Synthesis of Two-Photon Sensitive Pro-Fluorescent Photoremovable Protecting Groups Elie Abou Nakad

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of Two-Photon Sensitive Pro-Fluorescent Photoremovable Protecting Groups Elie Abou Nakad Synthesis of two-photon sensitive pro-fluorescent photoremovable protecting groups Elie Abou Nakad To cite this version: Elie Abou Nakad. Synthesis of two-photon sensitive pro-fluorescent photoremovable protecting groups. Organic chemistry. Université de Strasbourg, 2018. English. NNT : 2018STRAF039. tel-02160511 HAL Id: tel-02160511 https://tel.archives-ouvertes.fr/tel-02160511 Submitted on 19 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES CHIMIQUES Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR7199 THÈSE présentée par : Elie ABOU NAKAD Soutenue le : 16 Novembre 2018 pour obtenir le grade de : DoCteur de l’Université de Strasbourg Discipline/ Spécialité : Chimie Organique Synthèse de groupements proteCteurs photolabiles pro-fluoresCents sensibles à l’excitation bi-photonique THÈSE dirigée Par : M SPECHT Alexandre Directeur de recherche au CNRS, Université de Strasbourg RAPPORTEURS : Mme JOSEPH DelPhine Professeur, Université de Paris-Sud Mme MAHUTEAU-BETZER Florence Directeur de recherche au CNRS, Institut Curie-Orsay AUTRES MEMBRES DU JURY : M BLANC Aurélien Chargé de recherche au CNRS, Université de Strasbourg UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES CHIMIQUES Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR7199 THÈSE présentée par : Elie ABOU NAKAD Soutenue le : 16 Novembre 2018 pour obtenir le grade de : DoCteur de l’Université de Strasbourg Discipline/ Spécialité : Chimie Organique Synthèse de groupements proteCteurs photolabiles pro-fluoresCents sensibles à l’excitation bi-photonique THÈSE dirigée Par : M SPECHT Alexandre Directeur de recherche au CNRS, Université de Strasbourg RAPPORTEURS : Mme JOSEPH DelPhine Professeur, Université de Paris-Sud Mme MAHUTEAU-BETZER Florence Directeur de recherche au CNRS, Institut Curie-Orsay AUTRES MEMBRES DU JURY : M BLANC Aurélien Chargé de recherche au CNRS, Université de Strasbourg “Teach me knowledge and good judgment, for I trust your commands.” Psalms 119:66 To my lovely late Aunt Salwa, You’ve always believed in me This is my gift to you... ACKNOWLEDGEMENTS All the thesis work presented in this manuscript was done in the lab of “Conception et Applications des Molécules Bioactives” in the Chimie et Neurobiologie Moléculaire” group at the Faculty of Pharmacy of Strasbourg under the direction of Dr Alexandre SPECHT. First of all, I would like to express my sincere gratitude to the jury members: Prof Delphine JOSEPH, Dr Florence MAHUTEAU-BETZER and Dr Aurélien BLANC, for accepting to evaluate this thesis work and also for spending important time in reading this manuscript. Alexandre, or as you like us to call you, Alex, I have a lot to thank you for. I want to thank you for accepting me to be a PhD student in your lab and putting your trust in me that I can do the best for this project. A big thank you for all the help you gave me since the day of my arrival, with all the paper work and the administrative stuff. I am so grateful to have had a director like you; thank you for all the time you spend with me on “chemical discussions” as well as “polymer chain mass calculations” … Thanks to you, my knowledge on chemistry has grown day after day and my skills have evolved a lot. I am so glad that we were able to get the most out of this project. You will always be the “big brother who’s watching me”. Endless thanks for you! Fred, I would like to thank you for all the time you put in doing the photophysical analysis and thank you for the 20 fluorophores you gave me to decorate my bench. Thank you for all the help in understanding the wide world of photophysics and for giving me a lot of your expertise in the domain. It was always a pleasure working with you with all your English-French-Italian sense of humor and even though you are a busy man thank you for making everything “EASY!”. Thomas, thanks a lot for your wisdom and for sharing with us your highly-respected knowledge. Thank you for always being there when I had hesitations in biology and thank you for all the advice and because of you I know a lot on the historical part of Strasbourg. Thierry, Le Jeune, thank you for making every single lab meeting a stress-less time, thank you for always giving us the push to continue and thank you for all the rich discussions we had. Juline, my labmate, you were always saying time is going by slowly, now we’ve reached the end of this 3-year journey, we started together, and we are graduating together…Thank you for being the funniest labmate, thank you for reminding me when it is time to eat. Thank you for being beside me in all the hard times and thanks for helping me organize all the lab activities (including the unforgettable Pancakes Party). I wish you, from the bottom of my heart, all the best in your endeavors. I would like to thank as well, Bastien and Laurie for making the lab a great working atmosphere and thank you for all the help and fruitful discussion we had. You stood beside me since my arrival to the lab, you will always be the best labmates and the dearest friends. I wish you all the best in your future jobs. Kate, I wish you also all the best in your PhD, you still have time to change your mind…I guess… I will miss you correcting my American English with your British one. Thank you for making me memorize all your iTunes library. Wish you all the success and perseverance. I would like to thank all the lab members who worked with me during these 3 years: Florian, Lucas, Clément and Benoit. A sincere thank you for Philippe and Elodie who worked with me as master students, the project gave amazing results during your presence and with your help. Best of luck in your PhDs. Issam and Lodi (Les Issas) thank you for being my family in France and thank you for all the help and care and for making me discover lots of places in Alsace. You made this period the best time of my life, with you I have never felt far away from home. And to my 3 little siblings: Timothé, Pauline and Elena, I love you! I would like to thank as well: Dr Halim, Dr Ghina, Dr Eliane, and the future Drs Fatima, Elias, Naimah, and my friends: Carole, Alexa, Dima, Fadi, Mireille and the long list of friends who stayed beside me and supported me especially during the writing period. You guys are the best! To my everlasting support my aunt Hayat and the 2 best cousins: Tony and Rawad, thank you for always believing that I can do the best and for supporting me throughout the 8 years of chemistry. You are the greatest gift in my life! To my biggest support rock, my brother, Georges, thank you for being there for me all these times, and thank you for making me laugh when I was in need. To my childhood friend, Miray, you are the sister that I never had, you are the one of the most amazing souls I know, thank you for standing by my side at all times. To my nephew, Charbel, thank you for bringing joy to my life and thank you for making me the luckiest uncle in the world. You are my second family, I love you all. To my parents, Roukos and Hiam, you have waited a lot for this moment, I am sure that as much as I say, it will not be enough. Thank you for the full support, thank you for staying beside me all this time, thank you for believing in me and having faith in my skills. It is because of you that I had this chance and because of your endless prayers I reached this moment. Thank you for standing by my side in the hard times and the good times. It is to you that I owe my success. You’ve sacrificed a lot in order to make my dream a reality and today my dream, and your dream, is coming true. I respectfully love you! My first, last and forever thanks are to you, my biggest teacher. You gave me a lot since day 1 and now, I am giving you this work to bless it as you blessed my entire life… None of this would have been possible without you…I am grateful for you endlessly…GOD! Table of Contents CHAPTER I ................................................................................................................................................... 1 1. Photoremovable Protecting Groups (PPGs) ......................................................................................... 2 1.1. Definition: ............................................................................................................................................. 2 1.2. Requirements: ........................................................................................................................................ 2 1.3. Types of PPGs ....................................................................................................................................... 3 1.3.1. Benzoin PPGs ............................................................................................................................... 3 1.3.2. Arylcarbonylmethyl or Phenacyls (Pac) ....................................................................................... 4 1.3.3. Coumarin-4-ylmethyl ...................................................................................................................
Recommended publications
  • Topological Model on the Inductive Effect in Alkyl Halides Using Local Quantum Similarity and Reactivity Descriptors in the Density Functional Theory
    Hindawi Publishing Corporation Journal of Quantum Chemistry Volume 2014, Article ID 850163, 12 pages http://dx.doi.org/10.1155/2014/850163 Research Article Topological Model on the Inductive Effect in Alkyl Halides Using Local Quantum Similarity and Reactivity Descriptors in the Density Functional Theory Alejandro Morales-Bayuelo1,2 and Ricardo Vivas-Reyes1 1 Grupo de Qu´ımica Cuantica´ y Teorica,´ Universidad de Cartagena, Programa de Qu´ımica, Facultad de Ciencias Exactas y Naturales, Cartagena de Indias, Colombia 2 Departamento de Ciencias Qu´ımicas, Universidad Nacional Andres Bello, Republica 275, Santiago, Chile Correspondence should be addressed to Alejandro Morales-Bayuelo; [email protected] and Ricardo Vivas-Reyes; [email protected] Received 19 September 2013; Revised 16 December 2013; Accepted 16 December 2013; Published 19 February 2014 Academic Editor: Daniel Glossman-Mitnik Copyright © 2014 A. Morales-Bayuelo and R. Vivas-Reyes. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We present a topological analysis to the inductive effect through steric and electrostatic scales of quantitative convergence. Using the molecular similarity field based in the local guantum similarity (LQS) with the Topo-Geometrical Superposition Algorithm (TGSA) alignment method and the chemical reactivity in the density function theory (DFT) context, all calculations were carried out with Amsterdam Density Functional (ADF) code, using the gradient generalized approximation (GGA) and local exchange correlations PW91, in order to characterize the electronic effect by atomic size in the halogens group using a standard Slater-type- orbital basis set.
    [Show full text]
  • Understanding Nonplanarity in Metallabenzene Complexes
    1986 Organometallics 2007, 26, 1986-1995 Understanding Nonplanarity in Metallabenzene Complexes Jun Zhu, Guochen Jia,* and Zhenyang Lin* Department of Chemistry, The Hong Kong UniVersity of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China ReceiVed February 11, 2007 The nonplanarity found in metallabenzene complexes has been investigated theoretically via density functional theory (DFT) calculations. A metallabenzene has four occupied π molecular orbitals (8 π electrons) instead of three that benzene has. Our electronic structure analyses show that the extra occupied π molecular orbital, which is the highest occupied molecular orbital (HOMO) in many metallabenzenes, has antibonding interactions between the metal center and the metal-bonded ring-carbon atoms, providing the electronic driving force toward nonplanarity. Calculations indicate that the electronic driving force toward nonplanarity, however, is relatively small. Therefore, other factors such as steric effects also play important roles in determining the planarity of these metallabenzene complexes. In this paper, how the various electronic and steric factors interplay has been discussed. Introduction benzene complexes. For example, the formation mechanism and chemical reactivity of metallabenzene complexes have been Metallabenzenes, organometallic compounds formed by extensively studied.17 formal replacement of a CH group in benzene by an isolobal In the studies of metallabenzene complexes, a central issue transition metal fragment, were first considered theoretically by concerns the π-conjugation of the six-membered metal-contain- Hoffman et al. in 1979.1 Since the isolation of the first stable 2 ing ring. Indeed, it is true that metallabenzene complexes are osmabenzenes by Roper’s group in 1982, metallabenzene highly conjugated in view of the fact that the single-double complexes have attracted considerable interest over the last bond alternation is insignificant in the six-membered metal- quarter century.
    [Show full text]
  • Rational Design of Small Molecule Fluorescent Probes for Biological Applications
    Organic & Biomolecular Chemistry Rational Design of Small Molecule Fluorescent Probes for Biological Applications Journal: Organic & Biomolecular Chemistry Manuscript ID OB-REV-06-2020-001131.R1 Article Type: Review Article Date Submitted by the 13-Jul-2020 Author: Complete List of Authors: Jun, Joomyung; University of Pennsylvania, Chemistry; Massachusetts Institute of Technology, Chemistry Chenoweth, David; University of Pennsylvania, Department of Chemistry Petersson, E.; University of Pennsylvania, Chemistry Page 1 of 16 Organic & Biomolecular Chemistry ARTICLE Rational Design of Small Molecule Fluorescent Probes for Biological Applications a,b a a,c Received 00th January 20xx, Joomyung V. Jun, David M. Chenoweth* and E. James Petersson* Accepted 00th January 20xx Fluorescent small molecules are powerful tools for visualizing biological events, embodying an essential facet of chemical DOI: 10.1039/x0xx00000x biology. Since the discovery of the first organic fluorophore, quinine, in 1845, both synthetic and theoretical efforts have endeavored to “modulate” fluorescent compounds. An advantage of synthetic dyes is the ability to employ modern organic chemistry strategies to tailor chemical structures and thereby rationally tune photophysical properties and functionality of the fluorophore. This review explores general factors affecting fluorophore excitation and emission spectra, molar absorption, Stokes shift, and quantum efficiency; and provides guidelines for chemist to create novel probes. Structure- property relationships concerning the substituents are discussed in detail with examples for several dye families. Then, we present a survey of functional probes based on PeT, FRET, and environmental or photo-sensitivity, focusing on representative recent work in each category. We believe that a full understanding of dyes with diverse chemical moieties enables the rational design of probes for the precise interrogation of biochemical and biological phenomena.
    [Show full text]
  • Principles of Drug Action 1, Spring 2005, Resonance and Induction
    Principles Of Drug Action 1, Spring 2005, Resonance and Induction RESONANCE AND INDUCTION TUTORIAL Jack DeRuiter The terms "resonance" and "induction" refer to the electronic effects that atoms or functional groups may have within a compound. These effects are defined below and are dependent on the valence, bonding order and electronegativity of atoms, as well as the molecular geometry. Thus it is important that you understand these concepts prior to reviewing this tutorial. I. INDUCTION Induction or the inductive effect of an atom or functional group is a function of that groups 1). electronegativity, 2). bonding order and charge and 3). position within a structure. Inductive effects refer to those electronic effects of an atom or functional group can contribute through single bonds such as saturated (sp3) carbon atoms! This is very different from resonance effects discussed later in this section. The contribution of electronegativity, bonding order and position toward induction is as follows: Electronegativity: Atoms or functional groups that are electronegative relative to hydrogen such as the halogens, oxygen, nitrogen, etc. may have a negative inductive effect (-I), depending on their bonding order (see the Table below). Thus these atoms withdraw electron density through the single bond structure of a compound and can assist in the stabilization of negative charge that may form in reactions. One such reaction where -I groups can have a stabilizing (enhancing) effect is the ionization of acids. Consider the case of acetic acid, chloroacetic acid and trichloroacetic acid shown below. All three of these compounds can ionize (loss of proton from the carboxyl OH).
    [Show full text]
  • Interpretation of Both Electron Pushing and Electron Withdrawing Inductive Effect of Alkyl Groups in Terms of Mulliken–Jaffe’S Charge Coefficient Parameters (B)∗
    GENERAL ARTICLE Interpretation of Both Electron Pushing and Electron Withdrawing Inductive Effect of Alkyl Groups in Terms of Mulliken–Jaffe’s Charge Coefficient Parameters (b)∗ Asim K Das Alkyl groups can delocalize both the negative and positive charges through ion (charge)-induced dipole interaction with the polarizable alkyl groups. This charge induced polariza- tion of the alkyl group to delocalize the charge is the origin of ‘inductive effect’ of the alkyl groups. The apparent less effi- ciency in negative charge delocalization compared to positive charge delocalization by a particular alkyl group is attributed Asim K Das is currently a to the less polarizing field strength of the anionic charge. senior Professor of Chemistry Department, Visva Bharati, a Central University, 1. Introduction Santiniketan. His research interest is in the field of ff thermodynamic and kinetic The concept of inductive e ect and its application are the impor- aspects of metal-ligand tant course components of organic chemistry taught at the high interactions. He has authored school and undergraduate level. Inductive effect actually delocal- some advanced level text izes the charge [1, 2]. Depending on the properties of the atoms books on inorganic chemistry, ff bioinorganic chemistry and or groups, they can show electron withdrawing (i.e. –I e ect) or environmental chemistry for electron pushing (i.e. +Ieffect) inductive effect [1, 2]. The +Ief- the undergraduate and fect delocalizes the positive charge while the −Ieffect delocalizes postgraduate students. the negative charge. By considering the inductive effect of the groups or atoms, many important aspects of organic chemistry like the relative stabilities of carbocations and carbanions, acid- base strength, reaction mechanism, etc., are explained [1, 2] in the classrooms, and these are also discussed in all organic textbooks.
    [Show full text]
  • Measuring the Electronic Effect of Some Phosphines and Phosphites
    Measuring the electronic effect of some phosphines and phosphites By Sanaa Moftah Ali Abushhewa A dissertation submitted to the University of Manchester for the degree of Master of Science by research in the Faculty of Engineering and Physical Sciences. School of Chemistry 2010 Contents page Abstract 6 Declaration 7 Acknowledgement 8 1. Introduction 9 1.1 History of Phosphorus 9 1.2 Phosphorus (III) compounds 10 1.3 Preparation and Properties of Phosphines 11 1.4 Preparation and Properties of Phosphites 12 1.5 Bonding of phosphorus (III) ligands 14 1.6 Measurement of Electronic and Steric Effects 15 1.7 Steric parameter 17 1.8 Electronic parameter 17 1.9 Effects of electronegative substituents 21 1.10 Phosphines and Phosphites ligand effects 21 2. Experimental section 24 General conditions 25 2.1- Preparation of phosphites 25 2.1.1- Synthesis of 2, 2’- Biphenyl Chlorophosphite 25 2.1.2- Synthesis of 1H,1H,2H,2H-perfluorodecyldiphenyl phosphinite 25 2 2.1.3- Synthesis of 3-fluorophenyldiphenyl phosphinite 26 2.1.4- Synthesis of 2-fluorophenyldiphenyl phosphinite 26 2.1.5- Synthesis of 2, 2-biphenyltrifluoroethyl phosphinite 27 2.1.6- Synthesis of 2, 2'-biphenylhexafluoroisopropyl phosphinite 27 2.1.7-Synthesis of 2, 2'-biphenylpropyl phosphite 28 2.2-Preparation of P(III) Selenides 28 2.2.1- Synthesis of triphenylphosphine selenide 28 2.2.2- Synthesis of triphenylphosphite selenide 29 2.2.3- Synthesis of tris(2,4,6-trimethylphenyl)phosphite selenide 29 2.2.4- Synthesis of diphenyl(o-tolyl) phosphine selenide 30 2.2.5- Synthesis of 2, 2’-biphenyl
    [Show full text]
  • Hyperconjugation Article Type
    Article Title: Hyperconjugation Article type: Advanced review Authors: Igor V Alabugin* 0000-0001-9289-3819, Florida State University, [email protected], this author declares no conflicts of interest Gabriel dos Passos Gomes 0000-0002-8235-5969, Florida State University, [email protected], this author declares no conflicts of interest Miguel A Abdo 0000-0002-2009-6340, Florida State University, [email protected], this author declares no conflicts of interest Keywords Bond theory, Hyperconjugation, Stereoelectronic effects, Delocalization, Orbital Graphical abstract This review outlines the role of hyperconjugative interactions in the structure and reactivity of organic molecules. After defining the common hyperconjugative patterns, we discuss the main factors controlling the magnitude of hyperconjugative effects, including orbital symmetry, energy gap, electronegativity, and polarizability. The danger of underestimating the contribution of hyperconjugative interactions are illustrated by a number of spectroscopic, conformational, and structural effects. The stereoelectronic nature of hyperconjugation offers useful ways for control of molecular stability and reactivity. New manifestations of hyperconjugative effects continue to be uncovered by theory and experiments. 1 Hyperconjugation, conjugation and σ-conjugation: The classic picture of covalent chemical bonding starts by creating the framework of two- center/two-electron bonds. These bonds are formed by sharing of electron pairs which is a quantum mechanical phenomenon based
    [Show full text]
  • Principles of Organic Chemistry I for Chemistry’ Students, College of Science Pre-Requisites Course; Chem 101 Credit Hours; 2 (2+0)
    2/10/2020 CHEM 240 PRINCIPLES OF ORGANIC CHEMISTRY I FOR CHEMISTRY’ STUDENTS, COLLEGE OF SCIENCE PRE-REQUISITES COURSE; CHEM 101 CREDIT HOURS; 2 (2+0) Prof. Mohamed El-Newehy Chemistry Department, College of Science, King Saud University http://fac.ksu.edu.sa/melnewehy/home 1 TOPICS TO BE COVERED o Introduction (Lectures; 4) Introduction (Carbon Compounds, Chemical Bonds (ionic, Covalent), Atomic and Molecular orbitals, Hybridization, Polarity and Inductive effect). o Alkanes and Cycloalkanes (Lectures; 4) (Alkyl groups, IUPAC nomenclature, Physical properties, Sources off, Synthesis. Reactions (Combustion, Halogenation, Ring opening). Configuration, cyclohexanes. o Stereochemistry (Lectures; 4) (Structural isomers and Stereoisomerism, Enantiomers, Diastereomers and Chirality, D and L, The R-S system, Resolution, Molecules with more than one chiral carbon, Reactions of chiral molecules: Inversion, Racemization). 1st Midterm Exam (Lectures; 1) 2 1 2/10/2020 TOPICS TO BE COVERED o Alkenes and Alkynes (Lectures 7) (IUPAC nomenclature, Physical properties, Synthesis (Dehydrohalogenation, from vicinal dihalides, Dehydration of alcohols). Reactions (Acidity of terminal alkynes, Addition reactions (Reduction, Halogenation, Addition of HX – Markovnikov rule, Carbonium ions and their stability, Reaction mechanism), Addition in the presence of peroxides, Hydration, Halohydrin formation), Oxidation of Alkenes (KMnO4, Peroxides and Ozonolysis). o Conjugated Dienes (Lectures 3) (Allyl radical and stability, Allyl cation, 1,3-Butadiene - electron delocalization, Resonance and the Stability of conjugated dienes, 1,4-Addition and 1,4-Cycloaddition reactions of diene). o Aromatic Compound (Lectures 6) (Aromaic character, Hukel rule, Nomenlature, Electrophilic substitution reactions (Alkylation, Acylation, Halogenatio, Sulphonation, Nitration; reaction mechanism), Side chain halogenation and oxidation, Reactivity and Orientation in substituted benzene, Polynuclear aromatics).
    [Show full text]
  • Electronic Structure, Chemical Bonding, and Electronic Delocalization of Organic and Inorganic Systems with Three-Dimensional Or Excited State Aromaticity
    ELECTRONIC STRUCTURE, CHEMICAL BONDING, AND ELECTRONIC DELOCALIZATION OF ORGANIC AND INORGANIC SYSTEMS WITH THREE-DIMENSIONAL OR EXCITED STATE AROMATICITY Ouissam El Bakouri El Farri Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://hdl.handle.net/10803/565444 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art.
    [Show full text]
  • Bond Insertion at Distorted Si(001) Subsurface Atoms
    inorganics Article Bond Insertion at Distorted Si(001) Subsurface Atoms Lisa Pecher ID and Ralf Tonner * ID Faculty of Chemistry and Material Sciences Center, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-6421-282-5418 Received: 22 December 2017; Accepted: 17 January 2018; Published: 23 January 2018 Abstract: Using density functional theory (DFT) methods, we analyze the adsorption of acetylene and ethylene on the Si(001) surface in an unusual bond insertion mode. The insertion takes place at a saturated tetravalent silicon atom and the insight gained can thus be transferred to other saturated silicon compounds in molecular and surface chemistry. Molecular orbital analysis reveals that the distorted and symmetry-reduced coordination of the silicon atoms involved due to surface reconstruction raises the electrophilicity and, additionally, makes certain σ bond orbitals more accessible. The affinity towards bond insertion is, therefore, caused by the structural constraints of the surface. Additionally, periodic energy decomposition analysis (pEDA) is used to explain why the bond insertion structure is much more stable for acetylene than for ethylene. The increased acceptor abilities of acetylene due to the presence of two π*-orbitals (instead of one π*-orbital and a set of σ*(C–H) orbitals for ethylene), as well as the lower number of hydrogen atoms, which leads to reduced Pauli repulsion with the surface, are identified as the main causes. While our findings imply that this structure might be an intermediate in the adsorption of acetylene on Si(001), the predicted product distributions are in contradiction to the experimental findings.
    [Show full text]
  • Electronic Effect: Introduction the Effect Which Appears Due to Electronic Distribution Is Called Electronic Effect
    General Organic Chemistry-I Electronic effect: Introduction The effect which appears due to electronic distribution is called electronic effect. Classification: Section (A): Inductive effect Th1: Inductive effect The normal C–C bond has no polarity as two atoms of same electronegativity (EN) value are connected to each other. Hence the bond is nonpolar. Consider a carbon chain in 1-Chloro butane, here due to more EN of Cl atom C–Cl bond pair is slightly displaced towards Cl atom hence creating partial negative (–) charge over Cl atom and partial positive (+) charge over C1 atom. Now since C1 is slightly positive, it will also cause shifting of C1–C2 bond pair electrons towards itself causing C2 to acquire small positive charge. Similarly C3 acquires slightly positive charge creating an induction of charge in carbon chain. Such an effect is called inductive effect. Diagram showing I effect. The arrow shows electron withdrawing nature of –Cl group. D1: Thus inductive effect may be defined as a permanent displacement of bond pair electrons due to a dipole. (Polar bond) Some important points are: (a) It can also be defined as polarisation of one bond caused by polarisation of adjacent bond. (b) It is also called transmission effect. (c) It causes permanent polarisation in molecule, hence it is a permanent effect. (d) The displacement of electrons takes place due to difference in electronegativity of the two atoms involved in the covalent bond. (e) The electrons never leave their original atomic orbital. (f) Its magnitude decreases with distance and it is almost negligible after 3rd carbon atom.
    [Show full text]
  • Understanding the Molecular Aspects of Tetrahydrocannabinol and Cannabidiol As Antioxidants
    Molecules 2013, 18, 12663-12674; doi:10.3390/molecules181012663 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Understanding the Molecular Aspects of Tetrahydrocannabinol and Cannabidiol as Antioxidants Rosivaldo S. Borges 1,*, João Batista Jr. 1, Rommel B. Viana 2, Ana C. Baetas 1, Ednilsom Orestes 2, Marcieni A. Andrade 1, Káthia M. Honório 3 and Albérico B. F. da Silva 2 1 Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; E-Mails: [email protected] (J.B.J.); [email protected] (A.C.B.); [email protected] (M.A.A.) 2 Institute of Chemistry of São Carlos, University of São Paulo, São Carlos 13560-970, SP, Brazil; E-Mails: [email protected] (R.B.V.); [email protected] (E.O.); [email protected] (A.B.F.S.) 3 School of Arts, Sciences and Humanities, University of São Paulo, São Carlos 03828-000, SP, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-91-3271-7202; Fax: +55-91-3271-7201. Received: 4 October 2013; in revised form: 4 October 2013 / Accepted: 10 October 2013 / Published: 14 October 2013 Abstract: An antioxidant mechanism of tetrahydrocannabinol (THC) and cannabidiol (CBD) were compared with a simplified model of α-tocopherol, butylhydroxytoluene and hydroxytoluene in order to understand the antioxidant nature of THC and CBD molecules using DFT. The following electronic properties were evaluated: frontier orbitals nature, ionization potential, O-H bond dissociation energy (BDEOH), stabilization energy, and spin density distribution. An important factor that shows an influence in the antioxidant property of THC is the electron abstraction at the phenol position.
    [Show full text]