Balanus Trigonus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Final Master Document Draft EFH EIS Gulf
Final Environmental Impact Statement for the Generic Essential Fish Habitat Amendment to the following fishery management plans of the Gulf of Mexico (GOM): SHRIMP FISHERY OF THE GULF OF MEXICO RED DRUM FISHERY OF THE GULF OF MEXICO REEF FISH FISHERY OF THE GULF OF MEXICO STONE CRAB FISHERY OF THE GULF OF MEXICO CORAL AND CORAL REEF FISHERY OF THE GULF OF MEXICO SPINY LOBSTER FISHERY OF THE GULF OF MEXICO AND SOUTH ATLANTIC COASTAL MIGRATORY PELAGIC RESOURCES OF THE GULF OF MEXICO AND SOUTH ATLANTIC VOLUME 1: TEXT March 2004 Gulf of Mexico Fishery Management Council The Commons at Rivergate 3018 U.S. Highway 301 North, Suite 1000 Tampa, Florida 33619-2266 Tel: 813-228-2815 (toll-free 888-833-1844), FAX: 813-225-7015 E-mail: [email protected] This is a publication of the Gulf of Mexico Fishery Management Council pursuant to National Oceanic and Atmospheric Administration Award No. NA17FC1052. COVER SHEET Environmental Impact Statement for the Generic Essential Fish Habitat Amendment to the fishery management plans of the Gulf of Mexico Draft () Final (X) Type of Action: Administrative (x) Legislative ( ) Area of Potential Impact: Areas of tidally influenced waters and substrates of the Gulf of Mexico and its estuaries in Texas, Louisiana, Mississippi, Alabama, and Florida extending out to the limit of the U.S. Exclusive Economic Zone (EEZ) Agency: HQ Contact: Region Contacts: U.S. Department of Commerce Steve Kokkinakis David Dale NOAA Fisheries NOAA-Strategic Planning (N/SP) (727)570-5317 Southeast Region Building SSMC3, Rm. 15532 David Keys 9721 Executive Center Dr. -
Shrimp Fishing in Mexico
235 Shrimp fishing in Mexico Based on the work of D. Aguilar and J. Grande-Vidal AN OVERVIEW Mexico has coastlines of 8 475 km along the Pacific and 3 294 km along the Atlantic Oceans. Shrimp fishing in Mexico takes place in the Pacific, Gulf of Mexico and Caribbean, both by artisanal and industrial fleets. A large number of small fishing vessels use many types of gear to catch shrimp. The larger offshore shrimp vessels, numbering about 2 212, trawl using either two nets (Pacific side) or four nets (Atlantic). In 2003, shrimp production in Mexico of 123 905 tonnes came from three sources: 21.26 percent from artisanal fisheries, 28.41 percent from industrial fisheries and 50.33 percent from aquaculture activities. Shrimp is the most important fishery commodity produced in Mexico in terms of value, exports and employment. Catches of Mexican Pacific shrimp appear to have reached their maximum. There is general recognition that overcapacity is a problem in the various shrimp fleets. DEVELOPMENT AND STRUCTURE Although trawling for shrimp started in the late 1920s, shrimp has been captured in inshore areas since pre-Columbian times. Magallón-Barajas (1987) describes the lagoon shrimp fishery, developed in the pre-Hispanic era by natives of the southeastern Gulf of California, which used barriers built with mangrove sticks across the channels and mouths of estuaries and lagoons. The National Fisheries Institute (INP, 2000) and Magallón-Barajas (1987) reviewed the history of shrimp fishing on the Pacific coast of Mexico. It began in 1921 at Guaymas with two United States boats. -
Lobsters-Identification, World Distribution, and U.S. Trade
Lobsters-Identification, World Distribution, and U.S. Trade AUSTIN B. WILLIAMS Introduction tons to pounds to conform with US. tinents and islands, shoal platforms, and fishery statistics). This total includes certain seamounts (Fig. 1 and 2). More Lobsters are valued throughout the clawed lobsters, spiny and flat lobsters, over, the world distribution of these world as prime seafood items wherever and squat lobsters or langostinos (Tables animals can also be divided rougWy into they are caught, sold, or consumed. 1 and 2). temperate, subtropical, and tropical Basically, three kinds are marketed for Fisheries for these animals are de temperature zones. From such partition food, the clawed lobsters (superfamily cidedly concentrated in certain areas of ing, the following facts regarding lob Nephropoidea), the squat lobsters the world because of species distribu ster fisheries emerge. (family Galatheidae), and the spiny or tion, and this can be recognized by Clawed lobster fisheries (superfamily nonclawed lobsters (superfamily noting regional and species catches. The Nephropoidea) are concentrated in the Palinuroidea) . Food and Agriculture Organization of temperate North Atlantic region, al The US. market in clawed lobsters is the United Nations (FAO) has divided though there is minor fishing for them dominated by whole living American the world into 27 major fishing areas for in cooler waters at the edge of the con lobsters, Homarus americanus, caught the purpose of reporting fishery statis tinental platform in the Gul f of Mexico, off the northeastern United States and tics. Nineteen of these are marine fish Caribbean Sea (Roe, 1966), western southeastern Canada, but certain ing areas, but lobster distribution is South Atlantic along the coast of Brazil, smaller species of clawed lobsters from restricted to only 14 of them, i.e. -
Factors Affecting Growth of the Spiny Lobsters Panulirus Gracilis and Panulirus Inflatus (Decapoda: Palinuridae) in Guerrero, México
Rev. Biol. Trop. 51(1): 165-174, 2003 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Factors affecting growth of the spiny lobsters Panulirus gracilis and Panulirus inflatus (Decapoda: Palinuridae) in Guerrero, México Patricia Briones-Fourzán and Enrique Lozano-Álvarez Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Puerto Morelos. P. O. Box 1152, Cancún, Q. R. 77500 México. Fax: +52 (998) 871-0138; [email protected] Received 00-XX-2002. Corrected 00-XX-2002. Accepted 00-XX-2002. Abstract: The effects of sex, injuries, season and site on the growth of the spiny lobsters Panulirus gracilis, and P. inflatus, were studied through mark-recapture techniques in two sites with different ecological characteristics on the coast of Guerrero, México. Panulirus gracilis occurred in both sites, whereas P. inflatus occurred only in one site. All recaptured individuals were adults. Both species had similar intermolt periods, but P. gracilis had significantly higher growth rates (mm carapace length week-1) than P. inflatus as a result of a larger molt incre- ment. Growth rates of males were higher than those of females in both species owing to larger molt increments and shorter intermolt periods in males. Injuries had no effect on growth rates in either species. Individuals of P. gracilis grew faster in site 1 than in site 2. Therefore, the effect of season on growth of P. gracilis was analyzed separately in each site. In site 2, growth rates of P. gracilis were similar in summer and in winter, whereas in site 1 both species had higher growth rates in winter than in summer. -
Decapod Crustacean Grooming: Functional Morphology, Adaptive Value, and Phylogenetic Significance
Decapod crustacean grooming: Functional morphology, adaptive value, and phylogenetic significance N RAYMOND T.BAUER Center for Crustacean Research, University of Southwestern Louisiana, USA ABSTRACT Grooming behavior is well developed in many decapod crustaceans. Antennular grooming by the third maxillipedes is found throughout the Decapoda. Gill cleaning mechanisms are qaite variable: chelipede brushes, setiferous epipods, epipod-setobranch systems. However, microstructure of gill cleaning setae, which are equipped with digitate scale setules, is quite conservative. General body grooming, performed by serrate setal brushes on chelipedes and/or posterior pereiopods, is best developed in decapods at a natant grade of body morphology. Brachyuran crabs exhibit less body grooming and virtually no specialized body grooming structures. It is hypothesized that the fouling pressures for body grooming are more severe in natant than in replant decapods. Epizoic fouling, particularly microbial fouling, and sediment fouling have been shown r I m ans of amputation experiments to produce severe effects on olfactory hairs, gills, and i.icubated embryos within short lime periods. Grooming has been strongly suggested as an important factor in the coevolution of a rhizocephalan parasite and its anomuran host. The behavioral organization of grooming is poorly studied; the nature of stimuli promoting grooming is not understood. Grooming characters may contribute to an understanding of certain aspects of decapod phylogeny. The occurrence of specialized antennal grooming brushes in the Stenopodidea, Caridea, and Dendrobranchiata is probably not due to convergence; alternative hypotheses are proposed to explain the distribution of this grooming character. Gill cleaning and general body grooming characters support a thalassinidean origin of the Anomura; the hypothesis of brachyuran monophyly is supported by the conservative and unique gill-cleaning method of the group. -
Marine Stewardship Council Pre-Assessment
10051 5th Street N., Suite 105 St. Petersburg, Florida 33702-2211 Tel: (727) 563-9070 Fax: (727) 563-0207 Em ail: MRAG.Americas@m ragam ericas.com President: Andrew A. Rosenberg, Ph.D. Pre-Assessment of the Louisiana Shrimp Fishery Prepared for Louisiana Department of Wildlife and Fisheries Prepared by MRAG Americas, Inc. Robert J. Trumble January 2016 Table of Contents 1. Introduction .................................................................................................................... 2 1.1. Aims/scope of pre-assessment ............................................................................ 2 1.2 Constraints to the pre-assessment of the fishery ................................................. 3 1.3. Unit(s) of Assessment ......................................................................................... 3 1.4 Total Allowable Catch (TAC) and Catch Data ...................................................... 3 2. Description of the fishery ................................................................................................ 4 2.1. Scope of the fishery in relation to the MSC programme ....................................... 4 2.2. Overview of the fishery ........................................................................................ 4 2.3. Principle One: Target species background .......................................................... 4 2.4. Principle Two: Ecosystem background ................................................................ 5 2.5. Principle Three: Management system background -
Appendix 1 Table A1
OIK-00806 Kordas, R. L., Dudgeon, S., Storey, S., and Harley, C. D. G. 2014. Intertidal community responses to field-based experimental warming. – Oikos doi: 10.1111/oik.00806 Appendix 1 Table A1. Thermal information for invertebrate species observed on Salt Spring Island, BC. Species name refers to the species identified in Salt Spring plots. If thermal information was unavailable for that species, information for a congeneric from same region is provided (species in parentheses). Response types were defined as; optimum - the temperature where a functional trait is maximized; critical - the mean temperature at which individuals lose some essential function (e.g. growth); lethal - temperature where a predefined percentage of individuals die after a fixed duration of exposure (e.g., LT50). Population refers to the location where individuals were collected for temperature experiments in the referenced study. Distribution and zonation information retrieved from (Invertebrates of the Salish Sea, EOL) or reference listed in entry below. Other abbreviations are: n/g - not given in paper, n/d - no data for this species (or congeneric from the same geographic region). Invertebrate species Response Type Temp. Medium Exposure Population Zone NE Pacific Distribution Reference (°C) time Amphipods n/d for NE low- many spp. worldwide (Gammaridea) Pacific spp high Balanus glandula max HSP critical 33 air 8.5 hrs Charleston, OR high N. Baja – Aleutian Is, Berger and Emlet 2007 production AK survival lethal 44 air 3 hrs Vancouver, BC Liao & Harley unpub Chthamalus dalli cirri beating optimum 28 water 1hr/ 5°C Puget Sound, WA high S. CA – S. Alaska Southward and Southward 1967 cirri beating lethal 35 water 1hr/ 5°C survival lethal 46 air 3 hrs Vancouver, BC Liao & Harley unpub Emplectonema gracile n/d low- Chile – Aleutian Islands, mid AK Littorina plena n/d high Baja – S. -
Recreational Boating As a Major Vector of Spread of Nonindigenous Species Around the Mediterranean Aylin Ulman
Recreational boating as a major vector of spread of nonindigenous species around the Mediterranean Aylin Ulman To cite this version: Aylin Ulman. Recreational boating as a major vector of spread of nonindigenous species around the Mediterranean. Ecosystems. Sorbonne Université, 2018. English. NNT : 2018SORUS222. tel- 02483397 HAL Id: tel-02483397 https://tel.archives-ouvertes.fr/tel-02483397 Submitted on 18 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Université Università di Pavia Ecole doctorale CNRS, Laboratoire d'Ecogeochimie des Environments Benthiques, LECOB, F-66650 Banyuls-sur-Mer, France Recreational boating as a major vector of spread of non- indigenous species around the Mediterranean La navigation de plaisance, vecteur majeur de la propagation d’espèces non-indigènes autour des marinas Méditerranéenne Par Aylin Ulman Thèse de doctorat de Philosophie Dirigée par Agnese Marchini et Jean-Marc Guarini Présentée et soutenue publiquement le 6 Avril, 2018 Devant un jury composé de : Anna Occhipinti (President, University -
Does the Acorn Barnacle Balanus Glandula Exhibit Predictable Gradients in Metabolic Performance Across the Intertidal Zone?
Warren J. Baker Endowment for Excellence in Project-Based Learning Robert D. Koob Endowment for Student Success FINAL REPORT Final reports will be published on the Cal Poly Digital Commons website(http://digitalcommons.calpoly.edu). I. Project Title Does the acorn barnacle Balanus glandula exhibit predictable gradients in metabolic performance across the intertidal zone? II. Project Completion Date 2/2019 III. Student(s), Department(s), and Major(s) (1) Kali Horn, Biological Sciences Department, M.S. Biological Sciences IV. Faculty Advisor and Department Kristin Hardy, Biological Sciences Department V. Cooperating Industry, Agency, Non-Profit, or University Organization(s) NA VI. Executive Summary Using funding from the Baker-Koob endowment, I successfully completed an experiment looking at metabolic variation in the common acorn barnacle, Balanus glandula, across tidal heights. We characterized the temperature profile across the zone as well to have data explicitly describing the abiotic variability from the upper intertidal zone to the low. Myself and many undergraduates collected barnacles from the top middle and bottom of the B.glandula distribution and ran the individuals through a suite of experiments to characterize the ‘metabolic phenotype’ . We defined the metabolic phenotype with a comprehensive suite of biochemical (e.g., citrate synthase and lactate dehydrogenase activity), physiological (VO2, aerobic scope) and behavioral (feeding rate) indices of metabolism. After removal from the intertidal zone, barnacles were placed in our intermittent respirometry system to calculate an average oxygen consumption rate over a 24h period. During the first two hours of the experiment, I conducted a behavioral observation to determine overall activity and feeding rate. -
10620150100042Co*
CONSEJO NACIONAL DE INVESTIGACIONES CIENTIFICAS Y TECNICAS MINISTERIO DE CIENCIA, TECNOLOGIA E INNOVACION PRODUCTIVA Memoria 2014 CONVOCATORIA: Memoria 2014 SIGLA: CENPAT CENTRO NAC.PATAGONICO (I) DIRECTOR: GONZÁLEZ-JOSÉ, ROLANDO *10620150100042CO* 10620150100042CO 2014 MINISTERIO DE CIENCIA, TECNOLOGÍA E INNOVACIÓN PRODUCTIVA CONSEJO NACIONAL DE INVESTIGACIONES CIENTIFICAS Y TECNICAS MEMORIA UNIDADES EJECUTORAS 1. IDENTIFICACION DE LA UNIDAD EJECUTORA - VERIFICAR: Estos serán los datos donde se envien las comunicaciones formales 1.1 Datos Básicos (Instituto, Centro Cientro Científico Tecnológico o Programa o Laboratorio) Sigla Centro Nacional Patagónico CENPAT Domicilio Registrado / Rectificado Calle Bv. Almirante Brown 2915 Cód.Postal: U9120ACD Localidad: Puerto Madryn Provincia: Chubut Teléfonos: 54 02804 4883184 Fax: 54 0280 4883543 Correo Electrónico: [email protected] Web: www.cenpat-conicet.gob.ar Domicilio Rectificado Calle Cód.Postal: Localidad: Provincia: Teléfonos: Fax: Correo Electrónico: Web: DIRECTOR: Apellido/s Nombre/s Gonzalez-José Rolando Documento Inscripción AFIP DNI Nº 23.600.840 CUIL 20-23600840-2 Correo Electrónico: [email protected] Dans, Silvana Laura VICE-DIRECTOR (Apellido y Nombre): ç Gran Area de Conocimiento Código Otras Areas SI Cs. Agrarias, de la Ingeniería y de Materiales KA SI Cs. Biológicas y de la Salud KB SI Servicios SI Cs. Exactas y Naturales KE NO Centros Cientíco Tecnológico SI Cs. Sociales y Humanidades KS SI Tecnología KT 1.2 Dependencia Institucional Tipo de relación -
Supplementary Materials for Tsunami-Driven Megarafting
Supplementary Materials for Commented [ams1]: Please use SM template provided Tsunami-Driven Megarafting: Transoceanic Species Dispersal and Implications for Marine Biogeography James T. Carlton, John W. Chapman, Jonathan A. Geller, Jessica A. Miller, Deborah A. Carlton, Megan I. McCuller, Nancy C. Treneman, Brian Steves, Gregory M. Ruiz correspondence to: [email protected] This file includes: Materials and Methods Figs. S1 to S8 Tables S1 to S6 1 Material and Methods Sample Acquisition and Processing Following the arrival in June 2012 of a large fishing dock from Misawa and of several Japanese vessels and buoys along the Oregon and Washington coasts (table S1), we established an extensive contact network of local, state, provincial, and federal officials, private citizens, and Commented [ams2]: Can you provide more details, i.e. in what formal sense was this a ‘network’ with nodes and links, rather than a list of contacts? environmental (particularly "coastal cleanup") groups, in Alaska, British Columbia, Washington, Oregon, California, and Hawaii. Between 2012 and 2017 this network grew to hundreds of individuals, many with scientific if not specifically biological training. We advised our contacts that we were interested in acquiring samples of organisms (alive or dead) attached to suspected Japanese Tsunami Marine Debris (JTMD), or to obtain the objects themselves (numerous samples and some objects were received that were North American in origin, or that we interpreted as likely discards from ships-at-sea). We provided detailed directions to searchers and collectors relative to Commented [ams3]: Did you deploy a standard form/protocol for your contacts to use? Can it be included in the SM if so? sample photography, collection, labeling, preservation, and shipping, including real-time communication while investigators were on site. -
BIOLOGICAL FEATURES on EPIBIOSIS of Amphibalanus Improvisus (CIRRIPEDIA) on Macrobrachium Acanthurus (DECAPODA)*
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Cadernos Espinosanos (E-Journal) BRAZILIAN JOURNAL OF OCEANOGRAPHY, 58(special issue IV SBO):15-22, 2010 BIOLOGICAL FEATURES ON EPIBIOSIS OF Amphibalanus improvisus (CIRRIPEDIA) ON Macrobrachium acanthurus (DECAPODA)* Cristiane Maria Rocha Farrapeira¹** and Tereza Cristina dos Santos Calado² 1Universidade Federal Rural de Pernambuco – UFRPE Departamento de Biologia (Rua Dom Manoel de Medeiros, s/nº, 52-171-900 Recife, PE, Brasil) 2Universidade Federal de Alagoas – UFAL Laboratório Integrado de Ciências do Mar e Naturais (Rua Aristeu de Andrade, 452, 57051-090 Maceió, AL, Brasil) **[email protected] A B S T R A C T This study aimed to describe the epibiosis of barnacles Amphibalanus improvisus on eight adult Macrobrachium acanthurus males from the Mundaú Lagoon, state of Alagoas, Brazil. The number of epibiont barnacles varied from 247 to 1,544 specimens per prawn; these were distributed predominantly on the cephalothorax and pereiopods, but also on the abdomen and other appendices. Although some were already reproducing, most barnacles had been recruited recently or were still sexually immature; this suggests recent host arrival in that estuarine environment. Despite the fact that other barnacles occur in this region, A. improvisus is the only species reported as an epibiont on Macrobrachium acanthurus; this was also the first record of epibiosis on this host . The occurrence of innumerable specimens in the pereiopods' articulations and the almost complete covering of the carapace of some prawns (which also increased their weight) suggest that A. improvisus is adapted to fixate this kind of biogenic substrate and that the relationship between the two species biologically damages the basibiont.