PDF Output of CLIC (Clustering by Inferred Co-Expression)

Total Page:16

File Type:pdf, Size:1020Kb

PDF Output of CLIC (Clustering by Inferred Co-Expression) PDF Output of CLIC (clustering by inferred co-expression) Dataset: Num of genes in input gene set: 11 Total number of genes: 16493 CLIC PDF output has three sections: 1) Overview of Co-Expression Modules (CEMs) Heatmap shows pairwise correlations between all genes in the input query gene set. Red lines shows the partition of input genes into CEMs, ordered by CEM strength. Each row shows one gene, and the brightness of squares indicates its correlations with other genes. Gene symbols are shown at left side and on the top of the heatmap. 2) Details of each CEM and its expansion CEM+ Top panel shows the posterior selection probability (dataset weights) for top GEO series datasets. Bottom panel shows the CEM genes (blue rows) as well as expanded CEM+ genes (green rows). Each column is one GEO series dataset, sorted by their posterior probability of being selected. The brightness of squares indicates the gene's correlations with CEM genes in the corresponding dataset. CEM+ includes genes that co-express with CEM genes in high-weight datasets, measured by LLR score. 3) Details of each GEO series dataset and its expression profile: Top panel shows the detailed information (e.g. title, summary) for the GEO series dataset. Bottom panel shows the background distribution and the expression profile for CEM genes in this dataset. Overview of Co-Expression Modules (CEMs) with Dataset Weighting Scale of average Pearson correlations Num of Genes in Query Geneset: 11. Num of CEMs: 1. 0.0 0.2 0.4 0.6 0.8 1.0 Tmem231 B9d1 Tmem216 Tctn2 Cep290 Cc2d2a Mks1 Tmem17 B9d2 Ahi1 Tmem67 Tmem231 B9d1 Tmem216 Tctn2 Cep290 Cc2d2a CEM 1 (19 datasets) Mks1 Tmem17 B9d2 Ahi1 Tmem67 1110051M20Rik 1110004E09Rik Symbol Num ofCEMGenes:11.Predicted338.SelectedDatasets:19.Strength:0.3 CEM 1,Geneset"[G]TCTN-B9Dcomplex",Page1 Tmem107 Tmem216 Tmem231 Fam179b Fam229b Dync2h1 Ccdc104 Dync2li1 Ccdc173 Tmem67 Tmem17 Traf3ip1 Cc2d2a Cep290 Ccp110 Spata7 Spice1 Nphp1 Nup35 Wdr31 Wdr34 Enkd1 Morn2 Otub2 Crocc Dnal4 Rabl2 Lekr1 Tctn2 Ttc26 Ift122 Lztfl1 Mks1 Dpcd Gas8 Bbs5 Bbs1 Bbs2 B9d2 B9d1 Rpgr Ahi1 Ttc8 Ift88 Ift80 Ift74 Arl3 Arl6 0.0 1.0 GSE31972 [6] GSE27630 [8] GSE9441 [36] Only showingfirst200datasets-Seetxtoutputforfulldetails. GSE26299 [108] GSE29318 [9] GSE27605 [8] GSE15872 [18] GSE47196 [6] GSE31561 [36] GSE31797 [6] GSE34206 [8] GSE6540 [12] GSE28593 [9] GSE32529 [224] GSE16585 [31] GSE13106 [10] GSE21606 [6] GSE56777 [8] GSE45820 [6] GSE21568 [12] GSE32095 [24] GSE49346 [6] GSE23895 [18] GSE24726 [8] GSE27546 [51] GSE23408 [39] GSE4734 [61] GSE1871 [12] GSE54056 [12] GSE40087 [15] GSE22824 [24] GSE40412 [14] GSE10902 [6] GSE19729 [14] GSE49128 [17] GSE34126 [19] GSE16496 [102] GSE15760 [6] GSE9760 [12] GSE31940 [8] GSE53951 [10] GSE5245 [16] GSE51365 [28] GSE11165 [6] GSE34423 [40] GSE24695 [9] GSE34279 [30] GSE21193 [10] GSE12948 [9] GSE26476 [6] GSE27713 [7] GSE5671 [18] GSE5127 [18] GSE18396 [6] GSE31849 [18] GSE28457 [24] GSE40156 [42] GSE3181 [6] GSE21309 [9] GSE27195 [6] GSE50122 [10] GSE56482 [8] GSE7069 [8] GSE5313 [6] GSE15741 [6] GSE23200 [6] GSE4260 [6] GSE7141 [6] GSE28408 [6] GSE28823 [12] GSE20177 [14] GSE8357 [6] GSE40716 [12] GSE37431 [6] GSE33770 [8] GSE24813 [10] GSE13873 [27] GSE16110 [16] GSE17263 [6] GSE40856 [8] GSE17709 [18] GSE14004 [9] GSE38693 [8] GSE6383 [6] GSE16675 [72] GSE57425 [6] GSE29081 [6] GSE27675 [14] GSE36814 [20] GSE20954 [14] GSE22448 [6] GSE38215 [11] GSE21900 [12] GSE17794 [44] GSE36384 [12] GSE9338 [42] GSE6846 [6] GSE31744 [8] GSE32963 [6] GSE18010 [29] GSE31570 [6] GSE46797 [6] GSE30488 [52] GSE27568 [16] GSE15772 [8] GSE13227 [6] GSE27811 [9] GSE42601 [6] GSE45968 [6] GSE58296 [9] GSE42260 [6] GSE48203 [9] GSE13611 [8] GSE18907 [12] GSE14843 [6] GSE21393 [6] GSE11990 [20] GSE43713 [16] GSE48790 [8] GSE4695 [6] GSE18326 [8] GSE51483 [45] GSE47425 [7] GSE22073 [6] GSE48935 [12] GSE17316 [12] GSE39621 [51] GSE55238 [28] GSE18358 [10] GSE40230 [15] GSE15871 [18] GSE2527 [6] GSE34765 [6] GSE13563 [6] GSE38672 [6] GSE13421 [8] GSE4040 [6] GSE21755 [25] GSE17266 [59] GSE45143 [6] GSE27717 [11] GSE5891 [6] GSE23781 [6] GSE27159 [8] GSE6116 [70] GSE6875 [8] GSE4193 [8] GSE26308 [12] GSE58214 [6] GSE29648 [10] GSE57543 [6] GSE14007 [8] GSE35435 [6] GSE30873 [6] CEM+ CEM GSE11291 [60] GSE31208 [8] GSE31792 [18] GSE11572 [12] GSE4323 [6] GSE34839 [6] 0.0 GSE30863 [20] GSE40443 [6] GSE9044 [6] Scale ofaveragePearsoncorrelations GSE7381 [6] GSE46209 [21] GSE28559 [30] GSE19338 [24] GSE39273 [6] GSE6285 [24] 0.2 GSE8024 [8] GSE8726 [7] GSE17553 [16] GSE13526 [6] GSE24207 [73] GSE4535 [6] GSE20570 [6] GSE40282 [6] GSE47872 [6] 0.4 GSE51608 [6] GSE6526 [16] GSE23600 [10] GSE17097 [20] GSE39391 [21] GSE10556 [6] GSE17886 [16] GSE15267 [8] GSE11386 [15] 0.6 GSE27378 [8] GSE15724 [9] GSE17112 [8] GSE13229 [6] GSE10113 [12] GSE43635 [9] GSE27261 [8] GSE46150 [8] GSE51108 [6] 0.8 GSE31938 [8] GSE8503 [6] GSE16874 [12] GSE46500 [6] Score 9.68 9.98 10.01 10.06 10.10 10.17 10.50 10.59 10.65 10.65 10.86 10.91 10.98 11.22 11.27 11.42 11.44 11.48 11.49 11.71 12.15 12.15 12.46 13.14 13.59 13.69 13.74 13.92 14.21 14.23 14.56 14.73 14.79 14.82 14.94 15.00 16.35 17.01 17.06 1.0 Notes 1810043G02Rik 2610301B20Rik Symbol Num ofCEMGenes:11.Predicted338.SelectedDatasets:19.Strength:0.3 CEM 1,Geneset"[G]TCTN-B9Dcomplex",Page2 Fam216a Ankdd1b Abhd14a Ccdc157 Efcab12 Chchd6 Ccdc39 Ccdc57 Dyx1c1 Mettl10 Btbd10 Cluap1 Pih1d2 Efcab7 Trim23 Zbtb26 Zfp446 Med31 Wdr35 Wdr78 Wdr47 Wdr60 Cops3 Wdr90 Wdr19 Cep19 Alms1 Cep41 Mdm1 Micu3 Pacrg Cetn2 Nme7 Nme5 Emc8 Stk30 Stk36 Pias2 Ttc25 Map9 Dph6 Cby1 Bbs9 Nek4 Tchp Lca5 Ttc5 Ift57 0.0 1.0 GSE31972 [6] GSE27630 [8] GSE9441 [36] Only showingfirst200datasets-Seetxtoutputforfulldetails. GSE26299 [108] GSE29318 [9] GSE27605 [8] GSE15872 [18] GSE47196 [6] GSE31561 [36] GSE31797 [6] GSE34206 [8] GSE6540 [12] GSE28593 [9] GSE32529 [224] GSE16585 [31] GSE13106 [10] GSE21606 [6] GSE56777 [8] GSE45820 [6] GSE21568 [12] GSE32095 [24] GSE49346 [6] GSE23895 [18] GSE24726 [8] GSE27546 [51] GSE23408 [39] GSE4734 [61] GSE1871 [12] GSE54056 [12] GSE40087 [15] GSE22824 [24] GSE40412 [14] GSE10902 [6] GSE19729 [14] GSE49128 [17] GSE34126 [19] GSE16496 [102] GSE15760 [6] GSE9760 [12] GSE31940 [8] GSE53951 [10] GSE5245 [16] GSE51365 [28] GSE11165 [6] GSE34423 [40] GSE24695 [9] GSE34279 [30] GSE21193 [10] GSE12948 [9] GSE26476 [6] GSE27713 [7] GSE5671 [18] GSE5127 [18] GSE18396 [6] GSE31849 [18] GSE28457 [24] GSE40156 [42] GSE3181 [6] GSE21309 [9] GSE27195 [6] GSE50122 [10] GSE56482 [8] GSE7069 [8] GSE5313 [6] GSE15741 [6] GSE23200 [6] GSE4260 [6] GSE7141 [6] GSE28408 [6] GSE28823 [12] GSE20177 [14] GSE8357 [6] GSE40716 [12] GSE37431 [6] GSE33770 [8] GSE24813 [10] GSE13873 [27] GSE16110 [16] GSE17263 [6] GSE40856 [8] GSE17709 [18] GSE14004 [9] GSE38693 [8] GSE6383 [6] GSE16675 [72] GSE57425 [6] GSE29081 [6] GSE27675 [14] GSE36814 [20] GSE20954 [14] GSE22448 [6] GSE38215 [11] GSE21900 [12] GSE17794 [44] GSE36384 [12] GSE9338 [42] GSE6846 [6] GSE31744 [8] GSE32963 [6] GSE18010 [29] GSE31570 [6] GSE46797 [6] GSE30488 [52] GSE27568 [16] GSE15772 [8] GSE13227 [6] GSE27811 [9] GSE42601 [6] GSE45968 [6] GSE58296 [9] GSE42260 [6] GSE48203 [9] GSE13611 [8] GSE18907 [12] GSE14843 [6] GSE21393 [6] GSE11990 [20] GSE43713 [16] GSE48790 [8] GSE4695 [6] GSE18326 [8] GSE51483 [45] GSE47425 [7] GSE22073 [6] GSE48935 [12] GSE17316 [12] GSE39621 [51] GSE55238 [28] GSE18358 [10] GSE40230 [15] GSE15871 [18] GSE2527 [6] GSE34765 [6] GSE13563 [6] GSE38672 [6] GSE13421 [8] GSE4040 [6] GSE21755 [25] GSE17266 [59] GSE45143 [6] GSE27717 [11] GSE5891 [6] GSE23781 [6] GSE27159 [8] GSE6116 [70] GSE6875 [8] GSE4193 [8] GSE26308 [12] GSE58214 [6] GSE29648 [10] GSE57543 [6] GSE14007 [8] GSE35435 [6] GSE30873 [6] CEM+ CEM GSE11291 [60] GSE31208 [8] GSE31792 [18] GSE11572 [12] GSE4323 [6] GSE34839 [6] 0.0 GSE30863 [20] GSE40443 [6] GSE9044 [6] Scale ofaveragePearsoncorrelations GSE7381 [6] GSE46209 [21] GSE28559 [30] GSE19338 [24] GSE39273 [6] GSE6285 [24] 0.2 GSE8024 [8] GSE8726 [7] GSE17553 [16] GSE13526 [6] GSE24207 [73] GSE4535 [6] GSE20570 [6] GSE40282 [6] GSE47872 [6] 0.4 GSE51608 [6] GSE6526 [16] GSE23600 [10] GSE17097 [20] GSE39391 [21] GSE10556 [6] GSE17886 [16] GSE15267 [8] GSE11386 [15] 0.6 GSE27378 [8] GSE15724 [9] GSE17112 [8] GSE13229 [6] GSE10113 [12] GSE43635 [9] GSE27261 [8] GSE46150 [8] GSE51108 [6] 0.8 GSE31938 [8] GSE8503 [6] GSE16874 [12] GSE46500 [6] Score 5.98 5.98 5.98 6.04 6.06 6.10 6.11 6.13 6.25 6.27 6.35 6.41 6.41 6.48 6.49 6.61 6.62 6.65 6.77 6.80 6.83 6.86 7.01 7.16 7.25 7.30 7.50 7.51 7.66 7.71 7.71 7.94 8.00 8.04 8.07 8.26 8.47 8.57 8.58 8.73 8.78 8.83 9.07 9.13 9.15 9.25 9.30 9.34 9.43 9.62 1.0 Notes B230118H07Rik A330021E22Rik Symbol Num ofCEMGenes:11.Predicted338.SelectedDatasets:19.Strength:0.3 CEM 1,Geneset"[G]TCTN-B9Dcomplex",Page3 AK129341 Hsp90aa1 Ccpg1os Rps6ka6 Ccdc181 Ankrd42 Prpsap2 Pwwp2a Fam98b Zswim1 Gemin8 Abhd10 Dzank1 Skiv2l2 Tada2a Gm166 Nap1l1 Trim37 Zfp329 Zfp763 Slc7a6 Glt8d1 Dalrd3 Wdr73 Cspp1 P4htm Ube3c Lyrm4 Bbs12 Soga2 Cep76 Elovl4 Tpgs2 Tusc3 Ccar2 Prps1 Btf3l4 Cetn4 Pcgf1 Pcgf6 Ift140 Fbxl2 Mns1 Prepl Eml1 Ppil4 Phc1 Iqcg 0.0 1.0 GSE31972 [6] GSE27630 [8] GSE9441 [36] Only showingfirst200datasets-Seetxtoutputforfulldetails. GSE26299 [108] GSE29318 [9] GSE27605 [8] GSE15872 [18] GSE47196 [6] GSE31561 [36] GSE31797 [6] GSE34206 [8] GSE6540 [12] GSE28593 [9] GSE32529 [224] GSE16585 [31] GSE13106 [10] GSE21606 [6] GSE56777 [8] GSE45820 [6] GSE21568 [12] GSE32095 [24] GSE49346 [6] GSE23895 [18] GSE24726 [8] GSE27546 [51] GSE23408 [39] GSE4734 [61] GSE1871 [12] GSE54056 [12] GSE40087 [15] GSE22824 [24] GSE40412
Recommended publications
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplemental Materials Supplemental Table 1
    Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016 Supplemental Materials Supplemental Table 1. The differentially expressed proteins from rat pancreas identified by proteomics (SAP vs. SO) No. Protein name Gene name ratio P value 1 Metallothionein Mt1m 3.35 6.34E-07 2 Neutrophil antibiotic peptide NP-2 Defa 3.3 8.39E-07 3 Ilf2 protein Ilf2 3.18 1.75E-06 4 Numb isoform o/o rCG 3.12 2.73E-06 5 Lysozyme Lyz2 3.01 5.63E-06 6 Glucagon Gcg 2.89 1.17E-05 7 Serine protease HTRA1 Htra1 2.75 2.97E-05 8 Alpha 2 macroglobulin cardiac isoform (Fragment) 2.75 2.97E-05 9 Myosin IF (Predicted) Myo1f 2.65 5.53E-05 10 Neuroendocrine secretory protein 55 Gnas 2.61 7.60E-05 11 Matrix metallopeptidase 8 Mmp8 2.57 9.47E-05 12 Protein Tnks1bp1 Tnks1bp1 2.53 1.22E-04 13 Alpha-parvin Parva 2.47 1.78E-04 14 C4b-binding protein alpha chain C4bpa 2.42 2.53E-04 15 Protein KTI12 homolog Kti12 2.41 2.74E-04 16 Protein Rab11fip5 Rab11fip5 2.41 2.84E-04 17 Protein Mcpt1l3 Mcpt1l3 2.33 4.43E-04 18 Phospholipase B-like 1 Plbd1 2.33 4.76E-04 Aldehyde dehydrogenase (NAD), cytosolic 19 2.32 4.93E-04 (Fragments) 20 Protein Dpy19l2 Dpy19l2 2.3 5.68E-04 21 Regenerating islet-derived 3 alpha, isoform CRA_a Reg3a 2.27 6.74E-04 22 60S acidic ribosomal protein P1 Rplp1 2.26 7.22E-04 23 Serum albumin Alb 2.25 7.98E-04 24 Ribonuclease 4 Rnase4 2.24 8.25E-04 25 Cct-5 protein (Fragment) Cct5 2.24 8.52E-04 26 Protein S100-A9 S100a9 2.22 9.71E-04 27 Creatine kinase M-type Ckm 2.21 1.00E-03 28 Protein Larp4b Larp4b 2.18 1.25E-03
    [Show full text]
  • OTX2 Homeoprotein Functions in Adult Choroid Plexus
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.28.441734; this version posted April 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. OTX2 homeoprotein functions in adult choroid plexus Anabelle Planques1†, Vanessa Oliveira Moreira1†, David Benacom1, Clémence Bernard1, Laurent Jourdren2, Corinne Blugeon2, Florent Dingli3, Vanessa Masson3, Damarys Loew3, Alain Prochiantz1,4, Ariel A. Di Nardo1* 1. Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, Paris, France 2. Genomics Core Facility, Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, PSL University, 75005 Paris, France 3. Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 75248 Paris Cedex 05, France 4. Institute of Neurosciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China †contributed equally *corresponding author: [email protected] Abstract Choroid plexus secretes cerebrospinal fluid important for brain development and homeostasis. The OTX2 homeoprotein is critical for choroid plexus development and remains highly expressed in adult choroid plexus. Through RNA sequencing analyses of constitutive and conditional knockdown adult mouse models, we reveal putative roles for OTX2 in choroid plexus function, including cell signaling and adhesion, and show that it regulates the expression of factors secreted into cerebrospinal fluid, notably transthyretin. We show that Otx2 expression impacts choroid plexus immune and stress responses, and also affects splicing which leads to changes in mRNA isoforms of proteins implicated in oxidative stress response and DNA repair.
    [Show full text]
  • The Viral Oncoproteins Tax and HBZ Reprogram the Cellular Mrna Splicing Landscape
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.18.427104; this version posted January 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The viral oncoproteins Tax and HBZ reprogram the cellular mRNA splicing landscape Charlotte Vandermeulen1,2,3, Tina O’Grady3, Bartimee Galvan3, Majid Cherkaoui1, Alice Desbuleux1,2,4,5, Georges Coppin1,2,4,5, Julien Olivet1,2,4,5, Lamya Ben Ameur6, Keisuke Kataoka7, Seishi Ogawa7, Marc Thiry8, Franck Mortreux6, Michael A. Calderwood2,4,5, David E. Hill2,4,5, Johan Van Weyenbergh9, Benoit Charloteaux2,4,5,10, Marc Vidal2,4*, Franck Dequiedt3*, and Jean-Claude Twizere1,2,11* 1Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium.2Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.3Laboratory of Gene Expression and Cancer, GIGA Institute, University of Liege, Liege, Belgium.4Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA. 5Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.6Laboratory of Biology and Modeling of the Cell, CNRS UMR 5239, INSERM U1210, University of Lyon, Lyon, France.7Department of Pathology and Tumor Biology, Kyoto University, Japan.8Unit of Cell and Tissue Biology, GIGA Institute, University of Liege, Liege, Belgium.9Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Catholic University of Leuven, Leuven, Belgium.10Department of Human Genetics, CHU of Liege, University of Liege, Liege, Belgium.11Lead Contact. *Correspondence: [email protected]; [email protected]; [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.01.18.427104; this version posted January 18, 2021.
    [Show full text]
  • Identifying the Risky SNP of Osteoporosis with ID3-PEP Decision Tree Algorithm
    Hindawi Complexity Volume 2017, Article ID 9194801, 8 pages https://doi.org/10.1155/2017/9194801 Research Article Identifying the Risky SNP of Osteoporosis with ID3-PEP Decision Tree Algorithm Jincai Yang,1 Huichao Gu,1 Xingpeng Jiang,1 Qingyang Huang,2 Xiaohua Hu,1 and Xianjun Shen1 1 School of Computer Science, Central China Normal University, Wuhan 430079, China 2School of Life Science, Central China Normal University, Wuhan 430079, China Correspondence should be addressed to Jincai Yang; [email protected] Received 31 March 2017; Revised 26 May 2017; Accepted 8 June 2017; Published 7 August 2017 Academic Editor: Fang-Xiang Wu Copyright © 2017 Jincai Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In the past 20 years, much progress has been made on the genetic analysis of osteoporosis. A number of genes and SNPs associated with osteoporosis have been found through GWAS method. In this paper, we intend to identify the suspected risky SNPs of osteoporosis with computational methods based on the known osteoporosis GWAS-associated SNPs. The process includes two steps. Firstly, we decided whether the genes associated with the suspected risky SNPs are associated with osteoporosis by using random walk algorithm on the PPI network of osteoporosis GWAS-associated genes and the genes associated with the suspected risky SNPs. In order to solve the overfitting problem in ID3 decision tree algorithm, we then classified the SNPs with positive results based on their features of position and function through a simplified classification decision tree which was constructed by ID3 decision tree algorithm with PEP (Pessimistic-Error Pruning).
    [Show full text]
  • Download Special Issue
    BioMed Research International Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data Guest Editors: Julia Tzu-Ya Weng, Li-Ching Wu, Wen-Chi Chang, Tzu-Hao Chang, Tatsuya Akutsu, and Tzong-Yi Lee Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data BioMed Research International Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data Guest Editors: Julia Tzu-Ya Weng, Li-Ching Wu, Wen-Chi Chang, Tzu-Hao Chang, Tatsuya Akutsu, and Tzong-Yi Lee Copyright © 2014 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “BioMed Research International.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Contents Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data,JuliaTzu-YaWeng, Li-Ching Wu, Wen-Chi Chang, Tzu-Hao Chang, Tatsuya Akutsu, and Tzong-Yi Lee Volume2014,ArticleID814092,3pages Evolution of Network Biomarkers from Early to Late Stage Bladder Cancer Samples,Yung-HaoWong, Cheng-Wei Li, and Bor-Sen Chen Volume 2014, Article ID 159078, 23 pages MicroRNA Expression Profiling Altered by Variant Dosage of Radiation Exposure,Kuei-FangLee, Yi-Cheng Chen, Paul Wei-Che Hsu, Ingrid Y. Liu, and Lawrence Shih-Hsin Wu Volume2014,ArticleID456323,10pages EXIA2: Web Server of Accurate and Rapid Protein Catalytic Residue Prediction, Chih-Hao Lu, Chin-Sheng
    [Show full text]
  • Genetics and Molecular Biology, 44, 1, E20190410 (2021) Copyright © Sociedade Brasileira De Genética
    Genetics and Molecular Biology, 44, 1, e20190410 (2021) Copyright © Sociedade Brasileira de Genética. DOI: https://doi.org/10.1590/1678-4685-GMB-2019-0410 Research Article Human and Medical Genetics Integrated analysis of label-free quantitative proteomics and bioinformatics reveal insights into signaling pathways in male breast cancer Talita Helen Bombardelli Gomig1*, Amanda Moletta Gontarski1*, Iglenir João Cavalli1, Ricardo Lehtonen Rodrigues de Souza1 , Aline Castro Rodrigues Lucena2, Michel Batista2,3, Kelly Cavalcanti Machado3, Fabricio Klerynton Marchini2,3, Fabio Albuquerque Marchi4, Rubens Silveira Lima5, Cícero de Andrade Urban5, Rafael Diogo Marchi6, Luciane Regina Cavalli6,7and Enilze Maria de Souza Fonseca Ribeiro1 1Universidade Federal do Paraná, Departamento de Genética, Programa de Pós-graduação em Genética, Curitiba, PR, Brazil. 2Instituto Carlos Chagas, Laboratório de Genômica Funcional, Curitiba, PR, Brazil. 3Fundação Oswaldo Cruz (Fiocruz), Plataforma de Espectrometria de Massas, Curitiba, PR, Brazil. 4Hospital A.C. Camargo Cancer Center, Centro de Pesquisa Internacional, São Paulo, SP, Brazil. 5Hospital Nossa Senhora das Graças, Centro de Doenças da Mama, Curitiba, PR, Brazil. 6Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil. 7Georgetown University, Lombardi Comprehensive Cancer Center, Washington, USA. * These authors contributed equally to this study. Abstract Male breast cancer (MBC) is a rare malignancy that accounts for about 1.8% of all breast cancer cases. In contrast to the high number of
    [Show full text]
  • Induction of Therapeutic Tissue Tolerance Foxp3 Expression Is
    Downloaded from http://www.jimmunol.org/ by guest on October 2, 2021 is online at: average * The Journal of Immunology , 13 of which you can access for free at: 2012; 189:3947-3956; Prepublished online 17 from submission to initial decision 4 weeks from acceptance to publication September 2012; doi: 10.4049/jimmunol.1200449 http://www.jimmunol.org/content/189/8/3947 Foxp3 Expression Is Required for the Induction of Therapeutic Tissue Tolerance Frederico S. Regateiro, Ye Chen, Adrian R. Kendal, Robert Hilbrands, Elizabeth Adams, Stephen P. Cobbold, Jianbo Ma, Kristian G. Andersen, Alexander G. Betz, Mindy Zhang, Shruti Madhiwalla, Bruce Roberts, Herman Waldmann, Kathleen F. Nolan and Duncan Howie J Immunol cites 35 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/09/17/jimmunol.120044 9.DC1 This article http://www.jimmunol.org/content/189/8/3947.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of October 2, 2021.
    [Show full text]
  • Proteomic Profiling and Genome-Wide Mapping of O-Glcnac Chromatin
    ARTICLE https://doi.org/10.1038/s41467-020-19579-y OPEN Proteomic profiling and genome-wide mapping of O-GlcNAc chromatin-associated proteins reveal an O-GlcNAc-regulated genotoxic stress response Yubo Liu 1,3, Qiushi Chen 2,3, Nana Zhang1, Keren Zhang2, Tongyi Dou1, Yu Cao1, Yimin Liu1, Kun Li1, ✉ ✉ Xinya Hao1, Xueqin Xie1, Wenli Li1, Yan Ren 2 & Jianing Zhang 1 fi 1234567890():,; O-GlcNAc modi cation plays critical roles in regulating the stress response program and cellular homeostasis. However, systematic and multi-omics studies on the O-GlcNAc regu- lated mechanism have been limited. Here, comprehensive data are obtained by a chemical reporter-based method to survey O-GlcNAc function in human breast cancer cells stimulated with the genotoxic agent adriamycin. We identify 875 genotoxic stress-induced O-GlcNAc chromatin-associated proteins (OCPs), including 88 O-GlcNAc chromatin-associated tran- scription factors and cofactors (OCTFs), subsequently map their genomic loci, and construct a comprehensive transcriptional reprogramming network. Notably, genotoxicity-induced O- GlcNAc enhances the genome-wide interactions of OCPs with chromatin. The dynamic binding switch of hundreds of OCPs from enhancers to promoters is identified as a crucial feature in the specific transcriptional activation of genes involved in the adaptation of cancer cells to genotoxic stress. The OCTF nuclear factor erythroid 2-related factor-1 (NRF1) is found to be a key response regulator in O-GlcNAc-modulated cellular homeostasis. These results provide a valuable clue suggesting that OCPs act as stress sensors by regulating the expression of various genes to protect cancer cells from genotoxic stress.
    [Show full text]
  • Inflammatory and Adipogenic Stromal Subpopulations in Visceral Adipose Tissue Of
    RESEARCH COMMUNICATION Identification of functionally distinct fibro- inflammatory and adipogenic stromal subpopulations in visceral adipose tissue of adult mice Chelsea Hepler1†, Bo Shan1, Qianbin Zhang1, Gervaise H Henry2, Mengle Shao1, Lavanya Vishvanath1, Alexandra L Ghaben1, Angela B Mobley3, Douglas Strand2, Gary C Hon4, Rana K Gupta1* 1Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States; 2Department of Urology, University of Texas Southwestern Medical Center, Dallas, United States; 3Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States; 4Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, United States Abstract White adipose tissue (WAT) remodeling is dictated by coordinated interactions between adipocytes and resident stromal-vascular cells; however, the functional heterogeneity of adipose stromal cells has remained unresolved. We combined single-cell RNA-sequencing and FACS to identify and isolate functionally distinct subpopulations of PDGFRb+ stromal cells within visceral WAT of adult mice. LY6C- CD9- PDGFRb+ cells represent highly adipogenic visceral adipocyte precursor cells (‘APCs’), whereas LY6C+ PDGFRb+ cells represent fibro-inflammatory progenitors (‘FIPs’). FIPs lack adipogenic capacity, display pro-fibrogenic/pro-inflammatory *For correspondence:
    [Show full text]
  • Supplementary Figure S1 A
    Supplementary Figure S1 A B C 1 4 1 3 1 2 1 2 1 0 1 1 (Normalized signal values)] 2 (Normalized signal values) (Normalized 8 2 10 Log 6 AFFX-BioC AFFX-BioB AFFX-BioDn AFFX-CreX hDFs [Log 6 8 10 12 14 hOFs [Log2 (Normalized signal values)] Supplementary Figure S2 GLYCOLYSIS PENTOSE-PHOSPHATE PATHWAY Glucose Purine/pyrimidine Glucose-6-phosphate metabolism AMINO ACID Fluctose-6-phosphate AMPK METABOLISM TIGAR PFKFB2 methylgloxal GloI Ser, Gly, Thr Glyceraldehyde-3-phosphate ALDH Lactate PYRUVATE LDH METABOLISM acetic acid Ethanol Pyruvate GLYCOSPHINGOLIPID NADH BIOSYNTHESIS Ala, Cys DLD PDH PDK3 DLAT Fatty acid Lys, Trp, Leu, Acetyl CoA ACAT2 Ile, Tyr, Phe β-OXIDATION ACACA Citrate Asp, Asn Citrate Acetyl CoA Oxaloacetate Isocitrate MDH1 IDH1 Glu, Gln, His, ME2 TCA Pro, Arg 2-Oxoglutarate MDH1 CYCLE Pyruvate Malate ME2 GLUTAMINOLYSIS FH Succinyl-CoA Fumalate SUCLA2 Tyr, Phe Var, Ile, Met Supplementary Figure S3 Entrez Gene Symbol Gene Name hODs hDFs hOF-iPSCs GeneID 644 BLVRA biliverdin reductase A 223.9 259.3 253.0 3162 HMOX1 heme oxygenase 1 1474.2 2698.0 452.3 9365 KL klotho 54.1 44.8 36.5 nicotinamide 10135 NAMPT 827.7 626.2 2999.8 phosphoribosyltransferase nuclear factor (erythroid- 4780 NFE2L2 2134.5 1331.7 1006.2 derived 2) related factor 2 peroxisome proliferator- 5467 PPARD 1534.6 1352.9 330.8 activated receptor delta peroxisome proliferator- 5468 PPARG 524.4 100.8 63.0 activated receptor gamma 5621 PRNP prion protein 4059.0 3134.1 1065.5 5925 RB1 retinoblastoma 1 882.9 805.8 739.3 23411 SIRT1 sirtuin 1 231.5 216.8 1676.0 7157 TP53
    [Show full text]