WRA Species Report
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Overcoming the Challenges of Tamarix Management with Diorhabda Carinulata Through the Identification and Application of Semioche
OVERCOMING THE CHALLENGES OF TAMARIX MANAGEMENT WITH DIORHABDA CARINULATA THROUGH THE IDENTIFICATION AND APPLICATION OF SEMIOCHEMICALS by Alexander Michael Gaffke A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Ecology and Environmental Sciences MONTANA STATE UNIVERSITY Bozeman, Montana May 2018 ©COPYRIGHT by Alexander Michael Gaffke 2018 All Rights Reserved ii ACKNOWLEDGEMENTS This project would not have been possible without the unconditional support of my family, Mike, Shelly, and Tony Gaffke. I must thank Dr. Roxie Sporleder for opening my world to the joy of reading. Thanks must also be shared with Dr. Allard Cossé, Dr. Robert Bartelt, Dr. Bruce Zilkowshi, Dr. Richard Petroski, Dr. C. Jack Deloach, Dr. Tom Dudley, and Dr. Dan Bean whose previous work with Tamarix and Diorhabda carinulata set the foundations for this research. I must express my sincerest gratitude to my Advisor Dr. David Weaver, and my committee: Dr. Sharlene Sing, Dr. Bob Peterson and Dr. Dan Bean for their guidance throughout this project. To Megan Hofland and Norma Irish, thanks for keeping me sane. iii TABLE OF CONTENTS 1. INTRODUCTION ...........................................................................................................1 Tamarix ............................................................................................................................1 Taxonomy ................................................................................................................1 Introduction -
Long-Term Strategy for Russian Olive and Saltcedar Management
LONG-TERM STRATEGY FOR RUSSIAN OLIVE AND SALTCEDAR MANAGEMENT YELLOWSTONE RIVER CONSERVATION DISTRICT COUNCIL Prepared by Thomas L. Pick, Bozeman, Montana May 1, 2013 Cover photo credit: Tom Pick. Left side: Plains cottonwood seedlings on bar following 2011 runoff. Top: Saltcedar and Russian olive infest the shoreline of the Yellowstone River between Hysham and Forsyth, Montana. Bottom: A healthy narrowleaf cottonwood (Populus angustifolia James) stand adjacent to the channel provides benefits for wildlife and livestock in addition to bank stability and storing floodwater for later release. Table of Contents page number Agreement ………………………………………………………………………………………………………………………………………….1 Executive Summary …………………………………………………………………………………………………………………………….2 Long-Term Strategy for Russian Olive and Saltcedar Management 1.0 Introduction ………………………………………………………………………………………………………………………4 1.1 Biology and Ecology of Russian Olive and Saltcedar ……………………………………………………5 1.12 Russian Olive 1.13 Saltcedar 1.2 Distribution and Spread……………………………………………………………………………………………..6 1.3 Summary of Impacts ………………………………………………………………………………………………….6 1.4 Legal Framework ……………………………………………………………………………………………………….7 2.0 Strategic Management Objective and Goals ………………………………………………………………..…..8 2.1 Goal 1: Prevent New Infestations (Control Spread) …………………………………….……….……8 2.2 Goal 2: Eradicate All Infestations Within the River Corridor ………………………………………9 2.3 Goal 3: Manage Populations Outside of the River Corridor ……………………………………….9 3.0 Treatment Strategies and Priorities …………………………………….……………………………………………9 -
Botanischer Garten Der Universität Tübingen
Botanischer Garten der Universität Tübingen 1974 – 2008 2 System FRANZ OBERWINKLER Emeritus für Spezielle Botanik und Mykologie Ehemaliger Direktor des Botanischen Gartens 2016 2016 zur Erinnerung an LEONHART FUCHS (1501-1566), 450. Todesjahr 40 Jahre Alpenpflanzen-Lehrpfad am Iseler, Oberjoch, ab 1976 20 Jahre Förderkreis Botanischer Garten der Universität Tübingen, ab 1996 für alle, die im Garten gearbeitet und nachgedacht haben 2 Inhalt Vorwort ...................................................................................................................................... 8 Baupläne und Funktionen der Blüten ......................................................................................... 9 Hierarchie der Taxa .................................................................................................................. 13 Systeme der Bedecktsamer, Magnoliophytina ......................................................................... 15 Das System von ANTOINE-LAURENT DE JUSSIEU ................................................................. 16 Das System von AUGUST EICHLER ....................................................................................... 17 Das System von ADOLF ENGLER .......................................................................................... 19 Das System von ARMEN TAKHTAJAN ................................................................................... 21 Das System nach molekularen Phylogenien ........................................................................ 22 -
Contribution À L'étude Du Genre Tamarix
REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L’ENSEIGNEMENT SUPERIEURET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DE TLEMCEN Faculté des Sciences de la Nature etde la Vie et des Sciences de la Terre et de L’Univers Département d’Ecologie et Environnement Laboratoire de recherche d’écologie et gestion des écosystèmes naturels MEMOIREPrésenté par HADJ ALLAL Fatima zahra En vue de l’obtention du Magister En Ecologie Option : Phytodynamique des écosystèmes matorrals menacées Contribution à l'étude du genre Tamarix: aspects botanique et Phyto-écologique dans la région de Tlemcen Présenté le : Président : Mr BOUAZZA Mohamed Professeur Université de Tlemcen Encadreur :Mme STAMBOULI Hassiba M.C.A Université de Tlemcen Examinateurs : Mme MEDJAHDI Assia M.C.A Université de Tlemcen Mr MERZOUK Abdessamad M.C.A Université de Tlemcen Mr HASNAOUI Okkacha M.C.A Université de Saida Invité : Mr HASSANI Fayçal M.C.B Université de Tlemcen Année Universitaire 2013/2014 الملخص: هذهالدراسةمكرسةلدراسةجنساثل،معمراعاةالموكبالنباتيالتيتمتدعلىضفاف "واديتافنا" منحمامبوغرارة،إلىالبحراﻷبيضالمتوسط )راتشجون(. تمالتوصﻹلىالنتائجعلىجنساثلبشكلعام،بمافيذلكالجوانبالبيولوجية،البيوجغرافيواﻹيكولوجية. ويعكسالدراسةالنباتيالقحولةمتسلسلةمنالمنطقةبالحضورالقوىلﻷنواعتتحمﻻلجفافمثلكادرووسأتراكت يليسوبارباتوسشيسموس. خضعتهذهالنظماﻹيكولوجيةضخمةالواجبأساساالتغيراتاﻹنسانومناخالعمل؛تفضلهذاالتطورالتراجعي انتشاربعضاﻷنواعالشوكيةوالسامةالتيتهيمنالواضحلدينامجاﻻلدراسة. الكلماتالرئيسية: واديتافنااثل-متسامح-إيكو- المناخ،ومنطقةالدراسة Résumé : Cette étude est consacrée à l’étude du genre -
Tamarix Parviflora Global Invasive
FULL ACCOUNT FOR: Tamarix parviflora Tamarix parviflora System: Terrestrial Kingdom Phylum Class Order Family Plantae Magnoliophyta Magnoliopsida Violales Tamaricaceae Common name tamarisk (English), saltcedar (English), tamarix (English), smallflower tamarisk (English), small-flower tamarisk (English) Synonym Tamarix tetrandra , auct. non Pallas Similar species Summary The smallflower tamarisk, Tamarix parviflora DC., is a semideciduous small tree or shrub that is native to Israel, Turkey and southeastern Europe. Seedlings of T. parviflora develop readily once established, and grow woody root systems that can reach as deep as 50 m into soil and rock. It can extract salts from soil and water excrete them through their branches and leaves. T. parviflora can have the following effects on ecological systems: dry up viable water sources; increase surface soil salinity; modification of hydrology; decrease native biodiversity of plants, invertebrates, birds, fish and reptiles; and increase fire risk. Management techniques that have been used to control T. parviflora include mechanical clearing - using both machinery and by hand - and/or herbicides. view this species on IUCN Red List Notes Tamarix parviflora Is thought to hybridise with the athel pine T. aphylla. (National Athel Pine Management Committee 2008). Global Invasive Species Database (GISD) 2021. Species profile Tamarix parviflora. Pag. 1 Available from: http://www.iucngisd.org/gisd/species.php?sc=702 [Accessed 30 September 2021] FULL ACCOUNT FOR: Tamarix parviflora Management Info Management techniques that have been used to control Tamarix sp. include mechanical clearing - using both machinery and by hand - and/or herbicides. Hand-pulling is a very suitable control method when there are a few scattered seedlings, whilst other methods are more suitable for dense trees (excavation) and dense seedlings (stick raking, blade ploughing, ripping, root raking). -
National Biodiversity Strategy and Action Plan of Georgia
Biodiversity Strategy and Action Plan - Georgia – Tbilisi, 2005 Foreword Georgia signed the Convention on Biological Diversity in 1994, thus accepting responsibility to safeguard the nation’s rich diversity of plant, animal, and microbial life, to begin using biological resources in sustainable way, and to ensure equitable sharing of benefits from biodiversity. Later the country joined other conventions including the Convention on Climate Change, the Ramsar Convention on Wetlands, CITES and the Bonn Convention. As a signatory to these important international environmental treaties, Georgia enters the world scene with the potential for joining the most advanced nations in the field of environmental protection. At the present moment of transition, Georgia has a unique opportunity to use the early experiences of other countries, and avoid irreversible changes in the quality of its environment. The national legislation on environmental protection adopted over the past few years provides an adequate legal basis for this, although further elaboration and reinforcement of the existing legislation is needed. With the Ministry of Environment being currently reorganised and assuming broader responsibilities, Georgia’s institutional arrangements for environmental protection already has the necessary structure for improving the quality of the environment throughout the country. The role of non-governmental groups has been very important in resolving problems related to nature conservation. Georgia has shown an excellent example of co-operation between governmental and non-governmental organizations in the field of environment, and particularly in the field of biodiversity conservation. After signing the Convention on Biological Diversity, the Georgian Government immediately acted to develop a Biodiversity Country Study, in partnership with UNEP, and implemented by NACRES, a local conservation organisation. -
Vertebrate and Floristic Inventories at Minuteman Missile National Historic Site: 2007 Status Report
National Park Service U.S. Department of the Interior Natural Resource Program Center Vertebrate and Floristic Inventories at Minuteman Missile National Historic Site: 2007 Status Report Natural Resource Technical Report NPS/NGPN/NRTR—2008/124 ` ON THE COVER Swift fox den at Minuteman Missile National Historic Site Photograph by: Rikk Flohr Vertebrate and Floristic Inventories at Minuteman Missile National Historic Site: 2007 Status Report Natural Resource Technical Report NPS/NGPN/NRTR—2008/124 Marcia H. Wilson National Park Service Northern Great Plains Inventory and Monitoring Network 231 East Saint Joseph Street Rapid City, SD 57701 Robert A. Gitzen University of Missouri Northern Great Plains I&M Network 231 East Saint Joseph Street Rapid City, SD 57701 Michael Bynum National Park Service Northern Great Plains I&M Network 231 East Saint Joseph Street Rapid City, SD 57701 September 2008 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientific community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. The Natural Resources Technical Reports series is used to disseminate the peer-reviewed results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service’s mission. -
The Flowering Plants and Ferns of Anacapa Island, California
Western North American Naturalist Volume 78 Number 4 Papers from the 9th California Article 17 Islands Symposium (Part 2) 2-15-2018 The flowering plants and ernsf of Anacapa Island, California Steve Junak Santa Barbara Botanic Garden, Santa Barbara, CA, [email protected] Ralph Philbrick Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Junak, Steve and Philbrick, Ralph (2018) "The flowering plants and ernsf of Anacapa Island, California," Western North American Naturalist: Vol. 78 : No. 4 , Article 17. Available at: https://scholarsarchive.byu.edu/wnan/vol78/iss4/17 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 78(4), © 2018, pp. 652 –673 The flowering plants and ferns of Anacapa Island, California STEVE JUNAK 1,* AND RALPH PHILBRICK 2 1Santa Barbara Botanic Garden, 1212 Mission Canyon Road, Santa Barbara, CA 93105 2Deceased. 29 San Marcos Trout Club, Santa Barbara, CA 93105 ABSTRACT .—The 3 islets of Anacapa Island, with a combined area of 1.1 mi 2 (2.9 km 2), lie 13 mi (20 km) off the coast of southern California. Historically, each of Anacapa’s islets has been subjected to periodic grazing by sheep, and the eastern islet has also had a sizeable population of introduced rabbits. In spite of these past perturbations, the recovery of the island’s vegetation has been remarkable since sheep removal in 1937. -
National Wetland Plant List: 2016 Wetland Ratings
Lichvar, R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. The National Wetland Plant List: 2016 wetland ratings. Phytoneuron 2016-30: 1–17. Published 28 April 2016. ISSN 2153 733X THE NATIONAL WETLAND PLANT LIST: 2016 WETLAND RATINGS ROBERT W. LICHVAR U.S. Army Engineer Research and Development Center Cold Regions Research and Engineering Laboratory 72 Lyme Road Hanover, New Hampshire 03755-1290 DARIN L. BANKS U.S. Environmental Protection Agency, Region 7 Watershed Support, Wetland and Stream Protection Section 11201 Renner Boulevard Lenexa, Kansas 66219 WILLIAM N. KIRCHNER U.S. Fish and Wildlife Service, Region 1 911 NE 11 th Avenue Portland, Oregon 97232 NORMAN C. MELVIN USDA Natural Resources Conservation Service Central National Technology Support Center 501 W. Felix Street, Bldg. 23 Fort Worth, Texas 76115-3404 ABSTRACT The U.S. Army Corps of Engineers (Corps) administers the National Wetland Plant List (NWPL) for the United States (U.S.) and its territories. Responsibility for the NWPL was transferred to the Corps from the U.S. Fish and Wildlife Service (FWS) in 2006. From 2006 to 2012 the Corps led an interagency effort to update the list in conjunction with the U.S. Environmental Protection Agency (EPA), the FWS, and the USDA Natural Resources Conservation Service (NRCS), culminating in the publication of the 2012 NWPL. In 2013 and 2014 geographic ranges and nomenclature were updated. This paper presents the fourth update of the list under Corps administration. During the current update, the indicator status of 1689 species was reviewed. A total of 306 ratings of 186 species were changed during the update. -
Detoxification of Heavy Metals (Soil Biology
Soil Biology Volume 30 Series Editor Ajit Varma, Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, UP, India For further volumes: http://www.springer.com/series/5138 . Irena Sherameti l Ajit Varma Editors Detoxification of Heavy Metals Editors Dr. Irena Sherameti Prof. Dr. Ajit Varma Friedrich-Schiller Universita¨t Jena Amity University Uttar Pradesh Institut fu¨r Allgemeine Botanik und Amity Institute of Microbial Sciences Pflanzenphysiologie Noida Uttar Pradesh Dornburger Str. 159 Block A, Ground Floor, Sector 125 07743 Jena India Germany [email protected] [email protected] ISSN 1613-3382 ISBN 978-3-642-21407-3 e-ISBN 978-3-642-21408-0 DOI 10.1007/978-3-642-21408-0 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011934686 # Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
Aka Tamarisk Provincial Designation: Prohibited Noxious
Saltcedar (Tamarix ramosissima, Tamarix chinensis, Tamarix parviflora) aka Tamarisk Provincial Designation: Prohibited Noxious Overview: Saltcedars are deciduous, loosely branched shrubs or small trees and native to Asia. They were introduced in the 1800s and used as ornamentals, to establish wind breaks, and to stabilize soil in riparian areas. They reproduce by seed but can also sprout veg- etatively from buried stem or branch pieces. Saltcedar produces massive quantities of tiny seeds which have a short viability period but can germinate quickly in a broad range of conditions. It develops a deep tap root (as deep as 5m) to access groundwater and can tolerate extended periods of drought once established. Saltcedar has replaced ABOVE: Saltcedar foliage (photo by Steve Dewey, Utah State University) large tracts of native cottonwood/willow Habitat: BELOW: Saltcedar infestation near a stream stands in the US and has lower wildlife value Saltcedar grows in many soil types but and greater water uptake than native tree prefers fine-textured soils. It tolerates a stands. wide range of saline or alkaline soils, but is It tolerates high levels of salinity and this intolerant of shade. It mainly inhabits the salt accumulates among leaf scales during margins of water courses such as rivers, evapotranspiration. The resulting leaf litter streams, irrigation canals, lakeshores. increases salinity of the soil over time, mak- ing it unsuitable for native vegetation. Identification: Invasion by saltcedar is linked to distur- Stems: A few to several stems per plant. bance/removal of native vegetation and/ Young stems are slender, smooth and or alteration of natural flooding patterns by reddish-brown – the bark on older stems human activities3 such as dams (stabilization is furrowed. -
Vascular Plant Species of the Comanche National Grassland in United States Department Southeastern Colorado of Agriculture
Vascular Plant Species of the Comanche National Grassland in United States Department Southeastern Colorado of Agriculture Forest Service Donald L. Hazlett Rocky Mountain Research Station General Technical Report RMRS-GTR-130 June 2004 Hazlett, Donald L. 2004. Vascular plant species of the Comanche National Grassland in southeast- ern Colorado. Gen. Tech. Rep. RMRS-GTR-130. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 36 p. Abstract This checklist has 785 species and 801 taxa (for taxa, the varieties and subspecies are included in the count) in 90 plant families. The most common plant families are the grasses (Poaceae) and the sunflower family (Asteraceae). Of this total, 513 taxa are definitely known to occur on the Comanche National Grassland. The remaining 288 taxa occur in nearby areas of southeastern Colorado and may be discovered on the Comanche National Grassland. The Author Dr. Donald L. Hazlett has worked as an ecologist, botanist, ethnobotanist, and teacher in Latin America and in Colorado. He has specialized in the flora of the eastern plains since 1985. His many years in Latin America prompted him to include Spanish common names in this report, names that are seldom reported in floristic pub- lications. He is also compiling plant folklore stories for Great Plains plants. Since Don is a native of Otero county, this project was of special interest. All Photos by the Author Cover: Purgatoire Canyon, Comanche National Grassland You may order additional copies of this publication by sending your mailing information in label form through one of the following media.