Proteomic Profiling and Genome-Wide Mapping of O-Glcnac Chromatin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mechanism of CREB Recognition and Coactivation by the CREB-Regulated Transcriptional Coactivator CRTC2
Mechanism of CREB recognition and coactivation by the CREB-regulated transcriptional coactivator CRTC2 Qianyi Luoa, Kristin Visteb, Janny Concha Urday-Zaaa, Ganesan Senthil Kumara, Wen-Wei Tsaib, Afsaneh Talaia, Kelly E. Mayoa, Marc Montminyb,1, and Ishwar Radhakrishnana,1 aDepartment of Molecular Biosciences, Northwestern University, Evanston, IL 60208; and bClayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA 92037 Contributed by Marc Montminy, November 2, 2012 (sent for review October 8, 2012) Basic leucine zipper (bZip) transcription factors regulate cellular program (10). Sequestered in the cytoplasm under feeding con- gene expression in response to a variety of extracellular signals ditions through phosphorylation by the Ser/Thr kinase SIK2, and nutrient cues. Although the bZip domain is widely known to CRTC2 is dephosphorylated in response to pancreatic glucagon play significant roles in DNA binding and dimerization, recent during fasting, when it translocates to the nucleus and stimulates studies point to an additional role for this motif in the recruitment gluconeogenic gene expression. of the transcriptional apparatus. For example, the cAMP response Recent studies support a conserved role for CRTCs through evolution. Deletion of TORC, the single CRTC homolog in Dro- element binding protein (CREB)-regulated transcriptional coacti- sophila, reduces fat stores and increases sensitivity to starvation vator (CRTC) family of transcriptional coactivators has been pro- (11). CRTCs also seem to be important in aging: RNAi-mediated posed to promote the expression of calcium and cAMP responsive depletion of CRTC1 in Caenorhabditis elegans extends lifespan, in genes, by binding to the CREB bZip in response to extracellular part through down-regulation of the CREB pathway (12). -
Table S1. List of Proteins in the BAHD1 Interactome
Table S1. List of proteins in the BAHD1 interactome BAHD1 nuclear partners found in this work yeast two-hybrid screen Name Description Function Reference (a) Chromatin adapters HP1α (CBX5) chromobox homolog 5 (HP1 alpha) Binds histone H3 methylated on lysine 9 and chromatin-associated proteins (20-23) HP1β (CBX1) chromobox homolog 1 (HP1 beta) Binds histone H3 methylated on lysine 9 and chromatin-associated proteins HP1γ (CBX3) chromobox homolog 3 (HP1 gamma) Binds histone H3 methylated on lysine 9 and chromatin-associated proteins MBD1 methyl-CpG binding domain protein 1 Binds methylated CpG dinucleotide and chromatin-associated proteins (22, 24-26) Chromatin modification enzymes CHD1 chromodomain helicase DNA binding protein 1 ATP-dependent chromatin remodeling activity (27-28) HDAC5 histone deacetylase 5 Histone deacetylase activity (23,29,30) SETDB1 (ESET;KMT1E) SET domain, bifurcated 1 Histone-lysine N-methyltransferase activity (31-34) Transcription factors GTF3C2 general transcription factor IIIC, polypeptide 2, beta 110kDa Required for RNA polymerase III-mediated transcription HEYL (Hey3) hairy/enhancer-of-split related with YRPW motif-like DNA-binding transcription factor with basic helix-loop-helix domain (35) KLF10 (TIEG1) Kruppel-like factor 10 DNA-binding transcription factor with C2H2 zinc finger domain (36) NR2F1 (COUP-TFI) nuclear receptor subfamily 2, group F, member 1 DNA-binding transcription factor with C4 type zinc finger domain (ligand-regulated) (36) PEG3 paternally expressed 3 DNA-binding transcription factor with -
Computational Genome-Wide Identification of Heat Shock Protein Genes in the Bovine Genome [Version 1; Peer Review: 2 Approved, 1 Approved with Reservations]
F1000Research 2018, 7:1504 Last updated: 08 AUG 2021 RESEARCH ARTICLE Computational genome-wide identification of heat shock protein genes in the bovine genome [version 1; peer review: 2 approved, 1 approved with reservations] Oyeyemi O. Ajayi1,2, Sunday O. Peters3, Marcos De Donato2,4, Sunday O. Sowande5, Fidalis D.N. Mujibi6, Olanrewaju B. Morenikeji2,7, Bolaji N. Thomas 8, Matthew A. Adeleke 9, Ikhide G. Imumorin2,10,11 1Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria 2International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA 3Department of Animal Science, Berry College, Mount Berry, GA, 30149, USA 4Departamento Regional de Bioingenierias, Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Queretaro, Mexico 5Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria 6Usomi Limited, Nairobi, Kenya 7Department of Animal Production and Health, Federal University of Technology, Akure, Nigeria 8Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA 9School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa 10School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30032, USA 11African Institute of Bioscience Research and Training, Ibadan, Nigeria v1 First published: 20 Sep 2018, 7:1504 Open Peer Review https://doi.org/10.12688/f1000research.16058.1 Latest published: 20 Sep 2018, 7:1504 https://doi.org/10.12688/f1000research.16058.1 Reviewer Status Invited Reviewers Abstract Background: Heat shock proteins (HSPs) are molecular chaperones 1 2 3 known to bind and sequester client proteins under stress. Methods: To identify and better understand some of these proteins, version 1 we carried out a computational genome-wide survey of the bovine 20 Sep 2018 report report report genome. -
A Pathogenic Ctbp1 Missense Mutation Causes Altered Cofactor Binding and Transcriptional Activity
neurogenetics (2019) 20:129–143 https://doi.org/10.1007/s10048-019-00578-1 ORIGINAL ARTICLE A pathogenic CtBP1 missense mutation causes altered cofactor binding and transcriptional activity David B. Beck1 & T. Subramanian2 & S. Vijayalingam2 & Uthayashankar R. Ezekiel3 & Sandra Donkervoort4 & Michele L. Yang5 & Holly A. Dubbs6 & Xilma R. Ortiz-Gonzalez7 & Shenela Lakhani8 & Devorah Segal9 & Margaret Au10 & John M. Graham Jr10 & Sumit Verma11 & Darrel Waggoner12 & Marwan Shinawi13 & Carsten G. Bönnemann4 & Wendy K. Chung14 & G. Chinnadurai2 Received: 23 October 2018 /Revised: 18 March 2019 /Accepted: 9 April 2019 /Published online: 30 April 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract We previously reported a pathogenic de novo p.R342W mutation in the transcriptional corepressor CTBP1 in four independent patients with neurodevelopmental disabilities [1]. Here, we report the clinical phenotypes of seven additional individuals with the same recurrent de novo CTBP1 mutation. Within this cohort, we identified consistent CtBP1-related phenotypes of intellectual disability, ataxia, hypotonia, and tooth enamel defects present in most patients. The R342W mutation in CtBP1 is located within a region implicated in a high affinity-binding cleft for CtBP-interacting proteins. Unbiased proteomic analysis demonstrated reduced interaction of several chromatin-modifying factors with the CtBP1 W342 mutant. Genome-wide transcriptome analysis in human glioblastoma cell lines expressing -CtBP1 R342 (wt) or W342 mutation revealed changes in the expression profiles of genes controlling multiple cellular processes. Patient-derived dermal fibroblasts were found to be more sensitive to apoptosis during acute glucose deprivation compared to controls. Glucose deprivation strongly activated the BH3-only pro-apoptotic gene NOXA, suggesting a link between enhanced cell death and NOXA expression in patient fibroblasts. -
Roles of the CSE1L-Mediated Nuclear Import Pathway in Epigenetic
Roles of the CSE1L-mediated nuclear import pathway PNAS PLUS in epigenetic silencing Qiang Donga,b,c, Xiang Lia,b,c, Cheng-Zhi Wangb, Shaohua Xuc, Gang Yuanc, Wei Shaoc, Baodong Liud, Yong Zhengb, Hailin Wangd, Xiaoguang Leic,e,f, Zhuqiang Zhangb,1, and Bing Zhua,b,g,1 aGraduate Program, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730 Beijing, China; bNational Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China; cNational Institute of Biological Sciences, 102206 Beijing, China; dThe State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; eBeijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; fPeking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China; and gCollege of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China Edited by Arthur D. Riggs, Beckman Research Institute of City of Hope, Duarte, CA, and approved March 21, 2018 (received for review January 17, 2018) Epigenetic silencing can be mediated by various mechanisms, CSE1L, a key player in the nuclear import pathway, as an es- and many regulators remain to be identified. Here, we report a sential factor for maintaining the repression of many methyl- genome-wide siRNA screening to identify regulators essential for ated genes. Mechanistically, CSE1L functions by facilitating maintaining gene repression of a CMV promoter silenced by DNA the nuclear import of certain cargo proteins that are essential methylation. -
TRIM32 Is an E3 Ubiquitin Ligase for Dysbindin
Human Molecular Genetics, 2009, Vol. 18, No. 13 2344–2358 doi:10.1093/hmg/ddp167 Advance Access published on April 6, 2009 TRIM32 is an E3 ubiquitin ligase for dysbindin Matthew Locke1,2, Caroline L. Tinsley1, Matthew A. Benson2,{ and Derek J. Blake1,Ã 1Department of Psychological Medicine, Cardiff University, Henry Wellcome Building for Biomedical Research in Wales, Heath Park, Cardiff, CF14 4XN, UK and 2Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK Received December 15, 2008; Revised and Accepted April 2, 2009 Mutations in the gene encoding tripartite motif protein 32 (TRIM32) cause two seemingly diverse diseases: limb-girdle muscular dystrophy type 2H (LGMD2H) or sarcotubular myopathy (STM) and Bardet–Biedl syndrome type 11(BBS11). Although TRIM32 is involved in protein ubiquitination, its substrates and the molecular consequences of disease-causing mutations are poorly understood. In this paper, we show that Downloaded from TRIM32 is a widely expressed ubiquitin ligase that is localized to the Z-line in skeletal muscle. Using the yeast two-hybrid system, we found that TRIM32 binds and ubiquitinates dysbindin, a protein implicated in the genetic aetiology of schizophrenia, augmenting its degradation. Small-interfering RNA-mediated knock-down of TRIM32 in myoblasts resulted in elevated levels of dysbindin. Importantly, the LGMD2H/ STM-associated TRIM32 mutations, D487N and R394H impair ubiquitin ligase activity towards dysbindin http://hmg.oxfordjournals.org/ and were mislocalized in heterologous cells. These mutants were able to self-associate and also co-immuno- precipitated with wild-type TRIM32 in transfected cells. Furthermore, the D487N mutant could bind to both dysbindin and its E2 enzyme but was defective in monoubiquitination. -
Genome-Wide Regulatory Roles of the C2H2-Type Zinc Finger Protein
www.nature.com/scientificreports OPEN Genome-wide Regulatory Roles of the C2H2-type Zinc Finger Protein ZNF764 on the Glucocorticoid Received: 09 June 2016 Accepted: 23 December 2016 Receptor Published: 31 January 2017 Abeer Fadda1, Najeeb Syed2, Rafah Mackeh1, Anna Papadopoulou3, Shigeru Suzuki3,4, Puthen V. Jithesh2 & Tomoshige Kino1,3 The C2H2-type zinc finger protein ZNF764 acts as an enhancer for several steroid hormone receptors, and haploinsufficiency of this gene may be responsible for tissue resistance to multiple steroid hormones including glucocorticoids observed in a patient with 16p11.2 microdeletion. We examined genome-wide regulatory actions of ZNF764 on the glucocorticoid receptor (GR) in HeLa cells as a model system. ZNF764- and GR-binding sites demonstrated similar distribution in various genomic features. They positioned predominantly around 50–500 kbs from the transcription start sites of their nearby genes, and were closely localized with each other, overlapping in ~37% of them. ZNF764 demonstrated differential on/off effects on GR-binding and subsequent mRNA expression: some genes were highly dependent on the presence/absence of ZNF764, but others were not. Pathway analysis revealed that these 3 gene groups were involved in distinct cellular activities. ZNF764 physically interacted with GR at ligand-binding domain through its KRAB domain, and both its physical interaction to GR and zinc finger domain appear to be required for ZNF764 to regulate GR transcriptional activity. Thus, ZNF764 is a cofactor directing GR transcriptional activity toward specific biologic pathways by changing GR binding and transcriptional activity on the glucocorticoid-responsive genes. Steroid hormones exert diverse physiologic functions and play central roles in human physiology1,2. -
BAP1: Case Report and Insight Into a Novel Tumor Suppressor Kanad Ghosh1, Badri Modi2, William D
Ghosh et al. BMC Dermatology (2017) 17:13 DOI 10.1186/s12895-017-0065-6 CASEREPORT Open Access BAP1: case report and insight into a novel tumor suppressor Kanad Ghosh1, Badri Modi2, William D. James2 and Brian C. Capell1,2,3* Abstract Background: BRCA1-Associated-Protein 1 (BAP1) is a dynamic tumor suppressor which, when mutated, has been associated with an increased risk of uveal melanoma, cutaneous melanoma, mesothelioma, and several other cancers. Germline BAP1 mutations have been extensively studied, where they have been found to cause hereditary cancer susceptibility. However, their sporadic counterparts, tumors that display a loss of BAP1 expression due to somatically arising mutations in the BAP1 gene, remain a poorly described entity. Case presentation: Here we present the case of a 49-year-old female who presented with an asymptomatic dome-shaped pink papule on the dorsal foot which was found on biopsy to be deficient in the BAP1 tumor suppressor. While the patient’s family history did not suggest the presence of a familial cancer syndrome, germline genetic testing was performed and was negative. The patient underwent surgical excision of this sporadically appearing “BAPoma” by Mohs surgery. Conclusions: Given the relatively banal clinical appearance of these dome-shaped neoplasms, sporadic BAPomas may often be overlooked by clinicians and dermatologists. In addition to providing a representative case, here we also provide a synopsis of the current understanding of these neoplasms, both in terms of the histopathological features, as well as the molecular mechanisms underlying BAP1 function and its ability to prevent tumorigenesis. Keywords: BAP1, Tumor suppression, Familial cancer syndrome Background More recently, sporadic somatic BAP1 mutations have Within the last decade, the BRCA1-Associated-Protein 1 been shown to occur in the setting of both mesothelioma (BAP1) has been increasingly appreciated for its tumor sup- and uveal melanoma [3]. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7 -
Genitourinary Pathology (Including Renal Tumors)
LABORATORY INVESTIGATION THE BASIC AND TRANSLATIONAL PATHOLOGY RESEARCH JOURNAL LI VOLUME 99 | SUPPLEMENT 1 | MARCH 2019 2019 ABSTRACTS GENITOURINARY PATHOLOGY (INCLUDING RENAL TUMORS) (776-992) MARCH 16-21, 2019 PLATF OR M & 2 01 9 ABSTRACTS P OSTER PRESENTATI ONS EDUCATI ON C O M MITTEE Jason L. Hornick , C h air Ja mes R. Cook R h o n d a K. Y a nti s s, Chair, Abstract Revie w Board S ar a h M. Dr y and Assign ment Co m mittee Willi a m C. F a q ui n Laura W. La mps , Chair, C ME Subco m mittee C ar ol F. F ar v er St e v e n D. Billi n g s , Interactive Microscopy Subco m mittee Y uri F e d ori w Shree G. Shar ma , Infor matics Subco m mittee Meera R. Ha meed R aj a R. S e et h al a , Short Course Coordinator Mi c h ell e S. Hir s c h Il a n W ei nr e b , Subco m mittee for Unique Live Course Offerings Laksh mi Priya Kunju D a vi d B. K a mi n s k y ( Ex- Of ici o) A n n a M ari e M ulli g a n Aleodor ( Doru) Andea Ri s h P ai Zubair Baloch Vi nita Parkas h Olca Bast urk A nil P ar w a ni Gregory R. Bean , Pat h ol o gist-i n- Trai ni n g D e e p a P atil D a ni el J. -
Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.