Genome-Wide Association Study Identifies 48 Common Genetic Variants Associated with Handedness

Total Page:16

File Type:pdf, Size:1020Kb

Genome-Wide Association Study Identifies 48 Common Genetic Variants Associated with Handedness bioRxiv preprint doi: https://doi.org/10.1101/831321; this version posted November 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Genome-wide association study identifies 48 common genetic variants associated with handedness. Gabriel Cuellar Partida1, Joyce Y Tung2, Nicholas Eriksson2, Eva Albrecht3, Fazil Aliev4, Ole A Andreassen5,6, Inês Barroso7,8,9, Jacques S Beckmann10, Marco P Boks11, Dorret I Boomsma12,13, Heather A Boyd14, Monique MB Breteler15, Harry Campbell16, Daniel I Chasman17,18, Lynn F Cherkas19, Gail Davies20,21, Eco JC de Geus12,13, Ian J Deary20,21, Panos Deloukas22, Danielle M Dick23, David L Duffy24, Johan G Eriksson25,26, Tõnu Esko27,28, Bjarke Feenstra14, Frank Geller14, Christian Gieger29,30, Ina Giegling31, Scott D Gordon24, Jiali Han32,33, Thomas F Hansen34,35, Annette M Hartmann31, Caroline Hayward36, Kauko Heikkilä37, Andrew A Hicks38, Joel N Hirschhorn39,40,41, Jouke-Jan Hottenga12,13, Jennifer E Huffman36, Liang-Dar Hwang1, Mohammad A Ikram42, Jaakko Kaprio43,44, John P Kemp1,45, Kay-Tee Khaw46, Norman Klopp47, Bettina Konte31, Zoltan Kutalik48,49, Jari Lahti50,51, Xin Li32,33, Ruth JF Loos8,52,53, Michelle Luciano20,21, Sigurdur H Magnusson54, Massimo Mangino19, Pedro Marques-Vidal55, Nicholas G Martin24, Wendy L McArdle56, Mark I McCarthy57,58,59†, Carolina Medina-Gomez42,60, Mads Melbye14,61,62, Scott A Melville38, Andres Metspalu27, Lili Milani27, Vincent Mooser63, Mari Nelis27, Dale R Nyholt24,64, Kevin S O'Connell5, Roel A Ophoff65,66, Cameron Palmer67, Aarno Palotie68, Teemu Palviainen68, Guillaume Pare69, Lavinia Paternoster70, Leena Peltonen*, Brenda WJH Penninx13,71, Ozren Polasek72,73, Peter P Pramstaller38, Inga Prokopenko74,75, Katri Raikkonen50, Samuli Ripatti68, Fernando Rivadeneira42,60, Igor Rudan76, Dan Rujescu31, Johannes H Smit13,77, George Davey Smith22, Jordan W Smoller78,79, Nicole Soranzo80, Tim D Spector19, Beate St Pourcain22,81,82, John M Starr*, Hreinn Stefánsson83, Stacy Steinberg83, Maris Teder-Laving27, Gudmar Thorleifsson83, Kari Stefansson83, Nicholas J Timpson22, André G Uitterlinden42,60, Cornelia M van Duijn42,60, Frank JA van Rooij42, Jaqueline M Vink85,86, Peter Vollenweider55,Eero Vuoksimaa68, Gérard Waeber55, Nicholas J Wareham87, Nicole Warrington1, Dawn Waterworth88, Thomas Werge34,61,89, H.-Erich Wichmann90, Elisabeth Widen68, Gonneke Willemsen91, Alan F Wright36, Margaret J Wright92,93, Mousheng Xu94, Jing Hua Zhao95, Peter Kraft96, David A Hinds2,Cecilia M Lindgren97,98, Reedik Magi27, Benjamin M Neale99,100, David M Evans1, Sarah E Medland101 1. The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia 2. 23andMe Inc, Sunnyvale, California, USA 3. Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany 4. Departments of Psychology, Virginia Commonwealth University, Richmond, VA, USA 5. NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway 6. Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway 7. Human genetics, Wellcome Sanger Institute, Cambridge, UK 8. MRC Epidemiology Unit, University of Cambridge, Cambridge, UK 9. Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK 10. Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland 11. Department of Psychiatry, UMC Utrecht Brain Center, University Utrecht, Utrecht, The Netherlands. 12. Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands. 13. Amsterdam Public Health research institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands. 14. Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark 15. Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany 16. Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK 17. Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA 18. Harvard Medical School, Boston, MA, USA 19. Department of Twin Research and Genetic Epidemiology, King's College London, London, UK 1 bioRxiv preprint doi: https://doi.org/10.1101/831321; this version posted November 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 20. Psychology, University of Edinburgh, Edinburgh, UK 21. Centre for Cognitive Ageing and Cognitive Epidemilogy, University of Edinburgh, Edinburgh, UK 22. MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK 23. Departments of Psychology and Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA 24. Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia 25. Department of General Practice and Primary health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland 26. Folkhälsan Research Center, Helsinki, Finland, 27. Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia 28. Program in Medical and Population Genetics, Broad Institute, Cambridge, USA 29. Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany 30. German Center for Diabetes Research (DZD), München-Neuherberg, Neuherberg, Germany 31. University Clinic and Outpatient Clinic for Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany 32. Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA 33. Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana, USA 34. Institute of Biological Psychiatry, Mental Health Services of Copenhagen, Copenhagen, Denmark 35. Danish Headache Center, Copenhagen Universoty Hospital, Glostrup, Denmark 36. MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom 37. Institute for Molecular Medicine FI, University of Helsinki, Helsinki, Finland 38. Institute for Biomedicine, Eurac Research, Bolzano, Italy 39. Division of Endocrinology, Boston Children's Hospital, Boston, USA 40. Department of Genetics, Harvard Medical School, Boston, USA 41. Medical and Population Genetics, Broad Institute, Cambridge, USA 42. Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands 43. Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland 44. Dept of Public Health, University of Helsinki, Helsinki, Finland 45. Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK 46. Public Health and Primary Care, University of Cambridge, Cambridge, UK 47. Hannover Unified Biobank, Hannover Medical School, Hannover, Germany 48. Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland 49. Swiss Institute of Bioinformatics, Lausanne, Switzerland, 50. Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland 51. Turku Institute for Advanced Studies, University of Turku, Turku, Finland 52. The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New Tork, USA 53. The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New Tork, USA 54. deCODE Genetics, Reykjavik, Iceland 55. Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland 56. Bristol Medical School, University of Bristol, Bristol, UK 57. Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK 58. Oxford Centre for DIabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK 59. Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK 60. Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands 61. Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark 62. Department of Medicine, Stanford University School of Medicine, Stanford, USA 63. Service of Clinical Chemistry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland 64. School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia 65. Department of Human Genetics, University California Los Angeles, Los Angeles, USA 66. Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University California Los Angeles, Los Angeles, USA 67. Department of Computer Science, Columbia University, New York, USA 68. Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland 69. Pathology and Molecular Medicine, McMaster University, Hamilton, Canada 70. MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK, 71. Department of Psychiatry, Amsterdam UMC, VU University, Amsterdam, The Netherlands 72. Department of Public Health, University of Split School of Medicine, Split, Croatia 73. Research unit, Psychiatric hospital Sveti Ivan, Zagreb, Croatia
Recommended publications
  • Analysis and Identification of Bite Marks in Forensic Casework
    ORIGINAL | http://dx.doi.org/10.4172/1994-8220.1000102 J Psychiatry 2014;17:475-482 Handedness in schizophrenia and schizoaffective disorder in an afrikaner founder population RH Mataboge¹*, M Joubert¹, JC Jordaan², F Reyneke2, JL Roos1 ¹University of Pretoria, Department of Psychiatry, Pretoria, South Africa ²University of Pretoria, Department of Statistics, Pretoria, South Africa Abstract Objective: An association between the Leucine-rich repeat trans membrane neuronal 1 gene (LRRTM1), schizophrenia/ schizoaffective disorder and handedness was recently claimed to be established. This study aimed to test the hypothesis that Afrikaner patients with schizophrenia/schizoaffective disorder are more non-right handed than their non-affected first- degree relatives and that of two separate control groups. The association between handedness, gender and age at onset of illness in the patients group was also determined. Method: Two cross-sectional studies were carried out, which compared the handedness of a group of 100 (30 females and 70 males) Afrikaner patients with schizophrenia/schizoaffective disorder, their non-affected first-degree relatives, and two separate control groups. Handedness was determined by the Edinburg Handedness Inventory (EHI). Results: Patients were found to be more right-handed than expected with only 17 out of 100 being non-right-handed compared to 11 out of 100 non-affected relatives; 36 out of 100 students and 75 out of 500 non- affected Afrikaner participants. The students were significantly more non-right handed than the patient and family groups but no difference in handedness was found when comparing the patients, family members and 500 participant control group. There was no significant difference between age at onset of illness and handedness.
    [Show full text]
  • The Hands to Say It
    Issue 91, February 2008 www.proteinspotlight.org The hands to say it Vivienne Baillie Gerritsen When I was a little girl, I thought that my left-handed classmates were special. I envied their difference. And I used to marvel at the way they crouched over their desk, embracing something invisible as they did their best to avoid smudging ink all over their sheet of paper. Left-handedness is special. But so is right-handedness. Humans are not the only animals to make use of their hands – or claws, or paws, or hooves - but they are the only ones who show a marked preference for either the left one, or the right one. If this is so, there must be a reason for it. And not only must there be a reason but it must translate a certain structure of our brain: an asymmetry somewhere. Indeed, our brain is divided into two hemispheres which are dedicated to processing different activities. One side looks after our dreams, while the other is far more down to earth. LRRTM1 is the first protein to have been discovered which seems to be directly involved in this brain asymmetry. Consequently, it influences the handedness of a human-being and, more astonishingly, may also predispose individuals to psychotic troubles such as schizophrenia. don’t have a distinct preference for one hand over the other. The passing of roles from hand to mind expresses a particular brain structure. In turn, the progressive use of speech has continued to mould our brain into a shape peculiar to the human species.
    [Show full text]
  • EEG Glossary
    EEG Glossary The first attempt to systematically propose a syllabus for Activation procedure Any procedure designed to modu- electroencephalographers was made by O’Leary and Knott late EEG activity, for instance to enhance physiologi- who in 1955 published in the EEG Journal “Some Minimal cal waveforms or elicit abnormal paroxysmal activity. Essentials for Clinical Electroencephalographers” [1]. In the Examples include eye closing, hyperventilation, photic following decades, with the EEG being increasingly used in stimulation, natural or drug-induced sleep, sensory stimu- the experimental and clinical field, need to adopt a language lation (acoustic, somatosensory, or pain). as common as possible between various laboratories world- Activity, EEG An EEG wave or sequence of waves of wide became even more pressing. In fact, the multiplicity of cerebral origin. terms generated (and sometimes still generates) confusion Alpha band Frequency band of 8–13 Hz inclusive. Greek and misinterpretations, promoting misdiagnosis and making letter: α. it difficult to compare data between different laboratories. Alpha rhythm Rhythm at 8–13 Hz inclusive occurring To overcome this risk, in 1974 “A Glossary of Terms,” most during wakefulness over the posterior regions of the head, commonly used by “Clinical Electroencephalographers,” was generally with maximum amplitudes over the occipital published in the EEG Journal; this glossary was the result of areas. Amplitude varies but is mostly below 50 μV in the the work of a group of experts from the International Federation adult, but often much higher in children. Best seen with of Clinical Neurophysiology (IFCN) led by Chatrian [2]. the eyes closed, during physical relaxation and relative Thanks to this document, it was for the first time officially mental inactivity.
    [Show full text]
  • Symmetry and Beauty in the Living World I Thank the Governing Body and the Director of the G.B
    SYMMETRY AND BEAUTY IN THE LIVING WORLD I thank the Governing Body and the Director of the G.B. Pant Institute of Himalayan Environment & Development for providing me this opportunity to deliver the 17th Govind Ballabh Pant Memorial Lecture. Pt. Pant, as I have understood, was amongst those who contributed in multiple ways to shape and nurture the nation in general and the Himalayan area in particular. Established to honour this great ‘Son of the Mountains’, the Institute carries enormous responsibilities and expectations from millions of people across the region and outside. Undoubtedly the multidisciplinary skills and interdisciplinary approach of the Institute and the zeal of its members to work in remote areas and harsh Himalayan conditions will succeed in achieving the long term vision of Pt. Pant for the overall development of the region. My talk ‘Symmetry and Beauty in the Living World’ attempts to discuss aspects of symmetry and beauty in nature and their evolutionary explanations. I shall explain how these elements have helped developmental and evolutionary biologists to frame and answer research questions. INTRODUCTION Symmetry is an objective feature of the living world and also of some non-living entities. It forms an essential element of the laws of nature; it is often sought by human beings when they create artefacts. Beauty has to do with a subjective assessment of the extent to which something or someone has a pleasing appearance. It is something that people aspire to, whether in ideas, creations or people. Evolutionary biology tells us that it is useful to look for an evolutionary explanation of anything to do with life.
    [Show full text]
  • Schizophrenia As Failure of Hemispheric Dominance for Language
    J-P. Ewert – Key stimulus and releasing mechanism V IEWPOINT 63 Fentress, J.C. (1983) in Handbook of Behavioral Neurobiology: 67 Liaw, J-S., Weerasuriya, A. and Arbib, M.A. (1994) Neural Motivation (Vol. 6) (Satinoff, E. and Teitelbaum, P., eds), Networks 7, 1137–1152 pp. 185–234, Plenum 68 König, P., Engel, A.K. and Singer, W. (1996) Trends Neurosci. 64 Arbib, M.A. and Cobas, A. (1991) in Visual Structures and 19, 130–137 Integrated Functions (Arbib, M.A. and Ewert, J-P., eds), 69 Ungerleider, L.G. and Mishkin, M. (1982) in Analysis of Visual pp. 139–166, Plenum Behavior (Ingle, D.J., Goodale, M.A. and Mansfield, R.J.W., eds), 65 Matesz, C. and Székely, G. (1978) J. Comp. Neurol. 178, pp. 549–586, MIT Press 157–176 70 Goodale, M.A. and Milner, A.D. (1992) Trends Neurosci. 15, 66 Matsushima, T., Satou, M. and Ueda, K. (1989) J. Comp. 20–25 Physiol. A 166, 7–22 71 Jeannerod, M. et al. (1995) Trends Neurosci. 18, 314–320 Schizophrenia as failure of hemispheric dominance for language T.J. Crow Schizophrenic illnesses occur with approximately the same incidence in all human populations with a characteristic distribution (slightly earlier in males) of ages of onset.Given that the predisposition (which presumably is genetic) is associated with a procreative disadvantage why do such illnesses persist? Here it is suggested that these conditions are a manifestation of genetic diversity in the evolution of the specifically human characteristic of language, an innovation that has occurred by a process of progressive hemispheric specialization – the establishment of dominance for some critical component of language in one or the other hemisphere.
    [Show full text]
  • Endogenous Sirnas and Noncoding RNA-Derived Small Rnas Are Expressed in Adult Mouse Hippocampus and Are Up-Regulated in Olfactory Discrimination Training
    Downloaded from rnajournal.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Endogenous siRNAs and noncoding RNA-derived small RNAs are expressed in adult mouse hippocampus and are up-regulated in olfactory discrimination training NEIL R. SMALHEISER,1 GIOVANNI LUGLI,1 JYOTHI THIMMAPURAM,2 EDWIN H. COOK,1 and JOHN LARSON1 1Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois 60612, USA 2W.M. Keck Center for Comparative and Functional Genomics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA ABSTRACT We previously proposed that endogenous siRNAs may regulate synaptic plasticity and long-term gene expression in the mammalian brain. Here, a hippocampal-dependent task was employed in which adult mice were trained to execute a nose-poke in a port containing one of two simultaneously present odors in order to obtain a reward. Mice demonstrating olfactory discrimination training were compared to pseudo-training and nose-poke control groups; size-selected hippocampal RNA was subjected to Illumina deep sequencing. Sequences that aligned uniquely and exactly to the genome without uncertain nucleotide assignments, within exons or introns of MGI annotated genes, were examined further. The data confirm that small RNAs having features of endogenous siRNAs are expressed in brain; that many of them derive from genes that regulate synaptic plasticity (and have been implicated in neuropsychiatric diseases); and that hairpin-derived endo-siRNAs and the 20- to 23-nt size class of small RNAs show a significant increase during an early stage of training. The most abundant putative siRNAs arose from an intronic inverted repeat within the SynGAP1 locus; this inverted repeat was a substrate for dicer in vitro, and SynGAP1 siRNA was specifically associated with Argonaute proteins in vivo.
    [Show full text]
  • A Large-Scale Estimate on the Relationship Between Language And
    www.nature.com/scientificreports OPEN A large‑scale estimate on the relationship between language and motor lateralization Julian Packheiser1*, Judith Schmitz2, Larissa Arning3, Christian Beste4, Onur Güntürkün1 & Sebastian Ocklenburg1,5 Human language is dominantly processed in the left cerebral hemisphere in most of the population. While several studies have suggested that there are higher rates of atypical right‑hemispheric language lateralization in left‑/mixed‑handers, an accurate estimate of this association from a large sample is still missing. In this study, we comprised data from 1,554 individuals sampled in three previous studies in which language lateralization measured via dichotic listening, handedness and footedness were assessed. Overall, we found a right ear advantage indicating typical left‑hemispheric language lateralization in 82.1% of the participants. While we found signifcantly more left‑handed individuals with atypical language lateralization on the categorical level, we only detected a very weak positive correlation between dichotic listening lateralization quotients (LQs) and handedness LQs using continuous measures. Here, only 0.4% of the variance in language lateralization were explained by handedness. We complemented these analyses with Bayesian statistics and found no evidence in favor of the hypothesis that language lateralization and handedness are related. Footedness LQs were not correlated with dichotic listening LQs, but individuals with atypical language lateralization also exhibited higher rates of atypical footedness on the categorical level. We also found diferences in the extent of language lateralization between males and females with males exhibiting higher dichotic listening LQs indicating more left‑hemispheric language processing. Overall, these fndings indicate that the direct associations between language lateralization and motor asymmetries are much weaker than previously assumed with Bayesian correlation analyses even suggesting that they do not exist at all.
    [Show full text]
  • A Cinch for the Brain
    A Cinch for the Brain Our bodies, our behavior and even our brains are anything but symmetrical. And this seems to be an important factor in the seamless functioning of our thought, speech and motor faculties. Researchers at the Max Planck Institute for Psycholinguistics in Nijmegen are currently searching for genetic clues to this phenomenon. They want to decode the fundamental molecular biological mechanisms that contribute to asymmetry in the brain, and to identify possible causes for neurological disorders. TEXT STEFANIE REINBERGER t first glance, the human ture. It’s divided into two halves, both A strong left: Rafael Nadal, for body appears to be com- of which are equal in size and whose many years the world’s number pletely symmetrical: two furrows and bulges follow a similar pat- one men’s tennis player, is right-handed but holds the arms, two legs, two eyes, tern. But the functional centers are ex- racket in his left hand most of two ears. Even features tremely unevenly distributed. The right the time. Researchers are likeA the nose and mouth appear to be and left hemispheres specialize in dif- studying how the brains of left- evenly positioned in both halves of ferent cognitive functions. They essen- and right-handed people differ. the face in most people. On closer in- tially divide up the work between them, spection, though, we see that one leg possibly to expand the total range of is longer than the other, one hand is tasks performed. stronger, or maybe the left ear is posi- “Lateralization is a very distinct phe- tioned lower than the right one.
    [Show full text]
  • Manual Asymmetry and Handedness (Trophi Nteclon/Smt Symme-A Try) DALE PURVES*, LEONARD E
    Proc. Natd. Acad. Sci. USA Vol. 91, pp. 5030-5032, May 1994 Neurobiology Manual asymmetry and handedness (trophI nteclon/smt symme-a try) DALE PURVES*, LEONARD E. WHITE, AND TIMOTHY J. ANDREWS Duke University Medical Center, Department of Neurobiology, Durham, NC 27710 Contributed by Dale Purves, February 2, 1994 ABSTRACT Volumtric mnasurements show that right- handed Individuals have lager right hands than left hands. In contrst, the hands of left-handers are much more nearly symmetrical. Based on what Is known about tophic interac- dons between neurons and targets, these fings predict a c d aSymmetr of the relevant parts of the sensori- motor system in right-handers. The lack of an opposite-hand asymmy among left-handers further implies that right- and left-handed phenotypes do not arise according to the same developmental rules. Nerve cells and their targets are linked by long-term trophic interactions that coordinate somatic and neural growth (see ref. 1 and below). If one hand is generally larger than the other-as some earlier studies of the human metacarpals suggest (2, 3)-then this asymmetry should be reflected in the size of the related neural structures. As a first step in exploring this neurosomatic relationship, we have measured the volume of the two hands among right- and left-handers. We solicited 52 adult volunteers (students, faculty, and staff from Duke University) who described themselves as right-handers and 50 who considered themselves left-handers (Table 1). The volumes of the two hands were measured for FIG. 1. Diagram ofapparatus used to measure hand size by water each subject by a simple water displacement technique (Fig.
    [Show full text]
  • The Effect of Handedness As Related to the Communication Arts" (1957)
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1957 The ffecE t of Handedness as Related to the Communication Arts Bertha Beck Eastern Illinois University Recommended Citation Beck, Bertha, "The Effect of Handedness as Related to the Communication Arts" (1957). Masters Theses. 4560. https://thekeep.eiu.edu/theses/4560 This Dissertation/Thesis is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. THE EFFECT OF HANDEDNESS - AS RELATED TO THE COMMUNICATION ARTS A Subst'antiiil' Paper Presented to THE FACULTY OF THE DEPARTMENT OF EDUCATION EASTERN ILLINIOS UNIVERSITY In Partial Fulf'illment Of' the REQUIREMENTS FOR THE DEGREE MASTER OF·SCIENCE IN EDUCATION by ·Bertha Beck - - July;1957 ACKNOWLEDGEMENTS I wish to express my sincere appreciation and thanks to the following people: Dr. A. U. Edwards for his pa tience and guidance. The staff of the libraries, both at the University of Illinois and at Eastern Illinois University, for their assistance. Mrs. Vera Slover, Sullivan, Illinois, for reviewing the paper with me. Mrs. Janice R�Yehrich' for tyPing the final manuscript. CONTENTS Chapter Page I. INTRODUCTION. • • • • • • • • • • • • • • • • • • • 1 . ' II. THE INCIDENCE OF THE CONCEPT OF HANDEDNESS. • • • • 3 Inherited Acquired III. THE EF�ECT OF CHANGING A CHILD'S HANDEDNESS; CHARACTERISTICS OF LATERALITY ON • • • • • • • • • .13 , . Writing Speaking Reading IV• HANDEDNESS AND ITS EFFECT ON SPECIAL CASES. • • ••26 Mentally Deficient Retarded Achievers v. CONCLUSION •••• . • 31 BIBLIOGRAPHY. • • • • • • • • • • • . • • • •.33 CHAPTER I When .� he �ubject of handedness is st�died, a person -t ' -· � finds many rs:mifications �hich can, .be conp dered.
    [Show full text]
  • Downregulation of Glial Genes Involved in Synaptic Function
    RESEARCH ARTICLE Downregulation of glial genes involved in synaptic function mitigates Huntington’s disease pathogenesis Tarik Seref Onur1,2,3†, Andrew Laitman2,4,5†, He Zhao2, Ryan Keyho2, Hyemin Kim2, Jennifer Wang2, Megan Mair1,2,3, Huilan Wang6, Lifang Li1,2, Alma Perez2, Maria de Haro1,2, Ying-Wooi Wan2, Genevera Allen2,7, Boxun Lu6, Ismael Al-Ramahi1,2, Zhandong Liu2,4,5, Juan Botas1,2,3,4* 1Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States; 2Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, United States; 3Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, United States; 4Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, United States; 5Department of Pediatrics, Baylor College of Medicine, Houston, United States; 6State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; 7Departments of Electrical & Computer Engineering, Statistics and Computer Science, Rice University, Houston, United States Abstract Most research on neurodegenerative diseases has focused on neurons, yet glia help form and maintain the synapses whose loss is so prominent in these conditions. To investigate the contributions of glia to Huntington’s disease (HD), we profiled the gene expression alterations of *For correspondence: Drosophila expressing human mutant Huntingtin (mHTT) in either glia or neurons and compared [email protected] these changes to what is observed in HD human and HD mice striata. A large portion of conserved genes are concordantly dysregulated across the three species; we tested these genes in a high- †These authors contributed throughput behavioral assay and found that downregulation of genes involved in synapse assembly equally to this work mitigated pathogenesis and behavioral deficits.
    [Show full text]
  • Right Vs. Left
    High Touch High Tech® Science Experiences That Come To You Right vs. Left Ingredients & Supplies: • pencil • paper • scissors • ball, small (ex. tennis ball, baseball) • ball, large (ex. soccer ball) • coin • paper towel tube • phone • stairs • cup of water Instructions: If you use your right hand to write and draw, you are right-handed. If you use your left, you are left-handed. This is your dominant hand. Most people are right-handed. In fact, only 10% of the population uses their left hand to write. Scientists are unsure why most people favor one hand. Perhaps it is genetic, health-related, or environmental. The left- hand minority remains a mystery. But, this isn’t the only way to determine your “sidedness.” You also have a dominant ear, eye, and foot. Usually if someone is right-hand dominant, he favors the right side of his body. But, this is not true for everyone. Sometimes, a person may write with his right hand, but throw a baseball with his left hand. This is called “mixed-handedness” or cross- dominance. If a soccer player favors her right foot, but draws with her right hand, this is also cross-dominance. When someone can use both sides of the body equally well, he or she is ambidextrous. This is a rare form of cross-dominance (about 1% of the population) because the person can write, throw, and kick with either the right or left side with skill. Now you can experiment to find out which side is dominant for you, your friends, and your family! Everyone knows immediately if they are right-handed or left-handed.
    [Show full text]