A National Ecological Framework for Canada
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Incorporating Human Impacts Into Habitat Suitability Models
INCORPORATING HUMAN IMPACTS INTO HABITAT SUITABILITY MODELS: A LITERATURE REVIEW Report Prepared for The Taku River Tlingit First Nation By Jean L. Polfus Research Assistant Round River Conservation Studies April 21, 2008 INCORPORATING HUMAN IMPACTS INTO HABITAT SUITABILITY MODELS Polfus Acknowledgments A diversity of people have assisted with the development and refinement of this report, the need for which was identified in collaborative discussions on habitat modeling between Taku River Tlingit Land and Resources Department and the British Columbia Integrated Land Management Bureau. I wish to acknowledge Kim Heinemeyer, Norm McLean and Kerrith McKay for initiating the project. The format and design of this report benefited from the influence of a literature review of the effects of energy development on ungulates by Mark Hebblewhite, who also provided guidance and advice. I thank the Heb Lab for general discussion and ideas about habitat suitability models. Kim Heinemeyer has provided helpful feedback and suggestions on earlier versions of the report. Please cite as: Polfus, J. L. 2008. Incorporating Human Impacts into Habitat Suitability Models: A Literature Review. Report prepared for the Taku River Tlingit First Nation. Cover photos: woodland caribou © Matt Grant, grizzly © Kevin Bernier, mountain goats © Sandra Leidholdt Page 2 INCORPORATING HUMAN IMPACTS INTO HABITAT SUITABILITY MODELS Polfus Table of Contents Acknowledgments.............................................................................................................. -
H a Guide to Sport Fishing in Nunavut
h a guide to sport fishing in nunavut SPORT FISHING GUIDE / NUNAVUT TOURISM / NUNAVUTTOURISM.COM / 1.866.NUNAVUT 1 PLUMMER’S ARCTIC LODGES PLUMMER’S Fly into an untouched, unspoiled landscape for the adventure of a lifetime. Fish for record-size lake trout and pike in the treeless but colourful barrenlands. Try for arctic grayling in our cold clear waters. And, of course, set your sights on an arctic char on the Tree River, the Coppermine River, or dozens of other rivers across Nunavut that flow to the Arctic seas. Spend a full 24 hours angling for the species of your choice under the rays of the midnight sun. PLUMMER’S ARCTIC LODGES PLUMMER’S Pristine, teeming with trophy fish, rare wildlife and Read on to explore more about this remarkable place: nature at its rawest, Nunavut is a cut above any ordinary about the Inuit and their 1000-year history of fishing in sport fishing destination. Brave the stark but stunning one of the toughest climates in the world; about the wilderness of the region. Rise to the unique challenges experienced guides and outfitters ready to make your of Nunavut. And come back with jaw-dropping trophy- adventure run smoothly. Read on to discover your next sized catches, as well as memories and stories that great sport fishing experience! you’ll never tire of. Welcome To Sport Fishing Paradise. 2 SPORT FISHING GUIDE / NUNAVUT TOURISM / NUNAVUTTOURISM.COM / 1.866.NUNAVUT PLUMMER’S ARCTIC LODGES PRIZE OF THE ARCTIC Arctic Char The arctic char is on every sport fisher’s bucket list. -
The Rock Abrasion Record at Gale Crater: Mars Science Laboratory
PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE The rock abrasion record at Gale Crater: Mars 10.1002/2013JE004579 Science Laboratory results from Bradbury Special Section: Landing to Rocknest Results from the first 360 Sols of the Mars Science Laboratory N. T. Bridges1, F. J. Calef2, B. Hallet3, K. E. Herkenhoff4, N. L. Lanza5, S. Le Mouélic6, C. E. Newman7, Mission: Bradbury Landing D. L. Blaney2,M.A.dePablo8,G.A.Kocurek9, Y. Langevin10,K.W.Lewis11, N. Mangold6, through Yellowknife Bay S. Maurice12, P.-Y. Meslin12,P.Pinet12,N.O.Renno13,M.S.Rice14, M. E. Richardson7,V.Sautter15, R. S. Sletten3,R.C.Wiens6, and R. A. Yingst16 Key Points: • Ventifacts in Gale Crater 1Applied Physics Laboratory, Laurel, Maryland, USA, 2Jet Propulsion Laboratory, Pasadena, California, USA, 3Department • Maybeformedbypaleowind of Earth and Space Sciences, College of the Environments, University of Washington, Seattle, Washington, USA, 4U.S. • Can see abrasion textures at range 5 6 of scales Geological Survey, Flagstaff, Arizona, USA, Los Alamos National Laboratory, Los Alamos, New Mexico, USA, LPGNantes, UMR 6112, CNRS/Université de Nantes, Nantes, France, 7Ashima Research, Pasadena, California, USA, 8Universidad de Alcala, Madrid, Spain, 9Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Supporting Information: Austin, Texas, USA, 10Institute d’Astrophysique Spatiale, Université Paris-Sud, Orsay, France, 11Department of • Figure S1 12 fi • Figure S2 Geosciences, Princeton University, Princeton, New Jersey, USA, Centre National de la Recherche Scienti que, Institut 13 • Table S1 de Recherche en Astrophysique et Planétologie, CNRS-Université Toulouse, Toulouse, France, Department of Atmospheric, Oceanic, and Space Science; College of Engineering, University of Michigan, Ann Arbor, Michigan, USA, Correspondence to: 14Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 15Lab N. -
Chemical Variations in Yellowknife Bay Formation Sedimentary Rocks
PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Chemical variations in Yellowknife Bay formation 10.1002/2014JE004681 sedimentary rocks analyzed by ChemCam Special Section: on board the Curiosity rover on Mars Results from the first 360 Sols of the Mars Science Laboratory N. Mangold1, O. Forni2, G. Dromart3, K. Stack4, R. C. Wiens5, O. Gasnault2, D. Y. Sumner6, M. Nachon1, Mission: Bradbury Landing P.-Y. Meslin2, R. B. Anderson7, B. Barraclough4, J. F. Bell III8, G. Berger2, D. L. Blaney9, J. C. Bridges10, through Yellowknife Bay F. Calef9, B. Clark11, S. M. Clegg5, A. Cousin5, L. Edgar8, K. Edgett12, B. Ehlmann4, C. Fabre13, M. Fisk14, J. Grotzinger4, S. Gupta15, K. E. Herkenhoff7, J. Hurowitz16, J. R. Johnson17, L. C. Kah18, N. Lanza19, Key Points: 2 1 20 21 12 16 2 • J. Lasue , S. Le Mouélic , R. Léveillé , E. Lewin , M. Malin , S. McLennan , S. Maurice , Fluvial sandstones analyzed by 22 22 23 19 19 24 25 ChemCam display subtle chemical N. Melikechi , A. Mezzacappa , R. Milliken , H. Newsom , A. Ollila , S. K. Rowland , V. Sautter , variations M. Schmidt26, S. Schröder2,C.d’Uston2, D. Vaniman27, and R. Williams27 • Combined analysis of chemistry and texture highlights the role of 1Laboratoire de Planétologie et Géodynamique de Nantes, CNRS, Université de Nantes, Nantes, France, 2Institut de Recherche diagenesis en Astrophysique et Planétologie, CNRS/Université de Toulouse, UPS-OMP, Toulouse, France, 3Laboratoire de Géologie de • Distinct chemistry in upper layers 4 5 suggests distinct setting and/or Lyon, Université de Lyon, Lyon, France, California Institute of Technology, Pasadena, California, USA, Los Alamos National 6 source Laboratory, Los Alamos, New Mexico, USA, Earth and Planetary Sciences, University of California, Davis, California, USA, 7Astrogeology Science Center, U.S. -
023810 Rangifer Spec Issue
The Ninth North American Caribou Workshop, S7 Kuujjuaq, Québec, Canada, 23-27 April, 2001. Status, population fluctuations and ecological relationships of Peary caribou on the Queen Elizabeth Islands: Implications for their survival Frank L. Miller1 & Anne Gunn2 1 Canadian Wildlife Service, Prairie & Northern Region, Room 200, 4999 - 98th. Avenue, Edmonton, Alberta T6B 2X3 Canada ([email protected]). 2 Department of Resources, Wildlife and Economic Development, Government of the Northwest Territories, Box 1320, Yellowknife, Northwest Territories X1A 3S8 Canada. Abstract: The Peary caribou (Rangifer tarandus pearyi) was recognized as 'Threatened' by the Committee on the Status of Endangered Wildlife in Canada in 1979 and 'Endangered' in 1991. It is the only member of the deer family (Cervidae) found on the Queen Elizabeth Islands (QEI) of the Canadian High Arctic. The Peary caribou is a significant part of the region's biodiversity and a socially important and economically valuable part of Arctic Canada's natural heritage. Recent microsatellite DNA findings indicate that Peary caribou on the QEI are distinct from caribou on the other Arctic Islands beyond the QEI, including Banks Island. This fact must be kept in mind if any translocation of caribou to the QEI is pro• posed. The subspecies is too gross a level at which to recognize the considerable diversity that exists between Peary cari¬ bou on the QEI and divergent caribou on other Canadian Arctic Islands. The Committee on the Status of Endangered Wildlife in Canada should take this considerable diversity among these caribou at below the subspecies classification to mind when assigning conservation divisions (units) to caribou on the Canadian Arctic Islands. -
Statutory Report on Wildlife to the Nunavut Legislative Assembly Section 176 of the Wildlife Act
Statutory Report on Wildlife to the Nunavut Legislative Assembly Section 176 of the Wildlife Act 1.0 Review of Wildlife and Habitat Management Programs for Terrestrial Species in Nunavut…………………………………………………………….1 1.1 Wildlife Act and Wildlife Regulations………………………………………………..2 1.2 Qikiqtaaluk Region……………………………………………………………………2 1.2.1 Qikiqtaaluk Research Initiatives…………………………………………………….2 a. Peary caribou………………………………………………………………………….2 b. High Arctic muskox…………………………………………………………………...3 c. North Baffin caribou…………………………………………………………………..4 1.2.2 Qikiqtaaluk Management Initiatives………………………………………………...5 a. Peary Caribou Management Plan……………………………………………………...5 b. High Arctic Muskox…………………………………………………………………..5 c. South Baffin Management Plan……………………………………………………….6 1.3 Kitikmeot Region……………………………………………………………………...8 1.3.1 Kitikmeot Research Initiatives………………………………………………………9 a. Wolverine and Grizzly bear Hair Snagging………………………………………….. 9 b. Mainland Caribou Projects……………………………………………………………9 c. Boothia Caribou Project……………………………………………………………...10 d. Dolphin and Union Caribou Project……………………............................................10 e. Mainland and Boothia Peninsula Muskoxen………………………………………...11 f. Harvest and Ecological Research Operational System (HEROS)…………………...12 g. Vegetation Mapping……………………………………………………………….....12 1.3.2 Kitikmeot Management Initiatives…………………………………………………12 a. Grizzly Bear Management…………………………………………………………...12 b. Bluenose East Management Plan…………………………………………………….12 c. DU Caribou Management Plan………………………………………………………13 d. Muskox Status -
Draft – 2016 3.1.2 Territorial Parks Awaiting Full Establishment (Maps 70-84) - PA
Draft – 2016 3.1.2 Territorial Parks Awaiting Full Establishment (Maps 70-84) - PA .................................................................. 51 Chapter 1: Introduction...................................... 7 3.1.3 Proposed National Parks .................................... 51 1.1 How to Use This Document ...............................7 3.1.4 Proposed Territorial Parks (Maps 70-84) - PA...... 51 3.2 Proposed Lancaster Sound National Marine 1.2 Purpose ............................................................7 Conservation Areas (Map 85) - PA .........................52 1.3 How Land Use Decisions Were Made .................7 3.3 Conservation Areas .........................................52 1.4 Options for Land Use Policy ...............................7 3.3.1 Thelon Wildlife Sanctuary (Map 86) - PA............. 52 1.4.1 Option 1- Protected Area (PA).............................. 8 3.3.2 Migratory Bird Sanctuaries (Maps 87-99) - PA .... 53 1.4.2 Option 2 - Special Management Area (SMA)......... 8 3.3.3 National Wildlife Areas (Maps 95-99) - PA .......... 57 1.4.3 Option 3 - Mixed Use (MU) .................................. 8 3.4 Historic Sites (Maps 100-114) - PA ...................60 1.4.4 Option 4 – Information on Valued Components (VCs) ............................................................................ 8 3.5 Heritage Rivers (Maps 115-119) – PA, VEC, & VSEC ....................................................................61 1.5 Considered Information ....................................8 3.5.1 Recommendation -
Alberta with the Establishment of Castle the Following Conservation Achievements
Annual Report 2017 in Review The Yellowstone to Table of contents Yukon region A letter from Jodi 3 Key advancements 4 in the Y2Y region Dawson Protected areas and 6 connected lands Solutions that help wildlife and 8 Whitehorse people thrive Advancing science and policy 10 Communities coming together 12 for conservation Partner power 14 Fort St. John Funders 16 Prince George Financials 17 Edmonton Global support 18 Banff Vancouver Calgary Our vision Seattle Spokane Missoula An interconnected system of wild lands and water stretching Bozeman from Yellowstone to Yukon, Jackson harmonizing the needs of Boise people with those of nature. Our mission Connecting and protecting habitat from Yellowstone to Yukon so that people and nature can thrive. 2 Cover: Elk nuzzle. Photo credit: Darcy Monchak. Current page: Larches at Avalanche Lake in Glacier National Park. Photo credit: Jacob W. Frank/National Park Service. Big landscape requires big vision A letter from our President and Chief Scientist ellowstone to Yukon (Y2Y) Conservation This annual report throws a spotlight on some YInitiative’s grand vision — of an of the many organizations and individuals interconnected system of wild lands and working toward a sustainable future. These waters from Yellowstone to Yukon, groups and people have contributed time, harmonizing the needs of people with funds and expert knowledge to the bigger those of nature — takes time, resources picture and we thank them for it. and commitment. Effective large-landscape Thanks to your support and shared vision for conservation requires invested and interested a healthy landscape, we are able to make the individuals. It goes beyond financial progress you can read about in these pages. -
Taiga Plains
ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES Taiga Plains Ecosystem Classification Group Department of Environment and Natural Resources Government of the Northwest Territories Revised 2009 ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES TAIGA PLAINS This report may be cited as: Ecosystem Classification Group. 2007 (rev. 2009). Ecological Regions of the Northwest Territories – Taiga Plains. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada. viii + 173 pp. + folded insert map. ISBN 0-7708-0161-7 Web Site: http://www.enr.gov.nt.ca/index.html For more information contact: Department of Environment and Natural Resources P.O. Box 1320 Yellowknife, NT X1A 2L9 Phone: (867) 920-8064 Fax: (867) 873-0293 About the cover: The small photographs in the inset boxes are enlarged with captions on pages 22 (Taiga Plains High Subarctic (HS) Ecoregion), 52 (Taiga Plains Low Subarctic (LS) Ecoregion), 82 (Taiga Plains High Boreal (HB) Ecoregion), and 96 (Taiga Plains Mid-Boreal (MB) Ecoregion). Aerial photographs: Dave Downing (Timberline Natural Resource Group). Ground photographs and photograph of cloudberry: Bob Decker (Government of the Northwest Territories). Other plant photographs: Christian Bucher. Members of the Ecosystem Classification Group Dave Downing Ecologist, Timberline Natural Resource Group, Edmonton, Alberta. Bob Decker Forest Ecologist, Forest Management Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Hay River, Northwest Territories. Bas Oosenbrug Habitat Conservation Biologist, Wildlife Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, Northwest Territories. Charles Tarnocai Research Scientist, Agriculture and Agri-Food Canada, Ottawa, Ontario. Tom Chowns Environmental Consultant, Powassan, Ontario. Chris Hampel Geographic Information System Specialist/Resource Analyst, Timberline Natural Resource Group, Edmonton, Alberta. -
Annual Report: October 1, 2014 Assessing the Impact of Small, Canadian Arctic River Flows to the Freshwater Budget of the Canadian Archipelago Matthew B
Annual Report: October 1, 2014 Assessing the impact of small, Canadian Arctic River flows to the freshwater budget of the Canadian Archipelago Matthew B. Alkire, University of Washington Assessing the impact of small, Canadian Arctic river flows to the freshwater budget of the Canadian Archipelago (or SCARFs) is a scientific research project funded by the National Science Foundation (USA). The purpose of this project is to collect water samples from seven different rivers and their adjoining estuaries throughout the Canadian Arctic Archipelago (see Fig. 1) in order to determine whether or not their chemical signatures differ from larger North American rivers such as the Mackenzie and Yukon Rivers. Five of the rivers are located within Nunavut, Canada: the Coppermine River (near Kugluktuk), Ellice River (~140 km southeast of Cambridge Bay), Back River (~180 km southeast of Gjoa Haven), Cunningham River (~77 km southeast of Resolute Bay on Somerset Island), and Kangiqtugaapik River (near Clyde River, Baffin Island). Two of the rivers are located within the Northwest Territories, Canada: the Kujjuua River (located approximately 67 km northeast of Ulukhaktok on Victoria Island) and Thomsen River (specifically near the mouth of the river where it empties into Castel Bay, on Banks Island). Figure 1. Map of the Canadian Arctic Archipelago. The red stars indicate the mouths of the rivers sampled during this study: (1) Coppermine R., (2) Ellice R., (3) Back R., (4) Kuujuua R. (Victoria Island), (5) Thomsen R. (Banks Island), (6) Cunningham R. (Somerset Island), and (7) Clyde R. (Baffin Island). The Coppermine, Ellice, and Back Rivers are located on the mainland of Nunavut. -
Ecoregions with Grasslands in British Columbia, the Yukon, and Southern Ontario
83 Chapter 4 Ecoregions with Grasslands in British Columbia, the Yukon, and Southern Ontario Joseph D. Shorthouse Department of Biology, Laurentian University Sudbury, Ontario, Canada P3E 2C6 Abstract. The second largest grasslands of Canada are found in south-central British Columbia in valleys between mountain ranges and on arid mountain-side steppes or benchlands. The province contains five ecozones, with most of the grassland habitat in the Montane Cordillera Ecozone. This ecozone consists of a series of plateaux and low mountain ranges and comprises 17 ecoregions, 7 of which contain grasslands. Dominant grasses here are bunchgrasses. A few scattered grasslands are found in the Yukon in the Boreal Cordillera Ecozone within three ecoregions. Grasslands in southwestern Ontario consist of about 100 small remnants of what was once much more abundant tallgrass prairie. These grasslands grow in association with widely spaced deciduous trees and are remnants of a past prairie peninsula. Grasslands called alvars are also found on flat limestone bedrock in southern Ontario. This chapter briefly describes the physiography, climate, soils, and prominent flora of each ecoregion for the benefit of future biologists wishing to study the biota of these unique grasslands. Résumé. Les prairies du centre-sud de la Colombie-Britannique sont les deuxièmes plus vastes au Canada. Elles se trouvent dans les vallées séparant les chaînes de montagnes, et sur les steppes ou replats arides à flanc de montagne. La province renferme cinq écozones, et l’habitat de prairies se trouve principalement dans l’écozone de la cordillère alpestre. Cette écozone est constituée d’une série de plateaux et de chaînes de montagnes basses et se divise en 17 écorégions, dont 7 renferment des prairies. -
Classification of Ecosystem Types: Experiences and Perspectives from Statistics Canada
Classification of ecosystem types: Experiences and perspectives from Statistics Canada Prepared for Forum of Experts in SEEA Experimental Ecosystem Accounting 2018 18 – 20 June 2018 Glen Cove, New York, USA Prepared by: Jennie Wang, Marcelle Grenier, Mark Henry and François Soulard,1 Environmental Accounts and Statistics Program, Statistics Canada. Working paper, June 14, 2018. 1 Corresponding author: [email protected] 1 Contents Introduction .............................................................................................................................................. 3 Initial work on measuring ecosystem extent in Canada ......................................................................... 3 Ecological classification in Canada ........................................................................................................ 3 Measuring ecosystem goods and services ............................................................................................ 6 Ecosystem extent accounts ................................................................................................................... 6 Discussion issues ...................................................................................................................................... 7 Ecological classification ......................................................................................................................... 7 Identifying ecosystem types ................................................................................................................