A Genetic and Epigenetic Perspective

Total Page:16

File Type:pdf, Size:1020Kb

A Genetic and Epigenetic Perspective The ontogenesis of asymmetry in humans - a genetic and epigenetic perspective Inaugural – Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften in der Fakultät für Psychologie der RUHR-UNIVERSITÄT BOCHUM vorgelegt von: Judith Schmitz, M.Sc. Psychologie Bochum, Mai 2018 I Gedruckt mit Genehmigung der Fakultät für Psychologie der RUHR-UNIVERSITÄT BOCHUM Referent: PD Dr. Sebastian Ocklenburg Korreferent: Prof. Dr. Robert Kumsta Termin der mündlichen Prüfung: 25.07.2018 II Cover illustration: The figure was used with permission of Prof. Dr. Be- ate Brand-Saberi and Dr. Nenad Maricic, Department of Anatomy and Molecu- lar embryology, Ruhr University Bochum. III Table of Contents Chapter 1 General introduction 1 1.1. Hemispheric asymmetries – the basics 2 1.1.1. Handedness 3 1.1.2. Language lateralization 4 1.2. The development of asymmetry 6 1.2.1. The emergence of visceral asymmetries 7 1.2.2. The emergence of structural hemispheric asymmetries 7 1.2.3. The emergence of motor asymmetries 8 1.2.4. The emergence of language lateralization 9 1.3. Genetics 10 1.3.1. The genetics of handedness 10 1.3.2. The genetics of language lateralization 13 1.3.3. The molecular link between visceral and hemispheric 16 asymmetries 1.4. Hemispheric asymmetries in gene expression 19 1.4.1. Lateralized gene expression in the fetal cortex 19 1.4.2. Lateralized gene expression in the fetal spinal cord 20 1.4.3. Relevance of lateralized gene expression for behavioral 21 asymmetry 1.5. Gene Ontology: Considering gene functions 23 1.6. The role of epigenetic regulation 25 1.6.1. Epigenetic mechanisms – the basics 26 1.6.2. Epigenetics in the development of hemispheric 27 asymmetries 1.7. Aim of this thesis 29 Chapter 2 The functional genetics of handedness and language lat- 31 eralization Chapter 3 Towards an epigenetic understanding of handedness on- 61 togenesis IV Chapter 4 DNA methylation in candidate genes for handedness 123 predicts handedness direction Chapter 5 KIAA0319 promoter DNA methylation predicts dichotic 149 listening performance in forced-attention conditions Chapter 6 General discussion 171 6.1. Summary of key findings 172 6.2. Molecular interrelations between asymmetry phenotypes 173 6.2.1. Handedness and language lateralization: FOXP2 and 173 LRRTM1 6.2.2. Visceral and hemispheric asymmetries: KIAA0319 175 6.2.3. Implications for phenotyping 177 6.2.4. Molecular pathways 179 6.3. The role of epigenetics 181 6.3.1. The role of birth stress 181 6.3.2. DNA methylation in twins 182 6.4. Transgenerational epigenetic inheritance – is that 184 possible? 6.4.1. Germ line epigenetic inheritance 184 6.4.2. Experience-dependent epigenetic inheritance 187 6.4.3. Gene-dependent epigenetic inheritance 189 6.5. Conclusion and outlook 192 6.5.1. Epigenetics in human cerebral tissue 193 6.5.2. Perspectives in animal research 195 References 196 Appendix 215 V Chapter 1 General introduction 1 Chapter 1 1.1. Hemispheric asymmetries – the basics In 1866, German zoologist Ernst Haeckel introduced promorphology – the sci- ence of an organism’s external form - and proposed symmetry as a fundamental criterion for classifying organisms (Haeckel, 1866). The clade of Bilateria (ani- mals displaying mirror-inverted body halves) including (but not restricted to) all vertebrates was created in 1888 (Hatschek, 1888). Besides asymmetry (organ- isms without any axis or plane of symmetry, e.g. the majority of sponges) and radial symmetry (organisms with one axis, but several planes of symmetry, e.g. starfish), bilateral symmetry is considered one of the three major types of body plans (Manuel, 2009). However, bilateral symmetry is frequently broken by ei- ther the position of non-paired internal organs in one body half (e.g., the left- sided stomach and the right-sided liver) or by anatomical differences between the left and right half of paired internal organs. For example, the human lungs are constituted of two lobes on the left and three lobes on the right side. Based on these observations, humans and other vertebrates have also been described as “pseudo-bilateral” (see Figure 1.1) (Levin, 2005). Figure 1.1: The major types of body plans. A) asymmetry. B) radial symmetry. C) bilat- eral symmetry. D) Due to the asymmetrical position of internal organs, humans and other vertebrates have been described as pseudobilateral (Levin, 2005). The brain is one of the most striking examples for structural and functional differences between the left and right half of the body. Hemispheric asymme- tries are found in several aspects of cognition such as memory, emotion, atten- tion, language and executive functions (Ocklenburg, Hirnstein, Beste, & Güntürkün, 2014). Importantly, hemispheric asymmetries are never absolute but relative, meaning that while one hemisphere is dominant for a given func- tion, the other hemisphere still contributes to this function. Moreover, while one 2 General introduction hemisphere is typically dominant in the majority of individuals, some individu- als display the opposite pattern. Among behavioral indicators of hemispheric asymmetries in humans, handedness is by far the most widely investigated (Cor- ballis, 2014). 1.1.1. Handedness Human handedness is not only found at the individual level, meaning that an individual prefers one hand over the other for fine motor tasks, but also on the population level. Approximately 90% of humans are right-handed, which has been stable for at least ten thousand years (Faurie & Raymond, 2004). Both indi- vidual-level and population-level asymmetries in limb preference have been found across the vertebrate lineage, however, with less strongly pronounced population-level asymmetries (Ströckens, Güntürkün, & Ocklenburg, 2013). The proportion of human left-handedness differs slightly across cultures, most likely due to external pressure and stigma against left-hand use (Raymond & Pontier, 2004). However, even in the most permissive countries, the proportion of left- handedness for throwing or hammering does not exceed 25% (Raymond & Pon- tier, 2004). Moreover, a large-scale meta-analysis found robust sex differences with a male to female odds ratio of 1.23 for left-handedness, suggesting a higher frequency among males (Papadatou-Pastou, Martin, Munafò, & Jones, 2008). An over-representation of left-handedness in psychological and neurodevelopmen- tal disorders has been confirmed by two meta-analyses for schizophrenia (Dra- govic & Hammond, 2005; Sommer, Ramsey, Kahn, Aleman, & Bouma, 2001), while it is more controversial for other disorders such as bipolar disorder (Nowakowska et al., 2008) or dyslexia (Geschwind & Behan, 1982). When being asked about their handedness, most people would respond based on their hand used for writing. However, there has been massive pressure towards right-hand use especially for writing, which could have distorting ef- fects on any kind of handedness research. Thus, research has either focused on hand preference for multiple activities or on hand performance (Ocklenburg, Beste, & Arning, 2014). Hand preference is most commonly determined using the Edinburgh handedness inventory (EHI) (Oldfield, 1971). In this question- naire, participants are asked to indicate their preferred hand for ten different activities. Based on the relation between left-hand and right-hand preferences, a 3 Chapter 1 lateralization quotient (LQ) is determined, ranging from -100 (left-hand prefer- ences only) over 0 (same amount of left- and right-hand preferences) to +100 (right-hand preferences only). While the extreme values (-100, +100) are defined as consistent left- and right-handedness, LQs between -99 and -60, or +60 and +99 are typically defined as moderate left- or right-handedness, while LQs be- tween -60 and +60 are indicative of ambidexterity (Isaacs, Barr, Nelson, & Devin- sky, 2006). The most common task used for the determination of hand perfor- mance is the Pegboard task (Annett, 1985). Participants are instructed to move pegs from one row of holes to another with either the left or the right hand. A quantitative measure of fine motor skill is obtained by relating the times re- quired to complete left- and right-hand trials resulting in the so-called PegQ measure. In contrast to hand preference, which usually has a J-shaped distribu- tion with a small number of left-handers, very few ambidextrals and a pro- nounced majority of right-handers, PegQ is normally distributed, making it ide- ally suited for genetic association studies (Paracchini, Diaz, & Stein, 2016). An- other commonly used task is the Tapley & Bryden test. In this paper and pencil test, participants are instructed to place dots in as many small circles as possible within a given time frame (Tapley & Bryden, 1985). 1.1.2. Language lateralization Since Pierre Paul Broca famously stated that nous parlons avec l’hémisphère gauche in 1868, left-hemispheric dominance for language has been one of the most ro- bust findings in laterality research. In language-impaired patients’ brains, Broca identified left-hemispheric lesions in a frontal area that should soon be named Broca’s area. Today, we know that while language is predominantely processed in the left hemisphere, there are also individuals with right-hemispheric or bi- lateral organization of language (Ocklenburg & Güntürkün, 2018). Historically, the hemisphere dominant for language has been assessed using the Wada test in epilepsy patients before surgery. However, as this test involves the injection of sedative into the ipsilateral carotid artery, several non-invasive
Recommended publications
  • Analysis and Identification of Bite Marks in Forensic Casework
    ORIGINAL | http://dx.doi.org/10.4172/1994-8220.1000102 J Psychiatry 2014;17:475-482 Handedness in schizophrenia and schizoaffective disorder in an afrikaner founder population RH Mataboge¹*, M Joubert¹, JC Jordaan², F Reyneke2, JL Roos1 ¹University of Pretoria, Department of Psychiatry, Pretoria, South Africa ²University of Pretoria, Department of Statistics, Pretoria, South Africa Abstract Objective: An association between the Leucine-rich repeat trans membrane neuronal 1 gene (LRRTM1), schizophrenia/ schizoaffective disorder and handedness was recently claimed to be established. This study aimed to test the hypothesis that Afrikaner patients with schizophrenia/schizoaffective disorder are more non-right handed than their non-affected first- degree relatives and that of two separate control groups. The association between handedness, gender and age at onset of illness in the patients group was also determined. Method: Two cross-sectional studies were carried out, which compared the handedness of a group of 100 (30 females and 70 males) Afrikaner patients with schizophrenia/schizoaffective disorder, their non-affected first-degree relatives, and two separate control groups. Handedness was determined by the Edinburg Handedness Inventory (EHI). Results: Patients were found to be more right-handed than expected with only 17 out of 100 being non-right-handed compared to 11 out of 100 non-affected relatives; 36 out of 100 students and 75 out of 500 non- affected Afrikaner participants. The students were significantly more non-right handed than the patient and family groups but no difference in handedness was found when comparing the patients, family members and 500 participant control group. There was no significant difference between age at onset of illness and handedness.
    [Show full text]
  • In Search of the Biological Roots of Typical and Atypical Human Brain Asymmetry
    Accepted Manuscript In search of the biological roots of typical and atypical human brain asymmetry Clyde Francks PII: S1571-0645(19)30099-5 DOI: https://doi.org/10.1016/j.plrev.2019.07.004 Reference: PLREV 1124 To appear in: Physics of Life Reviews Received date: 9 July 2019 Accepted date: 12 July 2019 Please cite this article in press as: Francks C. In search of the biological roots of typical and atypical human brain asymmetry. Phys Life Rev (2019), https://doi.org/10.1016/j.plrev.2019.07.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. In search of the biological roots of typical and atypical human brain asymmetry. Comment on “Phenotypes in hemispheric functional segregation? Perspectives and challenges” by Guy Vingerhoets. Clyde Francks1,2 1Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands 2Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands Email address: [email protected] Keywords: Brain asymmetry; brain functions; laterality; human genetics; left-right axis; brain hemispheres. In this comprehensive and insightful review, Vingerhoets [1] discusses the multi-dimensional nature of inter-individual variation in functional brain asymmetry, and its potential relevance to behavioural variation and psychopathology.
    [Show full text]
  • Potassium Channels in Epilepsy
    Downloaded from http://perspectivesinmedicine.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Potassium Channels in Epilepsy Ru¨diger Ko¨hling and Jakob Wolfart Oscar Langendorff Institute of Physiology, University of Rostock, Rostock 18057, Germany Correspondence: [email protected] This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dy- namic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With 80 potassium channel types, of which 10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models. INTRODUCTION TO POTASSIUM evolutionary appearance of voltage-gated so- CHANNELS dium (Nav)andcalcium (Cav)channels, Kchan- nels are further diversified in relation to their otassium (K) channels are related to epilepsy newer function, namely, keeping neuronal exci- Psyndromes on many different levels, ranging tation within limits (Anderson and Greenberg from direct control of neuronal excitability and 2001; Hille 2001).
    [Show full text]
  • Algid Ma. 33S~3
    3~?<? Algid Ma. 33S~3 DIFFERENTIAL EFFECTS OF BIOFEEDBACK INPUT ON LOWERING FRONTALIS ELECTROMYOGRAPHIC LEVELS IN RIGHT AND LEFT HANDERS DISSERTATION Presented to the Graduate Council of the University of North Texas in Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY By Kenneth N. Walker, B.S., M.Ed, Denton, Texas August, 1990 Walker, Kenneth N. Differential Effects of Biofeedback Input on Lowering Frontalis Electromyographic Levels In Right and Left Handers. Doctor of Philosophy (Health Psychology/Behavioral Medicine), August 1990, 70 pages, 3 tables, 6 figures, references, 73 titles. This investigation was an attempt to replicate and expand previous research which suggested that laterality of electromyographic biofeedback input had a significant effect in lowering frontalis muscle activity. In 1984 Ginn and Harrell conducted a study in which they reported that subjects receiving left ear only audio biofeedback had significantly greater reductions in frontalis muscle activity than those receiving right ear only or both ear feedback. This study was limited to one biofeedback session and subjects were selected based on demonstration of right hand/ear dominance. The purpose of the present study was to determine whether the left ear effect reported by Ginn and Harrell could be replicated. Furthermore, the current investigation sought to extend the previous finding to left handed subjects and explore the stability of the effect, if found, by adding a second biofeedback session. Subjects were 96 students recruited from undergraduate psychology classes. They were screened for handedness by the Edinburgh Handedness Inventory which resulted in identification of 48 right handers and 48 left handers.
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • The Hands to Say It
    Issue 91, February 2008 www.proteinspotlight.org The hands to say it Vivienne Baillie Gerritsen When I was a little girl, I thought that my left-handed classmates were special. I envied their difference. And I used to marvel at the way they crouched over their desk, embracing something invisible as they did their best to avoid smudging ink all over their sheet of paper. Left-handedness is special. But so is right-handedness. Humans are not the only animals to make use of their hands – or claws, or paws, or hooves - but they are the only ones who show a marked preference for either the left one, or the right one. If this is so, there must be a reason for it. And not only must there be a reason but it must translate a certain structure of our brain: an asymmetry somewhere. Indeed, our brain is divided into two hemispheres which are dedicated to processing different activities. One side looks after our dreams, while the other is far more down to earth. LRRTM1 is the first protein to have been discovered which seems to be directly involved in this brain asymmetry. Consequently, it influences the handedness of a human-being and, more astonishingly, may also predispose individuals to psychotic troubles such as schizophrenia. don’t have a distinct preference for one hand over the other. The passing of roles from hand to mind expresses a particular brain structure. In turn, the progressive use of speech has continued to mould our brain into a shape peculiar to the human species.
    [Show full text]
  • Psichologijos Žodynas Dictionary of Psychology
    ANGLŲ–LIETUVIŲ KALBŲ PSICHOLOGIJOS ŽODYNAS ENGLISH–LITHUANIAN DICTIONARY OF PSYCHOLOGY VILNIAUS UNIVERSITETAS Albinas Bagdonas Eglė Rimkutė ANGLŲ–LIETUVIŲ KALBŲ PSICHOLOGIJOS ŽODYNAS Apie 17 000 žodžių ENGLISH–LITHUANIAN DICTIONARY OF PSYCHOLOGY About 17 000 words VILNIAUS UNIVERSITETO LEIDYKLA VILNIUS 2013 UDK 159.9(038) Ba-119 Apsvarstė ir rekomendavo išleisti Vilniaus universiteto Filosofijos fakulteto taryba (2013 m. kovo 6 d.; protokolas Nr. 2) RECENZENTAI: prof. Audronė LINIAUSKAITĖ Klaipėdos universitetas doc. Dalia NASVYTIENĖ Lietuvos edukologijos universitetas TERMINOLOGIJOS KONSULTANTĖ dr. Palmira ZEMLEVIČIŪTĖ REDAKCINĖ KOMISIJA: Albinas BAGDONAS Vida JAKUTIENĖ Birutė POCIŪTĖ Gintautas VALICKAS Žodynas parengtas įgyvendinant Europos socialinio fondo remiamą projektą „Pripažįstamos kvalifikacijos neturinčių psichologų tikslinis perkvalifikavimas pagal Vilniaus universiteto bakalauro ir magistro studijų programas – VUPSIS“ (2011 m. rugsėjo 29 d. sutartis Nr. VP1-2.3.- ŠMM-04-V-02-001/Pars-13700-2068). Pirminis žodyno variantas (1999–2010 m.) rengtas Vilniaus universiteto Specialiosios psichologijos laboratorijos lėšomis. ISBN 978-609-459-226-3 © Albinas Bagdonas, 2013 © Eglė Rimkutė, 2013 © VU Specialiosios psichologijos laboratorija, 2013 © Vilniaus universitetas, 2013 PRATARMĖ Sparčiai plėtojantis globalizacijos proce- atvejus, kai jų vertimas į lietuvių kalbą gali sams, informacinėms technologijoms, ne- kelti sunkumų), tik tam tikroms socialinėms išvengiamai didėja ir anglų kalbos, kaip ir etninėms grupėms būdingų žodžių, slengo,
    [Show full text]
  • Endogenous Sirnas and Noncoding RNA-Derived Small Rnas Are Expressed in Adult Mouse Hippocampus and Are Up-Regulated in Olfactory Discrimination Training
    Downloaded from rnajournal.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Endogenous siRNAs and noncoding RNA-derived small RNAs are expressed in adult mouse hippocampus and are up-regulated in olfactory discrimination training NEIL R. SMALHEISER,1 GIOVANNI LUGLI,1 JYOTHI THIMMAPURAM,2 EDWIN H. COOK,1 and JOHN LARSON1 1Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois 60612, USA 2W.M. Keck Center for Comparative and Functional Genomics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA ABSTRACT We previously proposed that endogenous siRNAs may regulate synaptic plasticity and long-term gene expression in the mammalian brain. Here, a hippocampal-dependent task was employed in which adult mice were trained to execute a nose-poke in a port containing one of two simultaneously present odors in order to obtain a reward. Mice demonstrating olfactory discrimination training were compared to pseudo-training and nose-poke control groups; size-selected hippocampal RNA was subjected to Illumina deep sequencing. Sequences that aligned uniquely and exactly to the genome without uncertain nucleotide assignments, within exons or introns of MGI annotated genes, were examined further. The data confirm that small RNAs having features of endogenous siRNAs are expressed in brain; that many of them derive from genes that regulate synaptic plasticity (and have been implicated in neuropsychiatric diseases); and that hairpin-derived endo-siRNAs and the 20- to 23-nt size class of small RNAs show a significant increase during an early stage of training. The most abundant putative siRNAs arose from an intronic inverted repeat within the SynGAP1 locus; this inverted repeat was a substrate for dicer in vitro, and SynGAP1 siRNA was specifically associated with Argonaute proteins in vivo.
    [Show full text]
  • Hemispheric Brain Asymmetry Differences in Youths with Attention
    NeuroImage: Clinical 18 (2018) 744–752 Contents lists available at ScienceDirect NeuroImage: Clinical journal homepage: www.elsevier.com/locate/ynicl Hemispheric brain asymmetry differences in youths with attention-deficit/ T hyperactivity disorder ⁎ P.K. Douglasa,b, , Boris Gutmanc, Ariana Andersonb, C. Lariosa, Katherine E. Lawrenced, Katherine Narrd, Biswa Senguptae, Gerald Cooraye, David B. Douglasf, Paul M. Thompsonc, James J. McGoughb, Susan Y. Bookheimerb a University of Central Florida, IST, Modeling and Simulation Department, FL, USA b Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, CA, USA c Imaging Genetics Center, USC Keck School of Medicine, Marina del Rey, CA, USA d Laboratory of Neuroimaging, UCLA, CA, USA e Wellcome Trust Centre for Neuroimaging, 12 Queen Square, UCL, London, UK f Nuclear Medicine and Molecular Imaging, Stanford University School of Medicine, Palo Alto, CA, USA ABSTRACT Introduction: Attention-deficit hyperactive disorder (ADHD) is the most common neurodevelopmental disorder in children. Diagnosis is currently based on behavioral criteria, but magnetic resonance imaging (MRI) of the brain is increasingly used in ADHD research. To date however, MRI studies have provided mixed results in ADHD patients, particularly with respect to the laterality of findings. Methods: We studied 849 children and adolescents (ages 6–21 y.o.) diagnosed with ADHD (n = 341) and age- matched typically developing (TD) controls with structural brain MRI. We calculated volumetric measures from 34 cortical and 14 non-cortical brain regions per hemisphere, and detailed shape morphometry of subcortical nuclei. Diffusion tensor imaging (DTI) data were collected for a subset of 104 subjects; from these, we calculated mean diffusivity and fractional anisotropy of white matter tracts.
    [Show full text]
  • A Large-Scale Estimate on the Relationship Between Language And
    www.nature.com/scientificreports OPEN A large‑scale estimate on the relationship between language and motor lateralization Julian Packheiser1*, Judith Schmitz2, Larissa Arning3, Christian Beste4, Onur Güntürkün1 & Sebastian Ocklenburg1,5 Human language is dominantly processed in the left cerebral hemisphere in most of the population. While several studies have suggested that there are higher rates of atypical right‑hemispheric language lateralization in left‑/mixed‑handers, an accurate estimate of this association from a large sample is still missing. In this study, we comprised data from 1,554 individuals sampled in three previous studies in which language lateralization measured via dichotic listening, handedness and footedness were assessed. Overall, we found a right ear advantage indicating typical left‑hemispheric language lateralization in 82.1% of the participants. While we found signifcantly more left‑handed individuals with atypical language lateralization on the categorical level, we only detected a very weak positive correlation between dichotic listening lateralization quotients (LQs) and handedness LQs using continuous measures. Here, only 0.4% of the variance in language lateralization were explained by handedness. We complemented these analyses with Bayesian statistics and found no evidence in favor of the hypothesis that language lateralization and handedness are related. Footedness LQs were not correlated with dichotic listening LQs, but individuals with atypical language lateralization also exhibited higher rates of atypical footedness on the categorical level. We also found diferences in the extent of language lateralization between males and females with males exhibiting higher dichotic listening LQs indicating more left‑hemispheric language processing. Overall, these fndings indicate that the direct associations between language lateralization and motor asymmetries are much weaker than previously assumed with Bayesian correlation analyses even suggesting that they do not exist at all.
    [Show full text]
  • A Cinch for the Brain
    A Cinch for the Brain Our bodies, our behavior and even our brains are anything but symmetrical. And this seems to be an important factor in the seamless functioning of our thought, speech and motor faculties. Researchers at the Max Planck Institute for Psycholinguistics in Nijmegen are currently searching for genetic clues to this phenomenon. They want to decode the fundamental molecular biological mechanisms that contribute to asymmetry in the brain, and to identify possible causes for neurological disorders. TEXT STEFANIE REINBERGER t first glance, the human ture. It’s divided into two halves, both A strong left: Rafael Nadal, for body appears to be com- of which are equal in size and whose many years the world’s number pletely symmetrical: two furrows and bulges follow a similar pat- one men’s tennis player, is right-handed but holds the arms, two legs, two eyes, tern. But the functional centers are ex- racket in his left hand most of two ears. Even features tremely unevenly distributed. The right the time. Researchers are likeA the nose and mouth appear to be and left hemispheres specialize in dif- studying how the brains of left- evenly positioned in both halves of ferent cognitive functions. They essen- and right-handed people differ. the face in most people. On closer in- tially divide up the work between them, spection, though, we see that one leg possibly to expand the total range of is longer than the other, one hand is tasks performed. stronger, or maybe the left ear is posi- “Lateralization is a very distinct phe- tioned lower than the right one.
    [Show full text]
  • Downregulation of Glial Genes Involved in Synaptic Function
    RESEARCH ARTICLE Downregulation of glial genes involved in synaptic function mitigates Huntington’s disease pathogenesis Tarik Seref Onur1,2,3†, Andrew Laitman2,4,5†, He Zhao2, Ryan Keyho2, Hyemin Kim2, Jennifer Wang2, Megan Mair1,2,3, Huilan Wang6, Lifang Li1,2, Alma Perez2, Maria de Haro1,2, Ying-Wooi Wan2, Genevera Allen2,7, Boxun Lu6, Ismael Al-Ramahi1,2, Zhandong Liu2,4,5, Juan Botas1,2,3,4* 1Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States; 2Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, United States; 3Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, United States; 4Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, United States; 5Department of Pediatrics, Baylor College of Medicine, Houston, United States; 6State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; 7Departments of Electrical & Computer Engineering, Statistics and Computer Science, Rice University, Houston, United States Abstract Most research on neurodegenerative diseases has focused on neurons, yet glia help form and maintain the synapses whose loss is so prominent in these conditions. To investigate the contributions of glia to Huntington’s disease (HD), we profiled the gene expression alterations of *For correspondence: Drosophila expressing human mutant Huntingtin (mHTT) in either glia or neurons and compared [email protected] these changes to what is observed in HD human and HD mice striata. A large portion of conserved genes are concordantly dysregulated across the three species; we tested these genes in a high- †These authors contributed throughput behavioral assay and found that downregulation of genes involved in synapse assembly equally to this work mitigated pathogenesis and behavioral deficits.
    [Show full text]