bioRxiv preprint doi: https://doi.org/10.1101/2020.11.03.367326; this version posted November 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Modulating glial genes involved in synaptic function mitigates pathogenesis and behavioral deficits in a 2 Drosophila model of Huntington’s Disease 3 4 Tarik S. Onur1,2,3,+, Andrew Laitman2,4,5,+, He Zhao2, Ryan Keyho2, Hyemin Kim2, Jennifer Wang2, 5 Megan Mair1,2,3, Alma Perez2, Maria de Haro1,2, Huilan Wang6, Ying-Wooi Wan2, Genevera Allen2,7, 6 Boxun Lu6, Ismael Al-Ramahi1,2, Zhandong Liu2,4,5, Juan Botas1,2,3,4,8* 7 8 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA 9 2 Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 10 USA 11 3 Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, Texas, USA 12 4 Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, Texas, USA 13 5 Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA 14 6 State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of 15 Life Sciences, Fudan University, Shanghai, China 16 7 Departments of Electrical and Computer Engineering, Statistics and Computer Science, Rice University, 17 Houston, Texas, USA 18 8 Lead Contact 19 * Correspondence:
[email protected] 20 + Co-first authors 21 22 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.03.367326; this version posted November 4, 2020.