Submission to The
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Canadian Wildlife Service Permit Application
For office use only Date Received Permit No. CANADIAN WILDLIFE SERVICE PERMIT APPLICATION NOTE TO RESEARCHERS Without exception, all research within the NWT and Nunavut must be licensed. This includes work in indigenous knowledge as well as in physical, social, and biological sciences. For information on licensing for your project within the NWT, please refer to the Aurora Research Institute’s Web site at http://www.nwtresearch.com. For Nunavut, visit the Nunavut Research Institute Web site at http://www.nri.nu.ca. For Scientific Permits: Prior to issuing a Scientific Permit to Take, Salvage or Disturb Migratory Birds, CWS requires: 1) Copy of either an NWT or Nunavut Wildlife Research Permit; or an Aurora Research Licence/Nunavut Research Licence. Include a copy of either the permit or the licence with this application or forward a copy to CWS upon receipt of it. Otherwise, your permit will not be issued. 2) Appendix 1 of this permit application must be completed by two ornithologists who have reviewed the application and are willing to attest to the ability and professionalism of the applicant. Nunavut: In Nunavut your project will have to undergo screening by the Nunavut Impact Review Board. One of their requirements is that you obtain a conformity report from the Nunavut Planning Commission. Please ensure that you have done so. To be completed by all applicants: New application Type of permit applied for: Amendment/extension of existing permit Bird Sanctuary permit Existing permit no. National Wildlife Area entry permit Scientific -
023810 Rangifer Spec Issue
The Ninth North American Caribou Workshop, S7 Kuujjuaq, Québec, Canada, 23-27 April, 2001. Status, population fluctuations and ecological relationships of Peary caribou on the Queen Elizabeth Islands: Implications for their survival Frank L. Miller1 & Anne Gunn2 1 Canadian Wildlife Service, Prairie & Northern Region, Room 200, 4999 - 98th. Avenue, Edmonton, Alberta T6B 2X3 Canada ([email protected]). 2 Department of Resources, Wildlife and Economic Development, Government of the Northwest Territories, Box 1320, Yellowknife, Northwest Territories X1A 3S8 Canada. Abstract: The Peary caribou (Rangifer tarandus pearyi) was recognized as 'Threatened' by the Committee on the Status of Endangered Wildlife in Canada in 1979 and 'Endangered' in 1991. It is the only member of the deer family (Cervidae) found on the Queen Elizabeth Islands (QEI) of the Canadian High Arctic. The Peary caribou is a significant part of the region's biodiversity and a socially important and economically valuable part of Arctic Canada's natural heritage. Recent microsatellite DNA findings indicate that Peary caribou on the QEI are distinct from caribou on the other Arctic Islands beyond the QEI, including Banks Island. This fact must be kept in mind if any translocation of caribou to the QEI is pro• posed. The subspecies is too gross a level at which to recognize the considerable diversity that exists between Peary cari¬ bou on the QEI and divergent caribou on other Canadian Arctic Islands. The Committee on the Status of Endangered Wildlife in Canada should take this considerable diversity among these caribou at below the subspecies classification to mind when assigning conservation divisions (units) to caribou on the Canadian Arctic Islands. -
A Hans Krüger Arctic Expedition Cache on Axel Heiberg Island, Nunavut ROBERT W
ARCTIC VOL. 60, NO. 1 (MARCH 2007) P. 1–6 A Hans Krüger Arctic Expedition Cache on Axel Heiberg Island, Nunavut ROBERT W. PARK1 and DOUGLAS R. STENTON2 (Received 13 June 2006; accepted in revised form 31 July 2006) ABSTRACT. In 1999 a team of geologists discovered an archaeological site near Cape Southwest, Axel Heiberg Island. On the basis of its location and the analysis of two artifacts removed from the site, the discoverers concluded that it was a hastily abandoned campsite created by Hans Krüger’s German Arctic Expedition, which was believed to have disappeared between Meighen and Amund Ringnes islands in 1930. If the attribution to Krüger were correct, the existence of this site would demonstrate that the expedition got farther on its return journey to Bache Peninsula than previously believed. An archaeological investigation of the site by the Government of Nunavut in 2004 confirmed its tentative attribution to the German Arctic Expedition but suggested that it is not a campsite, but the remains of a deliberately and carefully constructed cache. The finds suggest that one of the three members of the expedition may have perished before reaching Axel Heiberg Island, and that the survivors, in order to lighten their sledge, transported valued but heavy items (including Krüger’s geological specimens) to this prominent and well-known location to cache them, intending to return and recover them at some later date. Key words: German Arctic Expedition, Hans Krüger, archaeology, geology, Axel Heiberg Island, Nunavut RÉSUMÉ. En 1999, une équipe de géologues a découvert un lieu d’importance archéologique près du cap Southwest, sur l’île Axel Heiberg. -
Volume 12, 1959
THE ARCT IC CIRCLE THE COMMITTEE 1959 Officers President: Dr. D.C. Rose Vice -Presidents Mr. L.A.C.O. Hunt Secretary: Mr. D. Snowden Treasurer: Mr. J .E. Cleland Publications Secretary: Miss Mary Murphy Editor: Mrs .G.W. Rowley Members Mr. Harvey Blandford Mr. Welland Phipps Mr. J. Cantley Mr. A. Stevenson Mr. F..A. Cate Mr. Fraser Symington L/Cdr. J.P. Croal, R.C.N. Mr. J .5. Tener Miss Moira Dunbar Dr. R. Thorsteinsson W IC K. R. Greenaway, R.C.A.F. Dr. J.S. Willis Mr. T .H. Manning Mr. J. Wyatt Mr. Elijah Menarik CONTENTS VOLUME XlI, 1959 NO.1 Meetings of the Arctic Circle 1 Officers and Committee Members for 1959 Z Research in the Lake Hazen region of northern Ellesmere Island in the International Geophysical Year Z Anthropological work in the Eastern Arctic, 1958 13 Geomorphological studies on Southampton Island, 1958 15 Bird Sanctuaries in Southampton Island 17 Subscriptions for 1959 18 Change of Address 18 Editorial Note 18 NO. Z U.S. Navy airship flight to Ice Island T3 19 Firth River archaeological activities. 1956 and 1958 Z6 A light floatplane operation in the far northern islands, 1958 Z9 Change of Address 31 Editorial Note 31 NO.3 Meetings of the Arctic Circle 3Z The Polar Continental Shelf Project, 1959 3Z Jacobsen-McGill Arctic Research Expedition to Axel Heiberg Island 38 Biological work on Prince of Wales Island in the summer of 1958 40 Geographical Branch Survey in southern Melville Peninsula, 1959 43 Pilot of Arctic Canada 48 Subsc riptions for 1960 50 Change of Address 51 • Editorial Note 51 I NO.4 Meetings of the Arctic Circle 52 Officers and Committee Members for 1960 52 Some factors regarding northern oil and gas 53 Nauyopee. -
Appendix A. Survival Strategies of the Ecotonal Species
Appendix A. Survival Strategies of the Ecotonal Species With greater numbers of species found in relatively high abundance in communities of both the boreal zone and the arctic regions, with fewer in the forest-tundra ecotonal communities, the question arises as to the strategies involved that permit adaptations to disparate environments yet prohibit all but a few from surviving in the ecotone, at least in numbers sufficient so they are recorded in quadrats of the size employed in transects of this study. There is a depauperate zone in the forest-tundra ecotone marked by a paucity of species, a zone in which only a relatively few wide-ranging species are persistently dominant (see Tables 5.1-5.9). Plant communities in both the forests to the south and the tundra to the north possess more species of sufficient abundance to show up in the transects. In the depauperate zone, there is no lack of vegetational cover over the landscape, but fewer species in total dominate the communities. There are fewer species demonstrating intermediate abundance, fewer rare species. The obvious question is, "Why should this be so?" As yet, there is perhaps no fully satisfactory answer, but there have been studies that at least seem to point the way for an approach to the question. Studies of the survival and reproductive strategies oftundra plants, arctic and alpine, have a long history, and these are thoroughly discussed in classic papers and reviews by Britton (1957), Jeffree (1960), Warren Wilson (1957a,b, 1966a,b, 1967), Johnson et al. (1966), Johnson and Packer (1967), Billings and Mooney (1968), Bliss (1956, 1958, 1962, 1971), Billings (1974), and Wiclgolaski et al. -
Queen Elizabeth Islands: Problems Associated with Water Balance Research
Northern Research Basins Water Balance (Proceedings of a workshop held at Victoria, Canada, March 2004). IAHS Publ. 290, 2004 Queen Elizabeth Islands: problems associated with water balance research KATHY L. YOUNG1 & MING-KO WOO2 1 Geography Department, York University, 4700 Keele Street, Toronto, Ontario, M3JIP3, Canada klyoung(S>.vorku.ca 2 School of Geography and Geology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada Abstract The Queen Elizabeth Islands in Arctic Canada are in an extremely remote region with long, cold winters, and 2- to 3-month summers, with 24-h daylight. Snow is a major part of annual precipitation, but there are few Arctic weather stations and precipitation data accuracy is hampered by gauge undercatch. Large spatial variations in snowmelt and evaporation make it difficult to extend point calculations over a basin. Currently no official hydrometric station exists in the Islands and the short-term available records are afflicted by stream gauging problems during peak flows. Annual water balances are often not closed, as not all the components are measured or calculated; this applies to early studies and to all glacierized catchments. Given the sensitivity of polar regions to climatic change and the likely importance of freshwater input to the Arctic Ocean, performing proper water balances for the basins in the Arctic Archipelago is a challenge. Key words Canadian Arctic; evaporation; permafrost; precipitation; Queen Elizabeth Islands; runoff; storage; water balance INTRODUCTION In the early 1970s, interest in Arctic hydrological research was largely stimulated by the planning of megaprojects in the Canadian Arctic Islands, such as the opening of mines and the designing of gas pipelines. -
Final Complete Dissertation Kua 1
Trends and Ontology of Artistic Practices of the Dorset Culture 800 BC - 1300 AD Hardenberg, Mari Publication date: 2013 Document version Early version, also known as pre-print Citation for published version (APA): Hardenberg, M. (2013). Trends and Ontology of Artistic Practices of the Dorset Culture 800 BC - 1300 AD. København: Det Humanistiske Fakultet, Københavns Universitet. Download date: 08. Apr. 2020 Trends and Ontology of Artistic Practices of the Dorset Culture 800 BC – 1300 AD Volume 1 By © Mari Hardenberg A Dissertation Submitted to the Ph.d.- School In Partial fulfillment of the Requirements for the Degree of Doctor of Philosophy SAXO-Institute, Department of Prehistoric Archaeology, Faculty of Humanities University of Copenhagen August 2013 Copenhagen Denmark ABSTRACT This dissertation examines the various artistic carvings produced by the hunter-gatherer Dorset people who occupied the eastern Arctic and temperate regions of Canada and Greenland between circa BC 800 – AD 1300. It includes considerations on how the carved objects affected and played a role in Dorset social life. To consider the role of people, things and other beings that may be said to play as actors in interdependent entanglements of actions, the agency/actor- network theory is employed. From this theoretical review an interpretation of social life as created by the ways people interact with the material world is presented. This framework is employed as a lens into the social role and meaning the carvings played in the Dorset society. The examined assemblages were recovered from a series of Dorset settlement sites, mainly in house, midden, and burial contexts, providing a substantive case study through which variations and themes of carvings are studied. -
An Arctic Engineer's Story 1971 to 2006
An Arctic Engineer’s Story 1971 to 2006 by Dan Masterson To my wife Ginny and my sons, Andrew, Greg, and Mark ii Preface In 1971, I just happened to be in the right place at the right time. I had just completed my PhD and was looking for work. I was told to contact Hans Kivisild who had just been given a contract from an oil company to investigate an engineering issue in the Arctic. This started my career in Arctic engineering, just when the second major exploration phase was beginning in the western Arctic, 123 years after Franklin started the first phase of exploration in the area. This recent phase was also filled with individuals who were going “where few had gone before,” but unlike the earlier explorers, these recent explorers were accompanied by regulators, scientists and engineers who wanted to ensure that the environment was protected and also to ensure that the operations were carried out in the safest and most cost- efficient manner. Between about 1970 to 1995, several oil companies and Arctic consulting companies turned Calgary into a world leader in Arctic technology. It was a time that one could have an idea, check it out in small scale, and within a year or so, use it in a full-scale operation. During the next 25 years, industry drilled many wells in the Arctic using the technologies described in this book. In 1995, the oil industry pulled out of the Arctic mainly due to lack of government incentives and poor drilling results. In 2016, both the Canadian and United States governments declared a moratorium on Arctic drilling. -
Polar Continental Shelf Program Science Report 2019: Logistical Support for Leading-Edge Scientific Research in Canada and Its Arctic
Polar Continental Shelf Program SCIENCE REPORT 2019 LOGISTICAL SUPPORT FOR LEADING-EDGE SCIENTIFIC RESEARCH IN CANADA AND ITS ARCTIC Polar Continental Shelf Program SCIENCE REPORT 2019 Logistical support for leading-edge scientific research in Canada and its Arctic Polar Continental Shelf Program Science Report 2019: Logistical support for leading-edge scientific research in Canada and its Arctic Contact information Polar Continental Shelf Program Natural Resources Canada 2464 Sheffield Road Ottawa ON K1B 4E5 Canada Tel.: 613-998-8145 Email: [email protected] Website: pcsp.nrcan.gc.ca Cover photographs: (Top) Ready to start fieldwork on Ward Hunt Island in Quttinirpaaq National Park, Nunavut (Bottom) Heading back to camp after a day of sampling in the Qarlikturvik Valley on Bylot Island, Nunavut Photograph contributors (alphabetically) Dan Anthon, Royal Roads University: page 8 (bottom) Lisa Hodgetts, University of Western Ontario: pages 34 (bottom) and 62 Justine E. Benjamin: pages 28 and 29 Scott Lamoureux, Queen’s University: page 17 Joël Bêty, Université du Québec à Rimouski: page 18 (top and bottom) Janice Lang, DRDC/DND: pages 40 and 41 (top and bottom) Maya Bhatia, University of Alberta: pages 14, 49 and 60 Jason Lau, University of Western Ontario: page 34 (top) Canadian Forces Combat Camera, Department of National Defence: page 13 Cyrielle Laurent, Yukon Research Centre: page 48 Hsin Cynthia Chiang, McGill University: pages 2, 8 (background), 9 (top Tanya Lemieux, Natural Resources Canada: page 9 (bottom -
Infonorth Five Hundred Meetings of the Arctic Circle
ARCTIC VOL. 67, NO. 2 (JUNE 2014) P. 1 – 12 InfoNorth Five Hundred Meetings of the Arctic Circle by C.R. Burn SUPPLEMENTARY TABLES 1 AND 2 TABLE 1. List of meetings of the Arctic Circle.1 Special Meetings are in bold. Year Meeting Date Speaker2 Topic3 1947 1 12 December Flt. Lt. A.H. Tinker Establishment of weather stations at Eureka and Resolute Bay 1948 2 15 January Sgt. F.S. Farrar, RCMP Film: St Roch 3 16 February R.G. Madill, Flt. Lt. J.F. Drake North magnetic pole 4 18 March Lt. Col. A. Croft Operation Musk-ox 5 13 April H.M. Raup Botany, geology, and archaeology, Alaska Highway 6 25 May J.G. Wright Film: RMS Nascopie 7 20 August Picnic at the Jenness’s cottage 8 4 November C.S. Lord Mining in NWT 9 9 December P. Serson Operation Magnetic 1949 10 13 January B.J. Woodruff Geodetic Survey of Canada 11 10 February P.D. Baird Project Snow Cornice 12 10 March Cdr. D.C. Nutt, USNR Antarctica 13 14 April J.C. Wyatt Construction in the Arctic 14 12 May Mrs. T.H. Manning Travels in Hudson Bay and Foxe Basin 15 10 November Dr. J.C. Callaghan Experiences of a medical officer in the Arctic 16 8 December M.J. Dunbar Marine resources of the eastern Arctic 1950 17 12 January Flt. Lt. B. Hartman Search and rescue in the eastern Arctic 18 9 February A.E. Porsild Plant life 19 9 March D. Wilkinson NFB in the North 20 13 April T.H. -
Movements and Habitat Use of Muskoxen on Bathurst, Cornwallis
MOVEMENTS AND HABITAT USE OF MUSKOXEN (Ovibos moschatus) ON BATHURST, CORNWALLIS, AND DEVON ISLANDS, 2003-2006 Morgan Anderson1 and Michael A. D. Ferguson Version: 23 December 2016 1Department of Environment, Government of Nunavut, Box 209 Igloolik NU X0A 0L0 STATUS REPORT 2016-08 NUNAVUT DEPARTMENT OF ENVIRONMENT WILDLIFE RESEARCH SECTION IGLOOLIK, NU i Summary Eleven muskoxen (Ovibos moschatus) were fitted with satellite collars in summer 2003 to investigate habitat preferences and movement parameters in areas where they are sympatric with Peary caribou on Bathurst, Cornwallis, and Devon islands. Collars collected locations every 4 days until May 2006, with 4 muskoxen on Bathurst Island collared, 2 muskoxen collared on Cornwallis Island, and 5 muskoxen collared on western Devon Island. Only 5-29% of the satellite locations were associated with an estimated error of less than 150 m (Argos Class 3 locations). Muskoxen in this study used low-lying valleys and coastal areas with abundant vegetation on all 3 islands, in agreement with previous studies in other areas and Inuit qaujimajatuqangit. They often selected tussock graminoid tundra, moist/dry non-tussock graminoid/dwarf shrub tundra, wet sedge, and sparsely vegetated till/colluvium sites. Minimum convex polygon home ranges representing 100% of the locations with <150 m error include these movements between core areas, and ranged from 233 km2 to 2494 km2 for all collared muskoxen over the 3 years, but these home ranges include large areas of unused habitat separating discrete patches of good habitat where most locations were clustered. Several home ranges overlapped, which is not surprising, since muskoxen are not territorial. -
Half a Century of Measurements of Glaciers on Axel Heiberg Island, Nunavut, Canada J.G
ARCTIC VOL. 64, NO. 3 (SEPTEMBER 2011) P. 371 – 375 Half a Century of Measurements of Glaciers on Axel Heiberg Island, Nunavut, Canada J.G. COGLEY,1,2 W.P. ADAMS1 and M.A. ECCLESTONE1 (Received 17 November 2010; accepted in revised form 27 February 2011) ABSTRACT. We illustrate the value of longevity in high-latitude glaciological measurement series with results from a programme of research in the Expedition Fiord area of western Axel Heiberg Island that began in 1959. Diverse investi- gations in the decades that followed have focused on subjects such as glacier zonation, the thermal regime of the polythermal White Glacier, and the contrast in evolution of White Glacier (retreating) and the adjacent Thompson Glacier (advancing until recently). Mass-balance monitoring, initiated in 1959, continues to 2011. Measurement series such as these provide invaluable context for understanding climatic change at high northern latitudes, where in-situ information is sparse and lacks historical depth, and where warming is projected to be most pronounced. Key words: glacier mass balance, glacier changes, Axel Heiberg Island RÉSUMÉ. Nous illustrons la valeur de la longévité en ce qui a trait à une série de mesures glaciologiques en haute latitude au moyen des résultats découlant d’un programme de recherche effectué dans la région du fjord Expédition du côté ouest de l’île Axel Heiberg, programme qui a été entrepris en 1959. Diverses enquêtes réalisées au cours des décennies qui ont suivi ont porté sur des sujets tels que la zonation des glaciers, le régime thermique du glacier White et le contraste entourant l’évolution du glacier White (en retrait) et du glacier Thompson adjacent (qui s’avançait jusqu’à tout récemment).