Harvest Slot Limits and Marine Protected Areas for the Management of the Caribbean Spiny Lobster

Total Page:16

File Type:pdf, Size:1020Kb

Harvest Slot Limits and Marine Protected Areas for the Management of the Caribbean Spiny Lobster Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Summer 2018 The Importance of Keeping the Big Ones: Harvest Slot Limits and Marine Protected Areas for the Management of the Caribbean Spiny Lobster Gayathiri Gnanalingam Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Aquaculture and Fisheries Commons, Ecology and Evolutionary Biology Commons, and the Natural Resources Management and Policy Commons Recommended Citation Gnanalingam, Gayathiri. "The Importance of Keeping the Big Ones: Harvest Slot Limits and Marine Protected Areas for the Management of the Caribbean Spiny Lobster" (2018). Doctor of Philosophy (PhD), Dissertation, Biological Sciences, Old Dominion University, DOI: 10.25777/hhrk-9p92 https://digitalcommons.odu.edu/biology_etds/31 This Dissertation is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. THE IMPORTANCE OF KEEPING THE BIG ONES: HARVEST SLOT LIMITS AND MARINE PROTECTED AREAS FOR THE MANAGEMENT OF THE CARIBBEAN SPINY LOBSTER by Gayathiri Gnanalingam BSc August 2008, Otago University, New Zealand LLB August 2008, Otago University, New Zealand MSc December 2013, Otago University, New Zealand A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY ECOLOGICAL SCIENCES OLD DOMINON UNIVERSITY August 2018 Approved by: Mark J. Butler, IV (Director) Holly Gaff (Member) Alison MacDiarmid (Member) ABSTRACT THE IMPORTANCE OF KEEPING THE BIG ONES: HARVEST SLOT LIMITS AND MARINE PROTECTED AREAS FOR THE MANAGEMENT OF THE CARIBBEAN SPINY LOBSTER Gayathiri Gnanalingam Old Dominion University, 2018 Director: Dr. Mark J. Butler IV Fishing typically removes the oldest and/or largest individuals from populations undermining stability and reproductive success. Traditional fisheries management tools fail to protect these oldest and/or largest individuals, but two less conventional tools: marine protected areas (MPAs), and harvest slot limits have the potential to do so. Here I tested the possible use of these tools for the Caribbean spiny lobster, Panulirus argus, an iconic and economically valued species. After decades of intense fishing, the largest lobsters have largely been wiped out. The loss of the largest lobsters is significant as large lobsters have considerably greater reproductive potential than their smaller counterparts. I had four main objectives (1) developing a technique for directly ageing P. argus using banding in the gastric ossicles, (2) examining the possibility of reproductive senescence as it relates to body size in P. argus, (3) modeling the potential use of harvest slot limits and MPAs using a two-sex stage-structured matrix model, and (4) assessing the possible ecological consequences in terms of interactions with prey-species, of increasing the abundance and size of P. argus through a series of cafeteria trials. This work provides some necessary background information to support using MPAs and harvest slot limits in the management of P. argus in the Caribbean - calls for which has grown appreciably in recent years. Direct ageing of P. argus using bands in the gastric ossicles proved successful as it was possible to validate the ages of wild caught lobsters with lobsters of known age. The success of this technique opens up the potential for age based stock assessment and consideration of the relationship between size, age and reproduction. Lobsters were not found to exhibit reproductive senescence and for several of the metrics tested there was a positive relationship with parental size, confirming the biological value of retaining the largest lobsters in populations. The modeling demonstrated clearly the potential for MPAs and slot limits combined to increase the sizes and densities of P. argus in the marine environment, while the cafeteria trials demonstrated that larger lobsters did not have any appreciable preference for species of high ecological value. iv Copyright, 2018, by Gayathiri Gnanalingam, and Mark J. Butler IV, All Rights Reserved v ACKNOWLEDGMENTS There is no way that this dissertation would have been completed without the help of a number of wonderfully generous and patient people. First I would like to thank my major advisor Mark Butler. It was a chance meeting on the rocky coast of East Otago New Zealand that led to this and I’m thankful for all the adventures that have followed. With his guidance, support and enthusiasm for science I have become a better scientist, (not to mention plumber, and brick mover). I look forward to more (rum inspired) late night debates and story tellings in the future. Thank you to my committee members: Holly Gaff who graciously held my hand through the modeling work and Alison MacDiarmid who always gave thoughtful advice and much appreciated insight on all aspects of this research. Thank you also to Kent Carpenter and Dan Barshis who provided guidance early on. To my ODU labmates past and present, your help was invaluable and without it, there is no way this could have been done. Jason Spadaro, Casey Butler, Jack Butler and Ben Gutzler, you guys showed me how to catch lobsters (key), set up aquaria, handle the boats and trailers, and rescued me from the water on more than one occasion (shark encounter included). Thank you for answering my inane questions on all manner of things and for not making too much fun of my accent or choice of vocabulary. Labmates Emily Anderson, Sam Hagedorn and Marla Valentine thanks also for your help along the way. Many thanks to our UF colleagues, in particular: Abby Clark, Devon Pharo and Nate Berkebile, your help in the field was always appreciated especially those times that I was in the Keys by myself. To the friendly folks in the lobster team at the Florida Wildlife Commission in Marathon, thank you for being gracious hosts for the bulk of the lab work in this dissertation. Tom Matthews, Emily Hutchinson, Gabby Renchen, and Maria Cooksey – you have been amazing vi collaborators and friends. The ageing work in particular could not have been done without you. I would also like to acknowledge the help of the Center for Quantitative Fisheries Ecology at ODU for allowing me to work in their lab and showing me the ropes on how to process samples for the lobster ageing work. Many thanks to organizations that helped fund this research. In particular, Fulbright New Zealand and PEO. Without Fulbright’s support I would not have even considered graduate study in the US. PEO did not just help fund this research, but the wonderful women of this organization opened up their homes to me and constantly checked in on my wellbeing the whole time I was in the US. Finally, I would like to thank my friends and family. In the US I found a group of exceptionally welcoming and generous people who looked after me and made sure I was ok. I look forward to catching up with you again soon. To my family in New Zealand, thank you for your continued support. Amma, Appa and Anna, thank you for always encouraging and supporting me in everything I have chosen to do, even if it meant traveling to the other side of the world to do it. vii TABLE OF CONTENTS Page LIST OF TABLES ..................................................................................................................... ix LIST OF FIGURES .................................................................................................................... x Chapter 1. INTRODUCTION 1.1 GENERAL INTRODUCTION ................................................................................. 1 1.2 REPRODUCTION IN MARINE ORGANISMS ..................................................... 1 1.3 CONSERVING SPAWNING STOCK .................................................................... 6 1.4 THE CARIBBEAN SPINY LOBSTER ................................................................. 10 2. DIRECT AGEING 2.1 INTRODUCTION .................................................................................................. 18 2.2 METHODS ............................................................................................................. 20 2.3 RESULTS ............................................................................................................... 25 2.4 DISCUSSION ......................................................................................................... 33 3. REPRODUCTIVE SENESCENCE 3.1 INTRODUCTION .................................................................................................. 38 3.2 METHODS ............................................................................................................. 43 3.3 RESULTS ............................................................................................................... 50 3.4 DISCUSSION ......................................................................................................... 60 4. MODELING MPAS AND HARVEST SLOT LIMITS 4.1 INTRODUCTION .................................................................................................. 68 4.2 METHODS ............................................................................................................. 72 4.3 RESULTS ..............................................................................................................
Recommended publications
  • Lobsters-Identification, World Distribution, and U.S. Trade
    Lobsters-Identification, World Distribution, and U.S. Trade AUSTIN B. WILLIAMS Introduction tons to pounds to conform with US. tinents and islands, shoal platforms, and fishery statistics). This total includes certain seamounts (Fig. 1 and 2). More­ Lobsters are valued throughout the clawed lobsters, spiny and flat lobsters, over, the world distribution of these world as prime seafood items wherever and squat lobsters or langostinos (Tables animals can also be divided rougWy into they are caught, sold, or consumed. 1 and 2). temperate, subtropical, and tropical Basically, three kinds are marketed for Fisheries for these animals are de­ temperature zones. From such partition­ food, the clawed lobsters (superfamily cidedly concentrated in certain areas of ing, the following facts regarding lob­ Nephropoidea), the squat lobsters the world because of species distribu­ ster fisheries emerge. (family Galatheidae), and the spiny or tion, and this can be recognized by Clawed lobster fisheries (superfamily nonclawed lobsters (superfamily noting regional and species catches. The Nephropoidea) are concentrated in the Palinuroidea) . Food and Agriculture Organization of temperate North Atlantic region, al­ The US. market in clawed lobsters is the United Nations (FAO) has divided though there is minor fishing for them dominated by whole living American the world into 27 major fishing areas for in cooler waters at the edge of the con­ lobsters, Homarus americanus, caught the purpose of reporting fishery statis­ tinental platform in the Gul f of Mexico, off the northeastern United States and tics. Nineteen of these are marine fish­ Caribbean Sea (Roe, 1966), western southeastern Canada, but certain ing areas, but lobster distribution is South Atlantic along the coast of Brazil, smaller species of clawed lobsters from restricted to only 14 of them, i.e.
    [Show full text]
  • Factors Affecting Growth of the Spiny Lobsters Panulirus Gracilis and Panulirus Inflatus (Decapoda: Palinuridae) in Guerrero, México
    Rev. Biol. Trop. 51(1): 165-174, 2003 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Factors affecting growth of the spiny lobsters Panulirus gracilis and Panulirus inflatus (Decapoda: Palinuridae) in Guerrero, México Patricia Briones-Fourzán and Enrique Lozano-Álvarez Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Puerto Morelos. P. O. Box 1152, Cancún, Q. R. 77500 México. Fax: +52 (998) 871-0138; [email protected] Received 00-XX-2002. Corrected 00-XX-2002. Accepted 00-XX-2002. Abstract: The effects of sex, injuries, season and site on the growth of the spiny lobsters Panulirus gracilis, and P. inflatus, were studied through mark-recapture techniques in two sites with different ecological characteristics on the coast of Guerrero, México. Panulirus gracilis occurred in both sites, whereas P. inflatus occurred only in one site. All recaptured individuals were adults. Both species had similar intermolt periods, but P. gracilis had significantly higher growth rates (mm carapace length week-1) than P. inflatus as a result of a larger molt incre- ment. Growth rates of males were higher than those of females in both species owing to larger molt increments and shorter intermolt periods in males. Injuries had no effect on growth rates in either species. Individuals of P. gracilis grew faster in site 1 than in site 2. Therefore, the effect of season on growth of P. gracilis was analyzed separately in each site. In site 2, growth rates of P. gracilis were similar in summer and in winter, whereas in site 1 both species had higher growth rates in winter than in summer.
    [Show full text]
  • Drivers of Octopus Abundance in an Anchialine Lake
    1 1 Drivers of octopus abundance and density in an anchialine lake: 2 a 30 year comparison 3 4 Duncan A. O’Brien a,d* - [email protected] 5 Michelle L. Taylor a - [email protected] 6 Heather D. Masonjones b - [email protected] 7 Philipp H. Boersch-Supan c - [email protected] 8 Owen R. O’Shea d - [email protected] 9 10 a School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK 11 b Biology Department, University of Tampa, Tampa, Florida 33596, USA 12 c British Trust for Ornithology, The Nunnery, Thetford, IP24 2PU, UK and Department of 13 Geography, University of Florida, Gainesville, Florida 32611, USA 14 d The Centre for Ocean Research and Education (CORE), PO Box 255-16, Gregory Town, 15 Eleuthera, The Bahamas 16 17 *Corresponding author 18 19 20 21 22 23 24 25 26 2 27 Abstract 28 Anchialine systems are isolated from the sea and often support species’ populations distinct from 29 their marine counterparts. Sweetings Pond, an anchialine lake on the island of Eleuthera in The 30 Bahamas was identified as a site of high Caribbean reef octopus, Octopus briareus (Robson, 31 1929) density, relative to coastal populations. However, observed deterioration in local benthic 32 habitat and increased anthropogenic influence over the last 30 years imply that this octopus 33 population may have undergone density and distribution shifts in response to these changing 34 conditions. Here, we assess the system wide octopus density to provide an updated estimate. We 35 hypothesize that despite depressed habitat availability in the 1980s, it will now support octopus 36 densities less than historical estimates because of increasing human impact on the system.
    [Show full text]
  • Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
    THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................
    [Show full text]
  • Balanus Trigonus
    Nauplius ORIGINAL ARTICLE THE JOURNAL OF THE Settlement of the barnacle Balanus trigonus BRAZILIAN CRUSTACEAN SOCIETY Darwin, 1854, on Panulirus gracilis Streets, 1871, in western Mexico e-ISSN 2358-2936 www.scielo.br/nau 1 orcid.org/0000-0001-9187-6080 www.crustacea.org.br Michel E. Hendrickx Evlin Ramírez-Félix2 orcid.org/0000-0002-5136-5283 1 Unidad académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México. A.P. 811, Mazatlán, Sinaloa, 82000, Mexico 2 Oficina de INAPESCA Mazatlán, Instituto Nacional de Pesca y Acuacultura. Sábalo- Cerritos s/n., Col. Estero El Yugo, Mazatlán, 82112, Sinaloa, Mexico. ZOOBANK http://zoobank.org/urn:lsid:zoobank.org:pub:74B93F4F-0E5E-4D69- A7F5-5F423DA3762E ABSTRACT A large number of specimens (2765) of the acorn barnacle Balanus trigonus Darwin, 1854, were observed on the spiny lobster Panulirus gracilis Streets, 1871, in western Mexico, including recently settled cypris (1019 individuals or 37%) and encrusted specimens (1746) of different sizes: <1.99 mm, 88%; 1.99 to 2.82 mm, 8%; >2.82 mm, 4%). Cypris settled predominantly on the carapace (67%), mostly on the gastric area (40%), on the left or right orbital areas (35%), on the head appendages, and on the pereiopods 1–3. Encrusting individuals were mostly small (84%); medium-sized specimens accounted for 11% and large for 5%. On the cephalothorax, most were observed in branchial (661) and orbital areas (240). Only 40–41 individuals were found on gastric and cardiac areas. Some individuals (246), mostly small (95%), were observed on the dorsal portion of somites.
    [Show full text]
  • Redalyc.Occurrence of Panulirus Inflatus (Decapoda: Palinuridae
    Revista de Biología Marina y Oceanografía ISSN: 0717-3326 [email protected] Universidad de Valparaíso Chile Pérez-González, Raúl; Puga, Dagoberto; Valadez, Luis M.; Rodríguez-Domínguez, Guillermo Occurrence of Panulirus inflatus (Decapoda: Palinuridae) pueruli in the southeastern Gulf of California, Mexico Revista de Biología Marina y Oceanografía, vol. 51, núm. 1, abril, 2016, pp. 223-227 Universidad de Valparaíso Viña del Mar, Chile Available in: http://www.redalyc.org/articulo.oa?id=47945599023 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista de Biología Marina y Oceanografía Vol. 51, Nº1: 209-215, abril 2016 DOI 10.4067/S0718-19572016000100023 RESEARCH NOTE Occurrence of Panulirus inflatus (Decapoda: Palinuridae) pueruli in the southeastern Gulf of California, Mexico Presencia de puérulos de Panulirus inflatus (Bouvier, 1895) (Decapoda: Palinuridae) en el sureste del golfo de California, México Raúl Pérez-González1, Dagoberto Puga2, Luis M. Valadez1 and Guillermo Rodríguez-Domínguez1 1Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, C.P. 82000, Apdo. Postal 610, Mazatlán, Sinaloa, México. [email protected] 2Instituto Nacional de Pesca, Centro Regional de Investigación Pesquera de Bahía Banderas, Nayarit. Calle Tortuga No. 1, La Cruz de Huanacaxtle, C.P. 63732, Nayarit, México Abstract.- This study presents results on the collection of Panulirus inflatus pueruli in seaweed (GuSi; set at the surface) and crevice (Booth: set on the bottom) collectors from April to December 1998 in waters of the southeastern Gulf of California, Mexico.
    [Show full text]
  • First Record and Description of Panulirus Pascuensis (Reed, 1954) First Stage Phyllosoma in the Plankton of Rapa Nui
    First record and description of Panulirus pascuensis (Reed, 1954) first stage phyllosoma in the plankton of Rapa Nui By Meerhoff Erika*, Mujica Armando, García Michel, and Nava María Luisa Abstract Among the most striking crustaceans from Rapa Nui Island (27° S, 109°22’ W) is the endemic lobster Panulirus pascuensis, commonly known as the spiny lobster. This species is also present in Pitcairn Island and the Salas y Gomez ridge. The larvae of this species pass through different phyllosoma stages until metamorphosis, in which they molt to puerulus, a transitional stage adapted to benthic life. This species is an important fishery resource for the inhabitants of Rapa Nui. However, there are several gaps in the biological knowledge of this species, including its ontogeny. We sampled zooplankton to obtain first stage P. pascuensis phyllosoma during three oceanographic campaigns around Rapa Nui (April 2015, September 2015 and March 2016), individuals were encountered between the surface and 200 m depth with an abundance of 1.3 indiv/1000 m3. These individuals, along with laboratory hatched phyllosoma, allowed us to describe the morphology of this larval stage. The P. pascuensis stage I phyllosoma were observed in fall, suggesting that the larval development would be synchronized with the productivity cycle in the region of Rapa Nui, where maximum chlorophyll concentration is observed during the austral winter. *Corresponding Author E-mail: [email protected] Pacific Science, vol. 71, no. 2 December 9, 2016 (Early view) Introduction The island of Rapa Nui (also known as Easter Island) is part of the Marine and Coastal Protected Area called Coral Nui Nui, Motu Tautara and Hanga Oteo submarine Parks (Sierralta et al.
    [Show full text]
  • Redalyc.Catch Composition of the Spiny Lobster Panulirus Gracilis (Decapoda: Palinuridae) Off the Western Coast of Mexico
    Latin American Journal of Aquatic Research E-ISSN: 0718-560X [email protected] Pontificia Universidad Católica de Valparaíso Chile Pérez-González, Raúl Catch composition of the spiny lobster Panulirus gracilis (Decapoda: Palinuridae) off the western coast of Mexico Latin American Journal of Aquatic Research, vol. 39, núm. 2, julio, 2011, pp. 225-235 Pontificia Universidad Católica de Valparaíso Valparaiso, Chile Available in: http://www.redalyc.org/articulo.oa?id=175019398004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Lat. Am. J. Aquat. Res., 39(2): 225-235, 2011 Population structure of Panulirus gracilis 225 DOI: 10.3856/vol39-issue2-fulltext-4 Research Article Catch composition of the spiny lobster Panulirus gracilis (Decapoda: Palinuridae) off the western coast of Mexico Raúl Pérez-González Universidad Autónoma de Sinaloa, Facultad de Ciencias del Mar P.O. Box 610, Mazatlán, Sinaloa, México ABSTRACT. The lobster fishery in the Gulf of California and the south-central region of the western coast of Mexico consists of small-scale artisanal activity supported by Panulirus gracilis and P. inflatus, with an annual average catch of 132 ton. The present study analyzes the landing composition of this fishery and the population structure of P. gracilis. Carapace lengths (CL) for this species ranged from 35 to 125 mm, and the most frequent sizes were between 60 and 85 mm. The size distribution was approximately normal. This implies that the fishery is composed of several size classes, with annual recruitment to the fishing areas.
    [Show full text]
  • Growth Patterns and Exploitation Status of the Spiny Lobster Species Palinurus Mauritanicus (Gruvel 1911) in Mauritanian Coasts
    International Journal of Agricultural Policy and Research Vol.7 (2), pp. 17-31, March 2019 Available online at https://www.journalissues.org/IJAPR/ https://doi.org/10.15739/IJAPR.19.003 Copyright © 2019 Author(s) retain the copyright of this article ISSN 2350-1561 Original Research Article Growth patterns and exploitation status of the spiny lobster species Palinurus mauritanicus (Gruvel 1911) in Mauritanian coasts Received 3 January, 2019 Revised 10 February, 2019 Accepted 15 February, 2019 Published 14 March, 2019 Amadou Sow1, In the Mauritanian coasts, fishing effort on Palinurus mauritanicus Bilassé Zongo*2 contributes in the decline of the stock. From February to August 2015, samplings were carried out monthly in order to study the growth patterns and and the stock status to provide further information for sustainable 2 T. Jean André Kabre management and exploitation of the species. A total of 12008 individuals were collected. Total length (Lt) and cephalothoracic length (Lc) were 1Institut Mauritanien des measured with a vernier caliper. The species were separately weighed on a Recherches Océanographiques et digital balance and their sex noted. The collected data were entered on excel des Pêches (IMROP), Mauritanie spreadsheet in order to analyse growth kinetics, exploitation kinetics and 2Université Nazi Boni, LaRFPF, estimate fish mortality using FISAT II software. Male of P. mauritanicus had Burkina Faso an average Lc = 130 mm and an average Lc = 111 mm. The annual length frequency distribution gave respectively 6 and 7 age-groups for females and *Corresponding Author males. Lc-Lt relationship and Lc-Wt relationship showed a minor allometry Email: [email protected] (b < 3 for both).
    [Show full text]
  • Distribution and Abundance of Panulirus Spp
    Bull Mar Sci. 92(2):207–227. 2016 research paper http://dx.doi.org/10.5343/bms.2015.1015 Distribution and abundance of Panulirus spp. phyllosomas off the Mexican Caribbean coast 1 El Colegio de la Frontera Sur Ashanti A Canto-García 1 (ECOSUR–Unidad Chetumal), Jason S Goldstein 2 Departamento de Sistemática 1 * y Ecología Acuática, Av. Eloy Sosa-Cordero Centenario Km 5.5, Chetumal, Laura Carrillo 1 Quintana Roo, Mexico CP 77014. 2 Department of Biological Sciences and School of Marine Sciences and Ocean Engineering, ABSTRACT.—We evaluated the abundance and University of New Hampshire, distribution of Panulirus spp. phyllosomas collected during Durham, New Hampshire 03824. two oceanographic cruises in March 2006 and January * Corresponding author email: 2007 along the Mexican Caribbean coast. In total, 1138 <[email protected]>. phyllosomas were collected in 2006, and 492 were collected in 2007, comprising three families: Palinuridae; Scyllaridae; and Sinaxidae. The most abundant species of Panulirus for both cruises was Panulirus argus (Latreille, 1804). DNA barcoding methods also confirmed the identity of the phyllosomal stages of Panulirus guttatus (Latreille, 1804). The most abundant phyllosomal stages of P. argus in both years were early (I–III) and mid stages (IV–VIII) mostly found near Banco Chinchorro. The least abundant late stages (IX–X) were widely dispersed offshore. During both cruises, >70% of phyllosomal abundance was concentrated in the surface layers (0–50 m). Statistical models indicated that depth, along with year, geographical area, and time of day, were important for early- and mid-stage phyllosoma stages. The distribution and densities of phyllosomas off Quintana Roo differed among years and areas, likely due to varying environmental conditions and mediated by physical processes and the seasonality of reproductive activity of the local and regional spawning stock.
    [Show full text]
  • Cryptic Herbivorous Invertebrates Restructure the Composition of Degraded Coral Reef Communities in the Florida Keys, Florida, USA
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Spring 2019 Cryptic Herbivorous Invertebrates Restructure the Composition of Degraded Coral Reef Communities in the Florida Keys, Florida, USA Angelo Jason Spadaro Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Natural Resources and Conservation Commons Recommended Citation Spadaro, Angelo J.. "Cryptic Herbivorous Invertebrates Restructure the Composition of Degraded Coral Reef Communities in the Florida Keys, Florida, USA" (2019). Doctor of Philosophy (PhD), Dissertation, Biological Sciences, Old Dominion University, DOI: 10.25777/fg35-1j72 https://digitalcommons.odu.edu/biology_etds/86 This Dissertation is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. CRYPTIC HERBIVOROUS INVERTEBRATES RESTRUCTURE THE COMPOSITION OF DEGRADED CORAL REEF COMMUNITIES IN THE FLORIDA KEYS, FLORIDA, USA by Angelo Jason Spadaro B.S. May 2010, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY ECOLOGICAL SCIENCES OLD DOMINION UNIVERSITY May 2019 Approved by: Mark J Butler, IV (Director) Eric Walters (Member) Dan Barshis (Member) Seabird McKeon (Member) ABSTRACT CRYPTC HERBIVOROUS INVERTEBRATES RESTRUCTURE THE COMPOSITION OF DEGRADED CORAL REEF COMMUNITIES IN THE FLORIDA KEYS, FLORIDA, USA Angelo Jason Spadaro Old Dominion University, 2019 Director: Dr.
    [Show full text]
  • Evolutionary Transformations of the Reproductive System in Eubrachyura (Crustacea: Decapoda)
    EVOLUTIONARY TRANSFORMATIONS OF THE REPRODUCTIVE SYSTEM IN EUBRACHYURA (CRUSTACEA: DECAPODA) DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) eingereicht an der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin von M. Sc. Katja, Kienbaum, geb. Jaszkowiak Präsidentin der Humboldt-Universität zu Berlin Prof. Dr.-Ing. Dr. Sabine Kunst Dekan der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin Prof. Dr. Bernhard Grimm Gutachter 1. Prof. Dr. Gerhard Scholtz 2. PD Dr. Thomas Stach 3. PD Dr. Christian Wirkner Tag der mündlichen Prüfung: 03.05.2019 CONTENT C ONTENT A BSTRACT v i - vii Z USAMMENFASSUNG viii - x 1 | INTRODUCTION 1 - 11 1.1 | THE BRACHYURA 1 1.1.1 | OBJECT OF INVESTIGATION 1 - 5 1.1.2 | WHAT WE (DO NOT) KNOW ABOUT THE PHYLOGENY OF EUBRACHURA 6 - 10 1. 2 |MS AI 10 - 11 2 | THE MORPHOLOGY OF THE MALE AND FEMALE REPRODUCTIVE SYSTEM IN TWO 12 - 34 SPECIES OF SPIDER CRABS (DECAPODA: BRACHYURA: MAJOIDEA) AND THE ISSUE OF THE VELUM IN MAJOID REPRODUCTION. 2.1 | INTRODUCTION 13 - 14 2.2 | MATERIAL AND METHODS 14 - 16 2.3 | RESULTS 16 - 23 2.4 | DISCUSSION 24 - 34 3 | THE MORPHOLOGY OF THE REPRODUCTIVE SYSTEM IN THE CRAB 35 - 51 PERCNON GIBBESI (DECAPODA: BRACHYURA: GRAPSOIDEA) REVEALS A NEW COMBINATION OF CHARACTERS. 3.1 | INTRODUCTION 36 - 37 3.2 | MATERIAL AND METHODS 37 - 38 3.3 | RESULTS 39 - 46 3.4 | DISCUSSION 46 - 51 4 | THE REPRODUCTIVE SYSTEM OF LIMNOPILOS NAIYANETRI INDICATES A 52 - 64 THORACOTREME AFFILIATION OF HYMENOSOMATIDAE (DECAPODA, EUBRACHYURA).
    [Show full text]