Genus Vigna Subgenus Ceratotropis Genetic Resources the Asian Vigna: Genus Vigna Subgenus Ceratotropis Genetic Resources

Total Page:16

File Type:pdf, Size:1020Kb

Genus Vigna Subgenus Ceratotropis Genetic Resources the Asian Vigna: Genus Vigna Subgenus Ceratotropis Genetic Resources The Asian Vigna: Genus Vigna subgenus Ceratotropis genetic resources The Asian Vigna: Genus Vigna subgenus Ceratotropis genetic resources by Norihiko Tomooka Narional lnstitute of Agrobiofogical Sciences, Tsukuba. lapan Duncan A. Vaughan NatÎOllallnstitule of Agrobiological Sciences, Tsukuba. Japan. Helen Moss West Vancouver, Brirish Columbia, Canada and Nigel Maxted University of Birmingham. Birmingham, United Kingdolll ....., SPRINGER SCIENCE+BUSINESS MEDIA, B.V. A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-94-010-3934-5 ISBN 978-94-010-0314-8 (eBook) DOI 10.1007/978-94-010-0314-8 Printed on acid-free paper AII Rights Reserved © 2002 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2002 Softcover reprint of the hardcover 18t edition 2002 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording Of otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. National Institute of Agrobiological Sciences (NIAS) The contribution of the National Institute of Agrobiological Resources (NIAS), Japan, towards the costs of publishing this book is acknowledged. NIAS is an independent administrative institution supervised and financially supported by the Ministry of Agriculture, Forestry and Fisheries (MAFF), Japan. NIAS was established in 2001 to conduct basic Life Science research on insects, animals and plants strategically and intensively in order to produce pioneering results. NIAS aims at accelerating genome research and its use for plants (especially rice) and animals (insects and domestic animals) as a leading research institute. Among the several research thrusts of NIAS is to conduct fundamental and technological research on development and use of biological resources in agriculture. I PGRI International Plant Genetic Resources Institute (IPGRI) The contribution of the International Plant Genetic Resources Institute (IPGRI) through the subregional network EA-PGR (EXPAND) to some of the studies that contributed to this publication is acknowledged. IPGRI is an autonomous international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRI's mandate is to advance the conservation and use of genetic diversity for the well-being of present and future generations. IPGRI's headquarters is based in Rome, Italy, with offices in another 19 countries worldwide. It operates through three programmes: (1) the Plant Genetic Resources Programme, (2) the CGIAR Genetic Resources Support Programme, and (3) the International Network for the Improvement of Banana and Plantain (INIBAP). Vll CONTENTS 1. INTRODUCTION ................................................................................................................. 1 1. VIGNA SUBGENUS CERATOTROPIS IN CONTEXT ..................................................... 1 2. SCOPE AND AIMS OF THE BOOK ............................................................................... 6 3. TAXA ABBREVIATIONS ................................................................................................ 7 2. BIOSYSTEMATIC BACKGROUND .................................................................................. 9 1. BASIC STRUCTURE OF SUBGENUS CERATOTROPIS PLANTS ............................. 9 2. TAXONOMIC HISTORY OF VIGNA SUBGENUS CERATOTROPIS ........................... 9 2.1. Family Leguminosae (Fabaceae) ........................................................................ 9 2.2. Genus Vigna Savi ..................................................................................................... 13 2.3. Subgenus Ceratotropis (Piper) Verdcourt: the Asian Vigna .................................... 17 2.3.1. Key morphological characteristics of the Asian Vigna .................................. 17 2.3.2. Species relationships in the subgenus Ceratotropis ....................................... 21 3. TAXONOMIC KEY TO TAXA IN SUBGENUS CERATOTROPIS .............................. 26 3. GENETIC RESOURCES .................................................................................................... 29 1. CONSERVED GERMPLASM ........................................................................................ 29 1.1. Ex situ conservation ................................................................................................. 29 1.2. In situ conservation .................................................................................................. 29 1.2.1. Asian Vigna in protected areas ....................................................................... 33 1.2.2. Species "hot spots" for in situ conservation ................................................... 36 1.2.3. Population types for in situ conservation ....................................................... 38 2. CONSERVATION PRACTICES ..................................................................................... 41 2.1. Collection ................................................................................................................ 41 2.2. Characterization ....................................................................................................... 44 2.2.1. Germination and cultural practices ................................................................ 44 2.2.2. DNA extraction from Vigna for molecular characterization .......................... 47 2.3. Evaluation ................................................................................................................ 49 2.3.1. Evaluation for resistance to microorganisms ................................................. 49 2.3.2. Evaluation for resistance to insects ................................................................ 52 2.4. Use ........................................................................................................................... 54 4. SPECIES CONSPECTUS .................................................................................................. 57 1. DATA COLLECTION ..................................................................................................... 57 2. CONSPECTUS ................................................................................................................ 59 2.1. Section Angulares N. Tomooka & Maxted .............................................................. 59 2.1.1. Vigna angularis (Willd.) Ohwi & Ohashi .................................................... 59 Vlll 2.1.2. Vigna dalzelliana (0. Kuntze)Verdcourt ...................................................... 65 2.1.3. Vigna exilis Tateishi & Maxted .................................................................... 68 2.1.4. Vigna hirtella Ridley .................................................................................... 72 2.1.5. Vigna minima (Roxb.) Ohwi & Ohashi ........................................................ 76 2.1.6. Vigna nakashimae (Ohwi) Ohwi & Ohashi ................................................. 80 2.1.7. Vigna nepalensis Tateishi & Maxted ............................................................ 84 2.1.8. Vigna rejlexo-pilosa Hayata ......................................................................... 88 2.1.9. Vigna riukiuensis (Ohwi) Ohwi & Ohashi ................................................... 93 2.1.10. Vigna tenuicaulis N. Tomooka & Maxted .................................................... 97 2.1.11. Vigna trinervia (Heyne ex Wall.) Tateishi & Maxted ................................ 101 2.1.12. Vigna umbellata (Thunb.) Ohwi & Ohashi ................................................ 108 2.2. Section Ceratotropis N. Tomooka & Maxted ........................................................ 113 2.2.1. Vigna grandiflora (Prain) Tateishi & Maxted ............................................ 113 2.2.2. Vigna mungo (L.) Hepper ........................................................................... 117 2.2.3. Vigna radiata (L.) Wilczek ........................................................................ 121 2.2.4. Vigna subramaniana (Babu ex Raizada) M. Sharma ................................. 127 2.3. Section Aconitifoliae N. Tomooka & Maxted ....................................................... 131 2.3.1. Vigna aconitifolia (Jacq.) Marechal ........................................................... 131 2.3.2. Vigna aridicola N. Tomooka & Maxted ..................................................... 135 2.3.3. Vigna khandalensis (Santapau) Raghavan & Wadhwa .............................. 139 2.3.4. Vigna stipu/acea Kuntze ............................................................................ 142 2.3.5. Vigna trilobata (L.) Verdcourt .................................................................... 146 PLATES 1-12 ........................................................................................................................ 150 5. ECO-GEOGRAPHIC ANALYSIS .................................................................................... 165 I. ECOLOGy .................................................................................................................... 166 1.1. Altitude .................................................................................................................
Recommended publications
  • V. Trilobata (L.) Verdc
    Genet Resour Crop Evol (2019) 66:1155–1165 https://doi.org/10.1007/s10722-019-00767-9 (0123456789().,-volV)( 0123456789().,-volV) NOTES ON NEGLECTED & UNDERUTILIZED CROPS Delineating taxonomic identity of two closely related Vigna species of section Aconitifoliae: V. trilobata (L.) Verdc. and V. stipulacea (Lam.) Kuntz in India Padmavati G. Gore . Kuldeep Tripathi . Aditya Pratap . Kangila V. Bhat . Suraj D. Umdale . Veena Gupta . Anjula Pandey Received: 18 December 2018 / Accepted: 18 March 2019 / Published online: 27 March 2019 Ó Springer Nature B.V. 2019 Abstract Vigna trilobata (L.) Verdc. and V. stipu- Keywords Comparative characters Á Morphology Á lacea (L.) Kuntz. of section Aconitifoliae were studied Taxonomic delineation Á Vigna trilobata Á based on morphological characters to address taxo- V. stipulacea nomic delineation. We have attempted to resolve the identities of these two species by studying a represen- tative set of collections (125 accessions) across diverse eco-geographical zones of India. Agro-mor- Introduction phological traits were recorded for 47 descriptor states to differentiate the two species. Remarks on some Food legume production is challenged by a number of additional characters not reported in earlier studies biotic and abiotic stresses and edaphic factors (Ojiewo were highlighted with an aim to facilitate field et al. 2017; Umdale et al. 2018; Tripathi et al. 2013). identification of these taxa and use in their genetic This is leading to search for newer sources of nutrition resource management. Key diagnostic characters to meet the protein malnutrition. Some wild under- essential for delineating identities of these two species exploited or underutilised vignas have been reported were presented.
    [Show full text]
  • Download Download
    Journal ofThreatened JoTT TaxaBuilding evidence for conservation globally 10.11609/jott.2020.12.10.16195-16406 www.threatenedtaxa.org 26 July 2020 (Online & Print) Vol. 12 | No. 10 | Pages: 16195–16406 ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) PLATINUM OPEN ACCESS Dedicated to Dr. P. Lakshminarasimhan ISSN 0974-7907 (Online); ISSN 0974-7893 (Print) Publisher Host Wildlife Information Liaison Development Society Zoo Outreach Organization www.wild.zooreach.org www.zooreach.org No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road, Saravanampatti, Coimbatore, Tamil Nadu 641035, India Ph: +91 9385339863 | www.threatenedtaxa.org Email: [email protected] EDITORS English Editors Mrs. Mira Bhojwani, Pune, India Founder & Chief Editor Dr. Fred Pluthero, Toronto, Canada Dr. Sanjay Molur Mr. P. Ilangovan, Chennai, India Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), 12 Thiruvannamalai Nagar, Saravanampatti, Coimbatore, Tamil Nadu 641035, Web Development India Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India Deputy Chief Editor Typesetting Dr. Neelesh Dahanukar Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India Mr. Arul Jagadish, ZOO, Coimbatore, India Mrs. Radhika, ZOO, Coimbatore, India Managing Editor Mrs. Geetha, ZOO, Coimbatore India Mr. B. Ravichandran, WILD/ZOO, Coimbatore, India Mr. Ravindran, ZOO, Coimbatore India Associate Editors Fundraising/Communications Dr. B.A. Daniel, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Mrs. Payal B. Molur, Coimbatore, India Dr. Mandar Paingankar, Department of Zoology, Government Science College Gadchiroli, Chamorshi Road, Gadchiroli, Maharashtra 442605, India Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA Editors/Reviewers Ms. Priyanka Iyer, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Subject Editors 2016–2018 Fungi Editorial Board Ms.
    [Show full text]
  • Legumes of Forage Value: Their Diversity and Priority for Collection in India
    University of Kentucky UKnowledge International Grassland Congress Proceedings XXIII International Grassland Congress Legumes of Forage Value: Their Diversity and Priority for Collection in India E. Roshini Nayar National Bureau of Plant Genetic Resources, India Anjula Panndey National Bureau of Plant Genetic Resources, India K. Pradheep National Bureau of Plant Genetic Resources, India Rita Gupta National Bureau of Plant Genetic Resources, India Follow this and additional works at: https://uknowledge.uky.edu/igc Part of the Plant Sciences Commons, and the Soil Science Commons This document is available at https://uknowledge.uky.edu/igc/23/4-1-1/15 The XXIII International Grassland Congress (Sustainable use of Grassland Resources for Forage Production, Biodiversity and Environmental Protection) took place in New Delhi, India from November 20 through November 24, 2015. Proceedings Editors: M. M. Roy, D. R. Malaviya, V. K. Yadav, Tejveer Singh, R. P. Sah, D. Vijay, and A. Radhakrishna Published by Range Management Society of India This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Paper ID: 881 Theme 4. Biodiversity, conservation and genetic improvement of range and forage species Sub-theme 4.1. Plant genetic resources and crop improvement Legumes of forage value: their diversity and priority for collection in India E. Roshini Nayar, Anjula Pandey, K. Pradheep, Rita Gupta National Bureau of Plant Genetic Resources, New Delhi, India Corresponding author e-mail: [email protected] Keywords: Crops, Herbarium, Identification, Introduced, Legumes, Introduction Indian subcontinent is a megacentre of agro-diversity.
    [Show full text]
  • Revisiting the Status of Cultivated Plant Species Agrobiodiversity in India: an Overview ANURUDH K SINGH* 2924, Sector-23, Gurgaon, Haryana, India 122 017
    Proc Indian Natn Sci Acad 83 No. 1 March 2017 pp. 151-174 Printed in India. DOI: 10.16943/ptinsa/2016/v82/48406 Review Article Revisiting the Status of Cultivated Plant Species Agrobiodiversity in India: An Overview ANURUDH K SINGH* 2924, Sector-23, Gurgaon, Haryana, India 122 017 (Received on 14 March 2016; Revised on 20 May 2016; Accepted on 16 June 2016) A revisit to the literature on cultivated plant species agrobiodiversity in India revealed that the floristic diversity is represented by 17,926 species of angiosperm, while Indian agriculture cultivates 811 plant species and harbours more than 900 wild relatives of the cultivated plant species distributed over 10 (+ 1) biogeographic regions of the the country, significantly higher than commonly cited in the literature. Further, it revealed the role of Indian communities in domestication to cultivation of around 215 economically important plant species, and adaption of around 600 exotic crop species. Based on new evidence, several species require inclusion and others deletion, and many need further investigations to resolve the issue on country of their origin. Cultivation of crop species in diverse natural and man-made agroecological systems for centuries has generated a huge amount of genetic diversity in a large number of crop species, maintained by the farmers in the form of landraces or farmer’s varieties, and conserved as collections/accessions in the national agricultural research system. Keywords: Agrobiodiversity; Domestication; Cultivation; Genetic Diversity; Wild Relatives
    [Show full text]
  • Medicinal Species of Fabaceae Occurring in Bangladesh and Their
    Journal of Medicinal Plants Studies 2019; 7(4): 189-195 ISSN (E): 2320-3862 ISSN (P): 2394-0530 Medicinal species of Fabaceae occurring in NAAS Rating: 3.53 JMPS 2019; 7(4): 189-195 Bangladesh and their conservation status © 2019 JMPS Received: 13-05-2019 Accepted: 16-06-2019 Ishrath Jahan, MA Rahman and MA Hossain Ishrath Jahan Department of Botany, Abstract University of Chittagong, Research work has been carried out to assess the number of total medicinal species of Fabaceae and Chittagong-4331, Bangladesh evaluate their status in the flora of Bangladesh. The family has revealed significant richness with 169 (i.e. 67%) medicinal species under 61 genera among 254 total species under 69 genera. A total of 62 MA Rahman Department of Botany, medicinal species are assessed to be threatened under different categories set by International Union for University of Chittagong, Conservation of Nature and Natural Resources (IUCN) due to environmental degradation, over Chittagong-4331, Bangladesh exploitation and depletion of ecosystem diversity. Among them, 33 endangered, 7 critically endangered, 6 vulnerable and 16 rare. Out of 169 medicinal species of the family Fabaceae, 25 genera are represented MA Hossain by single species in the flora of Bangladesh. Among these 25 genera, 7 i.e., 28% are threatened. The Department of Dairy and study is based on long-term field investigations, examination of herbarium specimens and survey of Poultry Science, Chittagong relevant floristic and medicinal literature. Veterinary and Animal Sciences University, Khulshi, Chittagong- Keywords: Medicinal plant, threatened species, conservation, fabaceae, Bangladesh 4225; Bangladesh 1. Introduction Now a day’s numerous medicinal plants are used to cure several diseases in developing countries.
    [Show full text]
  • The Naturalized Vascular Plants of Western Australia 1
    12 Plant Protection Quarterly Vol.19(1) 2004 Distribution in IBRA Regions Western Australia is divided into 26 The naturalized vascular plants of Western Australia natural regions (Figure 1) that are used for 1: Checklist, environmental weeds and distribution in bioregional planning. Weeds are unevenly distributed in these regions, generally IBRA regions those with the greatest amount of land disturbance and population have the high- Greg Keighery and Vanda Longman, Department of Conservation and Land est number of weeds (Table 4). For exam- Management, WA Wildlife Research Centre, PO Box 51, Wanneroo, Western ple in the tropical Kimberley, VB, which Australia 6946, Australia. contains the Ord irrigation area, the major cropping area, has the greatest number of weeds. However, the ‘weediest regions’ are the Swan Coastal Plain (801) and the Abstract naturalized, but are no longer considered adjacent Jarrah Forest (705) which contain There are 1233 naturalized vascular plant naturalized and those taxa recorded as the capital Perth, several other large towns taxa recorded for Western Australia, com- garden escapes. and most of the intensive horticulture of posed of 12 Ferns, 15 Gymnosperms, 345 A second paper will rank the impor- the State. Monocotyledons and 861 Dicotyledons. tance of environmental weeds in each Most of the desert has low numbers of Of these, 677 taxa (55%) are environmen- IBRA region. weeds, ranging from five recorded for the tal weeds, recorded from natural bush- Gibson Desert to 135 for the Carnarvon land areas. Another 94 taxa are listed as Results (containing the horticultural centre of semi-naturalized garden escapes. Most Total naturalized flora Carnarvon).
    [Show full text]
  • Seed Coat Sculpture of Subgenus Ceratotropis (Piper) Verdc., Genus Vigna Savi in India and Its Taxonomic Implications
    Botany Letters ISSN: 2381-8107 (Print) 2381-8115 (Online) Journal homepage: http://www.tandfonline.com/loi/tabg21 Seed coat sculpture of subgenus Ceratotropis (Piper) verdc., genus Vigna Savi in India and its taxonomic implications Suraj D. Umdale, Pravin D. Patil, Surendra K. Malik, M. Latha, Satyawada R. Rao, Shrirang R. Yadav, Nikhil B. Gaikwad & Kangila V. Bhat To cite this article: Suraj D. Umdale, Pravin D. Patil, Surendra K. Malik, M. Latha, Satyawada R. Rao, Shrirang R. Yadav, Nikhil B. Gaikwad & Kangila V. Bhat (2017): Seed coat sculpture of subgenus Ceratotropis (Piper) verdc., genus Vigna Savi in India and its taxonomic implications, Botany Letters, DOI: 10.1080/23818107.2016.1273795 To link to this article: http://dx.doi.org/10.1080/23818107.2016.1273795 Published online: 14 Feb 2017. Submit your article to this journal Article views: 41 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tabg21 Download by: [59.95.250.157] Date: 27 February 2017, At: 02:25 BOTANY LETTERS, 2017 http://dx.doi.org/10.1080/23818107.2016.1273795 Seed coat sculpture of subgenus Ceratotropis (Piper) verdc., genus Vigna Savi in India and its taxonomic implications Suraj D. Umdalea,b , Pravin D. Patila, Surendra K. Malika, M. Lathac, Satyawada R. Raod, Shrirang R. Yadave, Nikhil B. Gaikwade and Kangila V. Bhata aNational Bureau of Plant Genetic Resources, Pusa campus, New Delhi, India; bDepartment of Botany, Yashvantrao Chavan Institute of Science, Satara, India; cNational Bureau of Plant Genetic Resources Regional Station, KAU PO, Thrissur, India; dDepartment of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, India; eDepartment of Botany, Shivaji University, Kolhapur, India ABSTRACT ARTICLE HISTORY The seed coat morphology was studied using scanning electron microscopy in 21 species (of Received 22 August 2016 which two are both cultivated and wild) of subgenus Ceratotropis (Piper) Verdc.
    [Show full text]
  • Journalofthreatenedtaxa
    OPEN ACCESS The Journal of Threatened Taxa fs dedfcated to bufldfng evfdence for conservafon globally by publfshfng peer-revfewed arfcles onlfne every month at a reasonably rapfd rate at www.threatenedtaxa.org . All arfcles publfshed fn JoTT are regfstered under Creafve Commons Atrfbufon 4.0 Internafonal Lfcense unless otherwfse menfoned. JoTT allows unrestrfcted use of arfcles fn any medfum, reproducfon, and dfstrfbufon by provfdfng adequate credft to the authors and the source of publfcafon. Journal of Threatened Taxa Bufldfng evfdence for conservafon globally www.threatenedtaxa.org ISSN 0974-7907 (Onlfne) | ISSN 0974-7893 (Prfnt) Artfcle Florfstfc dfversfty of Bhfmashankar Wfldlffe Sanctuary, northern Western Ghats, Maharashtra, Indfa Savfta Sanjaykumar Rahangdale & Sanjaykumar Ramlal Rahangdale 26 August 2017 | Vol. 9| No. 8 | Pp. 10493–10527 10.11609/jot. 3074 .9. 8. 10493-10527 For Focus, Scope, Afms, Polfcfes and Gufdelfnes vfsft htp://threatenedtaxa.org/About_JoTT For Arfcle Submfssfon Gufdelfnes vfsft htp://threatenedtaxa.org/Submfssfon_Gufdelfnes For Polfcfes agafnst Scfenffc Mfsconduct vfsft htp://threatenedtaxa.org/JoTT_Polfcy_agafnst_Scfenffc_Mfsconduct For reprfnts contact <[email protected]> Publfsher/Host Partner Threatened Taxa Journal of Threatened Taxa | www.threatenedtaxa.org | 26 August 2017 | 9(8): 10493–10527 Article Floristic diversity of Bhimashankar Wildlife Sanctuary, northern Western Ghats, Maharashtra, India Savita Sanjaykumar Rahangdale 1 & Sanjaykumar Ramlal Rahangdale2 ISSN 0974-7907 (Online) ISSN 0974-7893 (Print) 1 Department of Botany, B.J. Arts, Commerce & Science College, Ale, Pune District, Maharashtra 412411, India 2 Department of Botany, A.W. Arts, Science & Commerce College, Otur, Pune District, Maharashtra 412409, India OPEN ACCESS 1 [email protected], 2 [email protected] (corresponding author) Abstract: Bhimashankar Wildlife Sanctuary (BWS) is located on the crestline of the northern Western Ghats in Pune and Thane districts in Maharashtra State.
    [Show full text]
  • Vigna Dalzelliana LC Taxonomic Authority: (Kuntze) Verdc
    Vigna dalzelliana LC Taxonomic Authority: (Kuntze) Verdc. Global Assessment Regional Region: Global Endemic to region Synonyms No common names available Phaseolus dalzellianus Kuntze Phaseolus dalzellii T.Cooke Phaseolus Dalzell Upper Level Taxonomy Kingdom: PLANTAE Phylum: TRACHEOPHYTA Class: MAGNOLIOPSIDA Order: FABALES Family: LEGUMINOSAE Lower Level Taxonomy Rank: Infra- rank name: Plant Hybrid Subpopulation: Authority: General Information Distribution The species is reported from Thailand, Cambodia, Laos, Vietnam, the Philippines, India and Pakistan. It is also noted from Sri lanka (Tomooka et al. 2002). Range Size Elevation Biogeographic Realm Area of Occupancy: Upper limit: 2500 Afrotropical Extent of Occurrence: Lower limit: 50 Antarctic Map Status: Depth Australasian Upper limit: Neotropical Lower limit: Oceanian Depth Zones Palearctic Shallow photic Bathyl Hadal Indomalayan Photic Abyssal Nearctic Population There was no population data available but, the population is inferred to be large as it has a wide geographical distribution and occurs in forest over a large altitudinal range. Total Population Size Minimum Population Size: Maximum Population Size: Habitat and Ecology This creeping herb forms a component of the ground flora of monsoon forest. It can root from stem nodes (Tomooka et al. 2002). This species is considered to be a crop wild relative of green gram (Vigna radiata) and black gram (Vigna mungo) (Department of Agriculture, Sri lanka 2006). It is also found mountain grassland. System Movement pattern
    [Show full text]
  • Okf"Kzd Izfrosnu ANNUAL REPORT 2007-2008
    NBPGR ANNUokf"kZdAL izfrosnu REPORT 2007-2008 jk"Vªh; ikni vkuqoaf'kd lalk/u C;wjks (Hkkjrh; Ñf"k vuqla/ku ifj"kn) iwlk ifjlj] ubZ fnYyh&110012 NATIONAL BUREAU OF PLANT GENETIC RESOURCES (Indian Council of Agricultural Research) Pusa Campus, New Delhi - 110 012 ISSN NO 0971-2572 NBPGR okf"kZd izfrosnu ANNUAL REPORT 2007-2008 jk"Vªh; ikni vkuqOakf'kd Laklk/u C;wjks (Hkkjrh; Ñf"k vuqLak/ku ifj"kn) iwlk ifj"kj] ubZ fnYyh&110012 NATIONAL BUREAU OF PLANT GENETIC RESOURCES (Indian Council of Agricultural Research) Pusa Campus, New Delhi - 110 012 Citation : Annonymous (2008). Annual Report of the National Bureau of Plant Genetic Resources 2007-2008, NBPGR, Pusa Campus, New Delhi, India, 154 pp. Compiled and Edited by : Dr. Arjun Lal, Principal Scientist Dr. (Mrs.) Anjula Pandey, Senior Scientist Dr. (Mrs.) Kavita Gupta, Senior Scientist This report includes unprocessed or semi-processed data, which would form the basis of scientific papers in due course. The material contained in the report therefore may not be made use of without the written permission of the Director, National Bureau of Plant Genetic Resources, New Delhi except for quoting it for scientific reference. Published by the Director, National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi-110 012, and Printed at Alpha Printographics (India), New Delhi-110 028. Tel.: 9999039940, 9811199620 CONTENTS Preface izfrosnu lkjak'k 1 Executive Summary 6 Introduction 13 NBPGR Headquarters, New Delhi 1. Division of Plant Exploration and Germplasm Collection 17 2. Division of Germplasm Evaluation 23 3. Division of Germplasm Conservation 32 4.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,697,151 B2 Contet-Audonneau Et Al
    USOO8697151B2 (12) United States Patent (10) Patent No.: US 8,697,151 B2 Contet-Audonneau et al. (45) Date of Patent: Apr. 15, 2014 (54) USE OF AN EXTRACT FROM THE VIGNA EP 08.18450 1, 1998 ACONTIFOLLAPLANT IN A COSMETC E. 376.8 g 86 AND/ORDERMOPHARMACEUTICAL GB O962919 T 1964 COMPOSITION GB 1333475 10, 1973 GB 1494.915 11, 1974 (75) Inventors: Jean-Luc Contet-Audonneau, JP 05-230100 9, 1993 Saint-Max (FR); Louis Danoux, E. 2.89. 28. Saulxures les Nancy (FR): Yeronique JP 2002541082 12/2002 Gillon, Essey-les-Nancy (FR): Gilles WO WOO3,O39442 5, 2003 Pauly, Nancy (FR); Philippe Moser, Essey-les-Nancy (FR) OTHER PUBLICATIONS Kadametal. “Nutritional Composition, Processing and Utilization of (73) Assignee: BASF Beauty Care Solutions France Horse Gram and Moth Bean'. CRC Crit. Rev. in Food Sci. Nutr. vol. S.A.S., Lyon (FR) 22, No. 1 (1985) 1-26, particularly pp. 12, 17 and 21.* Kadam, S.S. et al., “Nutritional Composition, Processing, and Utili (*) Notice: Subject to any disclaimer, the term of this zation of Horse Gram and Moth Bean.”. CRC Crit. Rev. in Food Sci. patent is extended or adjusted under 35 Nutr. 22(1) pp. 1-26, (1985). U.S.C. 154(b) by 375 days. Loden, M., et al., “Instrumental and Dermatologist Evaluation of the Effect of Glycerine and Urea on Dry Skin in Atopic Dermatitis.” Skin (21) Appl. No.: 12/581,564 Res Tech, 7, pp. 209-213 (2001). Bradford, M. M. et al., “A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Prin (22) Filed: Oct.
    [Show full text]
  • Phytochemical and Antidiabetic Evaluation of Phaseolus Trilobus Roots
    Navpreet Kaur et al. / Journal of Pharmacy Research 2012,5(11),5202-5205 Research Article Available online through ISSN: 0974-6943 http://jprsolutions.info Phytochemical and Antidiabetic Evaluation of Phaseolus trilobus Roots Navpreet Kaur1, Rashmi1*, Y.C. Tripathi1 and Lokesh Upadhyay2 1Chemistry Division, Forest Research Institute, P.O.-New Forest-248006, Dehradun, India 2Advance Research Centre for Indian System of Medicine, PRIST University, Thanjavur-613403, India Received on:12-06-2012; Revised on: 17-07-2012; Accepted on:26-08-2012 ABSTRACT The present investigation was designed to assess the phytochemical profile of Phaseolus. trilobus Ait. syn Vigna trilobata (L) Verdc (family: fabaceae) roots and antidiabetic effect of methanol extract of the roots of the plant on Streptozotocin induced diabetic rats. Preliminary phytochemical screening of the methanol extract revealed the presence of different types of compounds including flavonoids, steroids, terpenoids, saponin, glycoside and tannin. Acute toxicity studies of dried extract of roots at an orally administered dose of 2000 mg/kg showed neither lethality nor any reaction and behavioral change indicating the dose to be safe. Oral administration of root extract at the dose of 400 mg/kg showed a significant increase in body weight and decrease in blood glucose level on 15th and 20th day of post induction as compared to untreated diabetic rats. The significant decrease in blood glucose level in diabetic rats is found comparable to that of standard drug Glibenclamide thereby indicating the root extract of P. trilobus to be a potent antidiabetic drug and justifying its use in the traditional system of medicine. Key words: Phaseolus trilobus, Roots, Phytochemical profile, Antidiabetic activity.
    [Show full text]