Eole 01 Spyglass Mountain

Total Page:16

File Type:pdf, Size:1020Kb

Eole 01 Spyglass Mountain cr Epilogue ~ eole 01 Spyglass Mountain y love of cornets began with a 3-rninute speech I gave in sixth M grade. I think I said that cornets have heads and tails, that they fly about the sun, and maybe even that some people could discover comets. Looking far into the future, I would have said that Halley's comet, the most famous comet of all, wasn't due back for more than a quarter-century. Within a few months, a fortuitous fall off a bicycle and a get­ well present of a book about the solar system got me firmly single­ tracked toward the sky. I remember wondering why my little tele­ scope made everything look like a doughnut; then I realized that if I moved the eyepiece, the telescope would focus. So on the stars were points of light, and Satum became a ball with a ring around it. Glorious! I had seen the rings in pictures, but to see them for myself was thrilling. I was so excited that I called my parents, who came out to look. It took only a few minutes to see this planet with the rings, but I've never forgotten that night. For Dad, watehing me discover Satum's ring brought hirn back to his childhood. One evening over dinner, he told me about a novel he had read when he was a youngster. Called Cole o[ Spyglass Mountain, it was Arthur Preston Hankins' story about a boy whose love of the sky led hirn to observe Mars through his small home- 241 242 ~ Epilogue made teleseope. 1 The novel ended with eole finding evidenee of life on Mars one night and beeoming an instant eelebrity. "If you ever find that book," Dad said, ''I' d like to read it again." Five years later I began my long seareh for eomets. As the years went by and Dad grew older, he would often ask if I had found Cole of Spyglass Mountain. Then with the onset of Alzheimer' s disease, his memory began to fail. As his time grew short, we spent more of it together, and I watehed helplessly as he forgot names, forgot people, and onee even forgot that I was his son. But somehow he never forgot that euphorie story about a boy and a mountaintop that had eaptured his imagination so many years earlier. When I finally found my first eomet in 1984, I feit as though I had rewritten Cole of Spyglass Mountain in a private way just for my father. But Dad was too ill to appreciate it, and he died only a few months later. I will always regret that I eould not share the most signifieant moment in my life with the most important person in it. A few years later, my friend Peter Jedicke found a eopy of Cole of Spyglass Mountain in a library, and I was able to see its words in print for the first time. Dad had remembered them very well, I found. Though spyglass mountain is fiction, it evokes the magie of diseovering new things in the sky. Whether it's a new eomet on its way to a meeting with the sun or the remains of a long-departed one as a erater on the moon, the enehantment re­ verberates through time as eaeh generation first looks toward the sky and wonders about it. Spyglass mountain didn't turn Dad into an astronomer, but it helped hirn understand what diseovery is like, and I like to think that it helped hirn understand my love of eomets. Sinee then 19 of them have eome my way, and somewhere in the excitement of eaeh one, I remember Dad, his long-gone book, and our first look at the sky together. ~ Afterword ~ How to Discover a Cornet T/ you are serious about comet hunting, you should first learn to recognize l°the different types 0/ /uzzy deep-sky objects like galaxies, clusters, and nebulae, both to avoid mistaking them for comets and because they are interesting in themselves. You will find these in the Messier catalog. Representing every type of deep-sky object, this catalog offers excellent training for a would-be comet hunter. Finding these objects at different times of the year and under varying observing conditions will build the discipline that is needed in comet hunt­ ing-a skill that does not come ovemight but builds on a special love of the sky. This is more of an invitation to study the Messiers than a waming to stay away from hunting. The Messiers are a cordon bleu of the finest deep-sky objects you can behold-the exquisite wisps of M42, Orion Nebula; the nearest spiral galaxy, M31; the spec­ tacular globular M13 in Hercules; the Ring Nebula M57; even the mysterious misshapen galaxy M82-this is the grandeur of the Messiers. If you don't find a good proportion of them before you begin a serious comet search, then you are denying yourself the appropriate introduction to what your noctumal hunts could offer. If your study of Messiers gives you an indication of what com­ ets are not, observing comets that are already present and accounted 243 244 ~ Afterword for will give you an idea of what they are. Vsing positions and descriptions from such sources as the Circulars from the Interna­ tional Astronomical Vnion's (IAV's) CBAT-the IAV's clearing­ house for new astronomical discoveries-or from such magazines as Sky and Telescope or Astronomy, keep an eye on the comets you can see with your instrument. You will probably find that most comets, even the ones listed in magazines, are quite faint and dif­ ficult to observe from light-laden city skies. Patterns of Search Although comet hunting can be done with almost any tele­ scope, I recommend one that offers a wide-field view of the sky. Comet hunting works best if you follow a definite plan. Moving the telescope slowly, search a small area of the sky thoroughly, for example, rather than a large one haphazardly. You can also expect better results if you search for 1 hour for 10 nights through areas more likely to have comets rather than searching 10 hours on 1 night through sections of the sky far from the sun and unlikely to produce a comet. Since comets shine brightest when they are ne ar the sun, you have a much better chance of finding a new one in the western sky after dusk or in the eastern sky before dawn. Most important, if you really want to find a comet, don't give up on your quest. During the long years before I spotted my first new comet, I took heart from the advice of Robert Burnham, who dis­ covered several comets during the 1950s and 1960s; he told me that "if you hunt for comets long enough, sooner or later you will find one."l Equipment Required I have used three telescopes for visual comet hunting, an 8- inch, a 6-inch, and a 16-inch reflector. Your telescope needs to be capable of at least a three-quarter degree diameter field of view. Exactly how large the telescope should be depends on a number Afterword ~ 245 of factors: how much money you wish to spend; whether you plan to mount the telescope at a dark site or to carry it around from place to place. The size of your telescope also determines the brightness range of comets you are likely to find. For comets of the eighth magnitude or brighter, a 6-inch telescope will suffice, but such a telescope cannot catch anything much fainter, since the diffuse quality of some comets makes them more difficult to see than clusters and many nebulae of the same brightness. Methods of Hunting There are as many variations in comet-hunting procedures as there are successful comet hunters. My telescopes are a11 mounted on simple altazimuth mounts with motions across and up and down. Canada's Rolf Meier hunts with an equatoria11y mounted telescope, checking suspicious objects quickly from their right as­ cension and declination. He never overlaps fields, and he searches at the rate of about a degree a second. In Australia, William Brad­ field makes horizontal sweeps with an altazimuth-mounted tele­ scope over a wide arc of sky and always in the same direction. On one point most hunters agree: Patience, ski11 and luck are necessary ingredients for a successful comet search. Depending on the peculiarities of your own telescope and its mount, you might try different ways of hunting. You can hunt up and down strips of sky in a zigzag pattern, although this procedure may leave gaps in your search pattern as the setting sky goes past your telescope. You can sweep horizonta11y along a strip that is at some altitude above the horizon, or you can hunt along specific strips of declination or right ascension. The procedure you fo11ow is not nearly so important as making certain that your search area is thoroughly covered. With my 40-centimeter diameter reflector, I hunt in an up-and-down pattern partly because my telescope moves more easily that way than in azimuth as it crosses the sky. When to Hunt for Comets Comet hunting requires some judgment in choosing the best times for sweeping. On successive nights after a fu11 moon, you 246 ~ Afterword will see more and more hours of dark sky. Since the areas dosest to the sun have the best chance of containing an undiscovered comet, begin searching in the western sky in the nights following a full moon.
Recommended publications
  • Optical Astronomy Catalogues, Coordinates Visible Objects on the Sky • Stars • Planets • Comets & Asteroids • Nebulae & Galaxies
    Astrophysics Content: 2+2, 2×13×90 = 2 340 minutes = 39 hours Tutor: Martin Žáček [email protected] department of Physics, room 49 On-line informations: http://fyzika.feld.cvut.cz/~zacek/ … this presentation Many years (20?) teaching astrophysics (Prof. Petr Kulhanek), many texts and other materials but mostly in Czech (for example electronic journal Aldebaran Bulletin). 2011 … first year of teaching Astrophysics in English 2012-16 … 2017 … about 6 students, lextures on Thursday 11:00 lecture and 12:45 exercise https://www.fel.cvut.cz/cz/education/bk/predmety/12/77/p12773704.html ... AE0B02ASF https://www.fel.cvut.cz/cz/education/bk/predmety/12/78/p12784304.html ... AE0M02ASF Syllabus Classes: Astronomy & astrophysics 1. Astrophysics, history and its place in context of natural sciences. 2. Foundations of astronomy, history, its methods, instruments. 3. Solar system, inner and outer planets, Astronomical coordinates. Physics of stars 4. Statistics of stars, HR diagram. The star formation and evolution. Hyashi line. 5. Final evolutionary stages. White dwarfs, neutron stars, black holes. 6. Variable stars. Cepheids. Novae and supernovae stars. Binary systems. 7. Other galactic and extragalactic objects, nebulae, star clusters, galaxies. Cosmology 8. Principle of special and general theory of relativity. Relativistic experiments. 9. Cosmology. The Universe evolution, cosmological principle. Friedman models. 10. Supernovae Ia, cosmological parameters of the Universe, dark matter and dark energy. 11. Elementary particles, fundamental forces, quantum field theory, Feynman diagrams. 12. The origin of the Universe. Quark-gluon plasma. Nucleosynthesis. Microwave background radiation. 13. Cosmology with the inflationary phase, long-scale structure of the Universe. 14. Reserve Syllabus Practices: Astronomy & astrophysics 1.
    [Show full text]
  • Climbing the Sea Annual Report
    WWW.MOUNTAINEERS.ORG MARCH/APRIL 2015 • VOLUME 109 • NO. 2 MountaineerEXPLORE • LEARN • CONSERVE Annual Report 2014 PAGE 3 Climbing the Sea sailing PAGE 23 tableofcontents Mar/Apr 2015 » Volume 109 » Number 2 The Mountaineers enriches lives and communities by helping people explore, conserve, learn about and enjoy the lands and waters of the Pacific Northwest and beyond. Features 3 Breakthrough The Mountaineers Annual Report 2014 23 Climbing the Sea a sailing experience 28 Sea Kayaking 23 a sport for everyone 30 National Trails Day celebrating the trails we love Columns 22 SUMMIT Savvy Guess that peak 29 MEMbER HIGHLIGHT Masako Nair 32 Nature’S WAy Western Bluebirds 34 RETRO REWIND Fred Beckey 36 PEAK FITNESS 30 Back-to-Backs Discover The Mountaineers Mountaineer magazine would like to thank The Mountaineers If you are thinking of joining — or have joined and aren’t sure where Foundation for its financial assistance. The Foundation operates to start — why not set a date to Meet The Mountaineers? Check the as a separate organization from The Mountaineers, which has received about one-third of the Foundation’s gifts to various Branching Out section of the magazine for times and locations of nonprofit organizations. informational meetings at each of our seven branches. Mountaineer uses: CLEAR on the cover: Lori Stamper learning to sail. Sailing story on page 23. photographer: Alan Vogt AREA 2 the mountaineer magazine mar/apr 2015 THE MOUNTAINEERS ANNUAL REPORT 2014 FROM THE BOARD PRESIDENT Without individuals who appreciate the natural world and actively champion its preservation, we wouldn’t have the nearly 110 million acres of wilderness areas that we enjoy today.
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Chapter Two: the Astronomers and Extraterrestrials
    Warning Concerning Copyright Restrictions The Copyright Law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted materials, Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction, One of these specified conditions is that the photocopy or reproduction is not to be used for any purpose other than private study, scholarship, or research , If electronic transmission of reserve material is used for purposes in excess of what constitutes "fair use," that user may be liable for copyright infringement. • THE EXTRATERRESTRIAL LIFE DEBATE 1750-1900 The idea of a plurality of worlds from Kant to Lowell J MICHAEL]. CROWE University of Notre Dame TII~ right 0/ ,It, U,,;v"Jily 0/ Camb,idg4' to P'''''' a"d s,1I all MO""" of oooks WM grattlrd by H,rr,y Vlf(;ff I $J4. TM U,wNn;fyltas pritr"d and pu"fisllrd rOffti",.ously sincr J5U. Cambridge University Press Cambridge London New York New Rochelle Melbourne Sydney Published by the Press Syndicate of the University of Cambridge In lovi ng The Pirr Building, Trumpingron Srreer, Cambridge CB2. I RP Claire H 32. Easr 57th Streer, New York, NY 1002.2., U SA J 0 Sramford Road, Oakleigh, Melbourne 3166, Australia and Mi ha © Cambridge Univ ersiry Press 1986 firsr published 1986 Prinred in rh e Unired Srares of America Library of Congress Cataloging in Publication Data Crowe, Michael J. The exrrarerresrriallife debare '750-1900. Bibliography: p. Includes index. I. Pluraliry of worlds - Hisrory.
    [Show full text]
  • Select Letters of Percy Bysshe Shelley
    ENGLISH CLÀSSICS The vignette, representing Shelleÿs house at Great Mar­ lou) before the late alterations, is /ro m a water- colour drawing by Dina Williams, daughter of Shelleÿs friend Edward Williams, given to the E ditor by / . Bertrand Payne, Esq., and probably made about 1840. SELECT LETTERS OF PERCY BYSSHE SHELLEY EDITED WITH AN INTRODUCTION BY RICHARD GARNETT NEW YORK D.APPLETON AND COMPANY X, 3, AND 5 BOND STREET MDCCCLXXXIII INTRODUCTION T he publication of a book in the series of which this little volume forms part, implies a claim on its behalf to a perfe&ion of form, as well as an attradiveness of subjeâ:, entitling it to the rank of a recognised English classic. This pretensión can rarely be advanced in favour of familiar letters, written in haste for the information or entertain­ ment of private friends. Such letters are frequently among the most delightful of literary compositions, but the stamp of absolute literary perfe&ion is rarely impressed upon them. The exceptions to this rule, in English literature at least, occur principally in the epistolary litera­ ture of the eighteenth century. Pope and Gray, artificial in their poetry, were not less artificial in genius to Cowper and Gray ; but would their un- their correspondence ; but while in the former premeditated utterances, from a literary point of department of composition they strove to display view, compare with the artifice of their prede­ their art, in the latter their no less successful cessors? The answer is not doubtful. Byron, endeavour was to conceal it. Together with Scott, and Kcats are excellent letter-writers, but Cowper and Walpole, they achieved the feat of their letters are far from possessing the classical imparting a literary value to ordinary topics by impress which they communicated to their poetry.
    [Show full text]
  • APRIL GIFTS 2011 Compiled By: Susan F
    APRIL GIFTS 2011 Compiled by: Susan F. Glassmeyer Cincinnati, Ohio, 2011 LittlePocketPoetry.Org APRIL GIFTS 2011 1 How Zen Ruins Poets Chase Twitchel 2 Words Can Describe Tim Nolan 3 Adjectives of Order Alexandra Teague 4 Old Men Playing Basketball B.H. Fairchild 5 Healing The Mare Linda McCarriston 6 Practicing To Walk Like A Heron Jack Ridl 7 Sanctuary Jean Valentine 8 To An Athlete Dying Young A.E. Housman 9 The Routine After Forty Jacqueline Berger 10 The Sad Truth About Rilke’s Poems Nick Lantz 11 Wall Christine Garren 12 The Heart Broken Open Ronald Pies, M.D. 13 Survey Ada Jill Schneider 14 The Bear On Main Street Dan Gerber 15 Pray For Peace Ellen Bass 16 April Saturday, 1960 David Huddle 17 For My Father Who Fears I’m Going To Hell Cindy May Murphy 18 Night Journey Theodore Roethke 19 Love Poem With Trash Compactor Andrea Cohen 20 Magic Spell of Rain Ann Blandiana 21 When Lilacs Frank X. Gaspar 22 Burning Monk Shin Yu Pai 23 Mountain Stick Peter VanToorn 24 The Hatching Kate Daniels 25 To My Father’s Business Kenneth Koch 26 The Platypus Speaks Sandra Beasley 27 The Baal Shem Tov Stephen Mitchell 28 A Peasant R.S. Thomas 29 A Green Crab’s Shell Mark Doty 30 Tieh Lien Hua LiChing Chao April Gifts #1—2011 How Zen Ruins Poets I never know exactly where these annual “April Gifts” selections will take us. I start packing my bags in January by preparing an itinerary of 30 poems and mapping out a probable monthlong course.
    [Show full text]
  • What Literature Knows: Forays Into Literary Knowledge Production
    Contributions to English 2 Contributions to English and American Literary Studies 2 and American Literary Studies 2 Antje Kley / Kai Merten (eds.) Antje Kley / Kai Merten (eds.) Kai Merten (eds.) Merten Kai / What Literature Knows This volume sheds light on the nexus between knowledge and literature. Arranged What Literature Knows historically, contributions address both popular and canonical English and Antje Kley US-American writing from the early modern period to the present. They focus on how historically specific texts engage with epistemological questions in relation to Forays into Literary Knowledge Production material and social forms as well as representation. The authors discuss literature as a culturally embedded form of knowledge production in its own right, which deploys narrative and poetic means of exploration to establish an independent and sometimes dissident archive. The worlds that imaginary texts project are shown to open up alternative perspectives to be reckoned with in the academic articulation and public discussion of issues in economics and the sciences, identity formation and wellbeing, legal rationale and political decision-making. What Literature Knows The Editors Antje Kley is professor of American Literary Studies at FAU Erlangen-Nürnberg, Germany. Her research interests focus on aesthetic forms and cultural functions of narrative, both autobiographical and fictional, in changing media environments between the eighteenth century and the present. Kai Merten is professor of British Literature at the University of Erfurt, Germany. His research focuses on contemporary poetry in English, Romantic culture in Britain as well as on questions of mediality in British literature and Postcolonial Studies. He is also the founder of the Erfurt Network on New Materialism.
    [Show full text]
  • Sky and Telescope
    SkyandTelescope.com The Lunar 100 By Charles A. Wood Just about every telescope user is familiar with French comet hunter Charles Messier's catalog of fuzzy objects. Messier's 18th-century listing of 109 galaxies, clusters, and nebulae contains some of the largest, brightest, and most visually interesting deep-sky treasures visible from the Northern Hemisphere. Little wonder that observing all the M objects is regarded as a virtual rite of passage for amateur astronomers. But the night sky offers an object that is larger, brighter, and more visually captivating than anything on Messier's list: the Moon. Yet many backyard astronomers never go beyond the astro-tourist stage to acquire the knowledge and understanding necessary to really appreciate what they're looking at, and how magnificent and amazing it truly is. Perhaps this is because after they identify a few of the Moon's most conspicuous features, many amateurs don't know where Many Lunar 100 selections are plainly visible in this image of the full Moon, while others require to look next. a more detailed view, different illumination, or favorable libration. North is up. S&T: Gary The Lunar 100 list is an attempt to provide Moon lovers with Seronik something akin to what deep-sky observers enjoy with the Messier catalog: a selection of telescopic sights to ignite interest and enhance understanding. Presented here is a selection of the Moon's 100 most interesting regions, craters, basins, mountains, rilles, and domes. I challenge observers to find and observe them all and, more important, to consider what each feature tells us about lunar and Earth history.
    [Show full text]
  • Albert Steffen, the Poet Marie Steiner 34 a Selection of Poems 38 Little Myths Albert Steffen 51
    ALBERT STEFFEN CENTENNIAL ISSUE NUMBER 39 AUTUMN, 1984 ISSN 0021-8235 . Albert Steffen does not need to learn the way into the spiritual world from Anthroposophy. But from him Anthroposophy can come to know of a living “Pilgrimage ” — as an innate predisposition o f the soul — to the world of spirit. Such a poet-spirit must, if he is rightly understood, be recognized within the anthroposophical movement as the bearer o f a message from the spirit realm. It must indeed be felt as a good destiny that he wishes to work within this movement. H e adds, to the evidence which Anthroposophy can give of the truth inherent within it, that which works within a creative personality as spirit-bearer like the light of this truth itself. Rudolf Steiner F ro m Das Goetheanum, February 22, 1925. Editor for this issue: Christy Barnes STAFF: Co-Editors: Christy Barnes and Arthur Zajonc; Associate Editor: Jeanne Bergen; Editorial Assistant: Sandra Sherman; Business Manager and Subscriptions: Scotti Smith. Published twice a year by the Anthroposophical Society in America. Please address subscriptions ($10.00 per year) and requests for back numbers to Scotti Smith, Journal for Anthroposophy, R.D. 2, Ghent, N.Y. 12075. Title Design by Walter Roggenkamp; Vignette by Albert Steffen. Journal for Anthroposophy, Number 39, Autumn, 1984 © 1984, The Anthroposophical Society in America, Inc. CONTENTS STEFFEN IN THE CRISIS OF OUR TIMES To Create out of Nothing 4 The Problem of Evil 5 Present-Day Tasks for Humanity Albert Steffen 8 IN THE WORDS OF HIS CONTEMPORARIES
    [Show full text]
  • Mars Mapping, Data Mining, Change Detection, GIS Mapping, Time Series Analysis
    ISPRS Technical Commission IV Symposium on Geospatial Databases and Location Based Services, 14 – 16 May 2014, Suzhou, China, MTSTC4-2014-172-2 TEMPORAL ANALYSIS OF ALL AVAILABLE HIGH-RESOLUTION MARS IMAGING PRODUCTS SINCE 1976 Panagiotis Sidiropoulos1 and Jan-Peter Muller Mullard Space Science Laboratory, University College London, Holmbury St Mary, Surrey, RH56NT, UK [email protected], [email protected] Commission KEY WORDS: Mars mapping, data mining, change detection, GIS mapping, time series analysis ABSTRACT: Starting from Viking Orbiter 1, launched in August 1975, several mainly NASA orbiters have been sent to Mars to accomplish the robotic tasks of imaging its surface. Initial analyses of these early images indicated a planet with similar characteristics to the Moon pitted with craters and large volcanic and tectonic features but dead from a geological perspective. Recently, scientific interest has shifted towards high-resolution imaging, which allows the identification of previously undiscovered geological phenomena and surface features as well as the examination of surface composition and geological history. The increasing frequency of Mars orbiters, carrying high-resolution cameras, allows the dynamic analysis of Martian surface, i.e. the analysis of the temporal evolution of certain areas that reveal natural processes that happen over time. The latter can be roughly classified into two major categories; processes that happen periodically each and every Martian season (e.g. seasonal flows in high latitude areas (McEwen et al., 2011) and events that do not follow some iterative pattern but are rather sporadic (e.g. new impact craters (Byrne et al., 2009)). Consequently, it is beneficial to conduct a twin temporal grouping of Mars imaging products, the first examining product distribution through time, so as to point out areas that favor the search for sporadic events, and the second product distribution per season, to identify areas favouring the search for periodic events.
    [Show full text]
  • Planetary Science : a Lunar Perspective
    APPENDICES APPENDIX I Reference Abbreviations AJS: American Journal of Science Ancient Sun: The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites (Eds. R. 0.Pepin, et al.), Pergamon Press (1980) Geochim. Cosmochim. Acta Suppl. 13 Ap. J.: Astrophysical Journal Apollo 15: The Apollo 1.5 Lunar Samples, Lunar Science Insti- tute, Houston, Texas (1972) Apollo 16 Workshop: Workshop on Apollo 16, LPI Technical Report 81- 01, Lunar and Planetary Institute, Houston (1981) Basaltic Volcanism: Basaltic Volcanism on the Terrestrial Planets, Per- gamon Press (1981) Bull. GSA: Bulletin of the Geological Society of America EOS: EOS, Transactions of the American Geophysical Union EPSL: Earth and Planetary Science Letters GCA: Geochimica et Cosmochimica Acta GRL: Geophysical Research Letters Impact Cratering: Impact and Explosion Cratering (Eds. D. J. Roddy, et al.), 1301 pp., Pergamon Press (1977) JGR: Journal of Geophysical Research LS 111: Lunar Science III (Lunar Science Institute) see extended abstract of Lunar Science Conferences Appendix I1 LS IV: Lunar Science IV (Lunar Science Institute) LS V: Lunar Science V (Lunar Science Institute) LS VI: Lunar Science VI (Lunar Science Institute) LS VII: Lunar Science VII (Lunar Science Institute) LS VIII: Lunar Science VIII (Lunar Science Institute LPS IX: Lunar and Planetary Science IX (Lunar and Plane- tary Institute LPS X: Lunar and Planetary Science X (Lunar and Plane- tary Institute) LPS XI: Lunar and Planetary Science XI (Lunar and Plane- tary Institute) LPS XII: Lunar and Planetary Science XII (Lunar and Planetary Institute) 444 Appendix I Lunar Highlands Crust: Proceedings of the Conference in the Lunar High- lands Crust, 505 pp., Pergamon Press (1980) Geo- chim.
    [Show full text]