Aerospace Engineer, Space Navigation and Flight Dynamics Practice, KinetX Aerospace, Simi Valley, California Jeremy M. Knittel Aerospace Engineer, Space Navigation and Flight Dynamics Practice, KinetX Aerospace, Simi Valley, California Chelsea Welch Fantastically Awesome Deputy Trajectory Genius, Lockheed Martin Space Systems, Littleton, CO Hal Levison Principle Investigator, Lucy mission, Southwest Research Institute, Boulder, CO Lucy, NASA’s next Discovery-class mission, will explore the diversity of the Jupiter Trojan asteroids. The Jupiter Trojans are thought to be remnants of the early solar system that were scattered inward when the gas giants migrated to their current positions as described in the Nice model. There are two stable subpopulations, or “swarms,” captured at the Sun-Jupiter L4 and L5 regions. These objects are the most accessible samples of what the outer solar system may have originally looked like.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 38, NUMBER 2, A.D. 2011 APRIL-JUNE 71. LIGHTCURVES OF 10452 ZUEV, (14657) 1998 YU27, AND (15700) 1987 QD Gary A. Vander Haagen Stonegate Observatory, 825 Stonegate Road Ann Arbor, MI 48103 [email protected] (Received: 28 October) Lightcurve observations and analysis revealed the following periods and amplitudes for three asteroids: 10452 Zuev, 9.724 ± 0.002 h, 0.38 ± 0.03 mag; (14657) 1998 YU27, 15.43 ± 0.03 h, 0.21 ± 0.05 mag; and (15700) 1987 QD, 9.71 ± 0.02 h, 0.16 ± 0.05 mag. Photometric data of three asteroids were collected using a 0.43- meter PlaneWave f/6.8 corrected Dall-Kirkham astrograph, a SBIG ST-10XME camera, and V-filter at Stonegate Observatory. The camera was binned 2x2 with a resulting image scale of 0.95 arc- seconds per pixel. Image exposures were 120 seconds at –15C. Candidates for analysis were selected using the MPO2011 Asteroid Viewing Guide and all photometric data were obtained and analyzed using MPO Canopus (Bdw Publishing, 2010). Published asteroid lightcurve data were reviewed in the Asteroid Lightcurve Database (LCDB; Warner et al., 2009). The magnitudes in the plots (Y-axis) are not sky (catalog) values but differentials from the average sky magnitude of the set of comparisons. The value in the Y-axis label, “alpha”, is the solar phase angle at the time of the first set of observations. All data were corrected to this phase angle using G = 0.15, unless otherwise stated.
    [Show full text]
  • Appendix 1 1311 Discoverers in Alphabetical Order
    Appendix 1 1311 Discoverers in Alphabetical Order Abe, H. 28 (8) 1993-1999 Bernstein, G. 1 1998 Abe, M. 1 (1) 1994 Bettelheim, E. 1 (1) 2000 Abraham, M. 3 (3) 1999 Bickel, W. 443 1995-2010 Aikman, G. C. L. 4 1994-1998 Biggs, J. 1 2001 Akiyama, M. 16 (10) 1989-1999 Bigourdan, G. 1 1894 Albitskij, V. A. 10 1923-1925 Billings, G. W. 6 1999 Aldering, G. 4 1982 Binzel, R. P. 3 1987-1990 Alikoski, H. 13 1938-1953 Birkle, K. 8 (8) 1989-1993 Allen, E. J. 1 2004 Birtwhistle, P. 56 2003-2009 Allen, L. 2 2004 Blasco, M. 5 (1) 1996-2000 Alu, J. 24 (13) 1987-1993 Block, A. 1 2000 Amburgey, L. L. 2 1997-2000 Boattini, A. 237 (224) 1977-2006 Andrews, A. D. 1 1965 Boehnhardt, H. 1 (1) 1993 Antal, M. 17 1971-1988 Boeker, A. 1 (1) 2002 Antolini, P. 4 (3) 1994-1996 Boeuf, M. 12 1998-2000 Antonini, P. 35 1997-1999 Boffin, H. M. J. 10 (2) 1999-2001 Aoki, M. 2 1996-1997 Bohrmann, A. 9 1936-1938 Apitzsch, R. 43 2004-2009 Boles, T. 1 2002 Arai, M. 45 (45) 1988-1991 Bonomi, R. 1 (1) 1995 Araki, H. 2 (2) 1994 Borgman, D. 1 (1) 2004 Arend, S. 51 1929-1961 B¨orngen, F. 535 (231) 1961-1995 Armstrong, C. 1 (1) 1997 Borrelly, A. 19 1866-1894 Armstrong, M. 2 (1) 1997-1998 Bourban, G. 1 (1) 2005 Asami, A. 7 1997-1999 Bourgeois, P. 1 1929 Asher, D.
    [Show full text]
  • Constraints on the Composition of Trojan Asteroid 624 Hektor Dale P
    Constraints on the Composition of Trojan Asteroid 624 Hektor Dale P. Cruikshank 1'2 NASA Ames Research Center, MS 245-6, Moffett Field, California 94035-1000 E-mail: dcruikshank @ mail.arc.nasa.gov Cristina M. Dalle Ore SETI Institute and NASA Ames Research Center, MS 245-6, Moffett Field, California 94035-1000 Ted L. Roush NASA Ames Research Center, MS 245-3, Moffett Field, California 94035-1000 Thomas R. Geballe Gemini Observatory, 670 N. A'ohoku Place, Hilo, Hawaii 96720 Tobias C. Owen 1 Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, Hawaii 96822 Catherine de Bergh 1 Observatoire de Paris, 4 Place Jules Jannsen, 92195 Meudon Cedex, France Michele D. Cash Stanford University, P.O. Box 16637, Stanford, California 94309 William K. Hartmann 2 Planetary Science Institute, 620 N. 6th Avenue, Tucson, Arizona 85715-8331 Submitted to Icarus December 12, 2000 Received Pages: 39 Figures: 7 Tables: 3 1. Guest observer, United Kingdom Infrared Telescope facility (UKIRT) 2. Guest observer, NASA Infrared Telescope Facility (IRTF) Proposed Running Head: Composition of Trojan Asteroid Hektor Address for Correspondence: Dale P. Cruikshank Mail Stop 245-6 NASA Ames Research Center Moffett Field, CA 94035-1000 dcruikshank @ mail.arc.n asa.gov Phone: 650-604-4244, Fax: 650-604-6779 Key Words: Asteroids, Composition Mineralogy Surfaces, Asteroids Spectroscopy ABSTRACT We presenta compositespectrumof Trojan asteroid624Hektor,0.3-3.6 p.m,which showsthatthereis no discernible3-p.mabsorptionband. Suchabandwould indicatethe presenceof OH or H20- bearing silicate minerals, or macromolecular carbon-rich organic material of the kind seen on the low-albedo hemisphere of Saturn's satellite Iapetus (Owen et al.
    [Show full text]
  • (624) Hektor F
    Asteroids, Comets, Meteors (2012) 6416.pdf PHYSICAL CHARACTERISTICS OF THE BINARY TROJAN ASTEROID (624) HEKTOR F. Marchis1,2, F. Vachier2, J. Durech3, J. Berthier2, M.H. Wong4, P. Kalas4, G. Duchene4,5,M. van Dam6, 1SETI Insti- tute ([email protected]) Carl Sagan Center, Mountain View CA USA, 2.IMCCE, Observatoire de Paris, France 3Astronomical Institute, Charles University in Prague, CzR 4Department of Asronomy, University of California, Berkeley USA, 5Observatoire de Grenoble, France 6. Flat Wavefronts, Christchurch, NZ Introduction: In July 2006, [1] announced the primary [10], we will derive the mass, hence the bulk discovery of a 15-km diameter satellite around the L4 density of Hektor. Jupiter Trojan asteroid (624) Hektor from direct obser- Preliminary Results: Genoid, genetic-based algo- vations using the W.M. Keck telescope. Over the past rithm [10], finds several prelimary solutions with ac- 6 years, our group has collected additional observa- ceptable fitting parameter 25<fp<50 milli-arcsec using tions to pinpoint the orbital parameters of Hektor’s a purely Keplerian orbit. All solutions have a period satellite, derive the mass of the system and thus infer P~2.98 days, a semi-major axis a between 1,100 and the average density of this large (Deq~225 km) Trojan 1,400 km and a significant eccentricity (e=0.13-0.20) asteroid. The density of the L5 double Trojan (617) which suggests an excited orbit (e.g. [4]). Using 3 Patroclus, estimated to be between 0.7-1.0 g/cm by [2] Deq~225 km, we derive a large density between 1.8 and (from IRAS) or 0.8-1.4 g/cm3 by [3], is the only den- 3.5 g/cm3.
    [Show full text]
  • Occultation Newsletter Volume 8, Number 4
    Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date.
    [Show full text]