W9646-Front Matter W9646-Front Matter.Qxd

Total Page:16

File Type:pdf, Size:1020Kb

W9646-Front Matter W9646-Front Matter.Qxd W9646-Front matterISBN_W9646-Front matter.qxd 12/27/2011 7:24 PM Page i Understanding Pediatric Heart Sounds W9646-Front matterISBN_W9646-Front matter.qxd 12/27/2011 7:24 PM Page ii W9646-Front matterISBN_W9646-Front matter.qxd 12/27/2011 7:24 PM Page iii Understanding Pediatric Heart Sounds second edition Steven Lehrer, MD The Mount Sinai School of Medicine New York, New York Saunders An Imprint of Elsevier Science Philadelphia London New York St. Louis Sydney Toronto W9646-Front matterISBN_W9646-Front matter.qxd 12/27/2011 7:24 PM Page iv SAUNDERS An Imprint of Elsevier Science 11830 Westline Industrial Drive St. Louis, Missouri 63146 Understanding Pediatric Heart Sounds ISBN 1468138030 Copyright © 2003, Elsevier Science (USA). All rights reserved. 9781468138030 No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior permission of the publisher. NOTICE Health care is an ever-changing field. Standard safety precautions must be followed, but as new research and clinical experience broaden our knowledge, changes in treatment and drug therapy may become necessary or appropriate. Readers are advised to check the most current product information provided by the manufacturer of each drug to be administered to verify the recommended dose, the method and duration of administration, and contraindications. It is the responsibility of the licensed health care provider, relying on experience and knowledge of the patient, to determine dosages and the best treatment for each individual patient. Neither the publisher nor the editor assumes any liability for any injury and/or damage to persons or property arising from this publication. Previous edition copyrighted 1992 Library of Congress Cataloging-in-Publication Data Lehrer, Steven. Understanding pediatric heart sounds / Steven Lehrer.—2nd ed. p. ; cm. Includes bibliographical references and index. ISBN 0-7216-9646-5 1. Pediatric cardiology—Diagnosis. 2. Heart—Sounds. I. Title. [DNLM: 1. Heart Valve Diseases—Child. 2. Heart Valve Diseases—Infant. 3. Heart Auscultation—Child. 4. Heart Auscultation—Infant. 5. Heart Sounds—Child. 6. Heart Sounds—Infant. WG 260 L524u 2003] RJ423 .L44 2003 618.92¢1207544—dc21 2002026834 Vice President and Publishing Director: Sally Schrefer Acquisitions Editor: Loren Wilson Developmental Editor: Nancy L. O’Brien Publishing Services Manager: John Rogers Project Manager: Doug Turner Designer: Kathi Gosche Cover Art: Kathi Gosche RT/MVY Printed in the United States of America. Last digit is the print number: 9 8 7 6 5 4 3 2 1 W9646-Front matterISBN_W9646-Front matter.qxd 12/27/2011 7:24 PM Page v Preface In 1896, Dr. Thomas Morgan Rotch, Professor of Diseases of Children at Harvard Medical School, published a textbook of pediatrics. As Dr. Alexander Nadas noted, only seven of 1100 pages dealt with congenital disease of the heart. “It is usually possible to make a diagnosis of congenital heart disease,” wrote Dr. Rotch, but “a diagnosis of the especial lesion is, as a rule, impossible.” Indeed, the precise diagnosis was only of academic interest, because so little could be done for the patient. Dr. Rotch did mention that “the administration of digitalis in small doses with the utmost caution” was sometimes useful, but treatment was “essentially hygienic and symptomatic.” Another Harvard pediatrician, Professor John Lovett Morse, wrote a new pediatrics textbook in 1926. Morse devoted 40 pages to heart disease, of which less than five dealt with congenital abnormalities. Even the development of the x-ray had little impact on the diagnosis and treatment of congenital heart disease. “The Roentgen ray, which theoretically ought to be of considerable assistance in the diagnosis of special lesions, is practically of little assistance even in the hands of an expert,” wrote Dr. Morse. “Fortunately the diagnosis of the exact lesion is not of great importance in either prognosis or treatment. There is no curative treatment [and] nothing which will either diminish the defor mities or favor the closure of abnormal openings. The treatment must, there fore, be hygienic and symptomatic.” The Blalock-Taussig shunt operation and the subsequent develop ment of cardiovascular surgery revolutionized the treatment of heart disease in children. Heart deformities and abnormal openings could frequently be repaired, though precise diagnosis was a problem. The only certain diagnostic method was cardiac catheterization, an invasive tech nique. However, a physician skilled with a stethoscope could often make a correct diagnosis at the bedside. In the last decade, the perfection of echocardiography, Doppler ultra - sonography, and magnetic resonance imaging has made possible the accurate diagnosis of many structural heart abnormalities by non invasive methods. As a result, very few students receive the detailed instruction in the use of a stethoscope that would allow them to diagnose most pediatric heart problems. v W9646-Front matterISBN_W9646-Front matter.qxd 12/27/2011 7:24 PM Page vi vi Preface Not all children are examined in a hospital setting. A stethoscope is still the best diagnostic tool when a child is examined at home, in school, or for the first time in the clinic. This book provides the information a caregiver needs to become proficient at pediatric cardiac auscultation. Steven Lehrer New York City W9646-Front matterISBN_W9646-Front matter.qxd 12/27/2011 7:24 PM Page vii Acknowledgments I wish to thank the following colleagues for their assistance: Dr. Eva Botstein Griepp, who reviewed both the manuscript and the audio CD; Dr. Jerome Liebman and Dr. C. K. Lowe, who reviewed the manuscript; Ms. Katherine Pitcoff, who edited the manuscript; and Mr. Mark Warner, who helped to make the audio CD. S1, S2, systolic ejection sound, midsystolic click, murmurs of mitral regurgitation, tricuspid regurgitation, aortic stenosis, aortic regurgi tation, patent ductus arteriosus, atrial septal defect, and whoop are from Physical Examination of the Heart and Circulation, Cardiac Auscultation (1984), by Joseph K. Perloff and Mark E. Silverman and are reproduced by kind permission of the American College of Cardiology. Still’s murmur, cervical venous hum, and murmur of ventricular septal defect are from The Guide to Heart Sounds: Normal and Abnormal (1988), by Donald W. Novey, Marcia Pencak, and John M. Stang. These sounds were produced by the Cardionics Heart Sound Simulator, Cardionics, Inc., Houston, Texas. They are reproduced by kind permission of Dr. Novey, Mr. Keith Johnson of Cardionics, and CRC Press, Inc., Boca Raton, Florida. S3, S4, quadruple rhythm, and summation gallop are from Under - standing Heart Sounds and Murmurs, 3rd edition (2001), by Ara G. Tilkian and Mary Boudreau Conover, WB Saunders Company, Philadelphia, and were also produced on the Cardionics Heart Sound Simulator, Cardionics, Inc., Houston, Texas. First pericardial friction rub was lent by Dr. W. Proctor Harvey. Second pericardial friction rub is from Essentials of Bedside Cardiology (1988), by Jules Constant, Little Brown, Boston, and is reproduced by kind permission of Dr. Constant and the publisher. Murmur of Blalock-Taussig shunt was produced with the Heart Sounds Tutor, Wolff Industries, San Marino, California, and is reproduced by permission. vii W9646-Table of contents_W9646-Table of contents.qxd 12/27/2011 6:13 PM Page viii W9646-Table of contents_W9646-Table of contents.qxd 12/27/2011 6:13 PM Page ix Contents Chapter 1 The Heart as a Pump 1 The Cardiac Cycle 1 Electrical Events in the Cardiac Cycle 1 Mechanical Events in the Cardiac Cycle 2 Ventricular Function 5 Diastolic Ventricular Filling 5 Systolic Ventricular Emptying 5 The Frank-Starling Law 6 The Cardiac Valves and Papillary Muscles 6 The Aortic Pressure Curve 10 Heart Sounds and Heart Function 10 Circulatory Changes at Birth 11 Communications Between Systemic and Pulmonary Circulations 14 Heart Failure 14 Chapter 2 Sound, Hearing, and the Stethoscope 17 Nature of Sound 17 Hearing 19 The Stethoscope 21 Chapter 3 History and Physical Examination of the Child With Heart Disease 27 History 27 Chief Complaint 27 Prenatal History 28 Birth and Past Health History 29 Family History 34 Physical Examination 34 Inspection 39 Palpation 45 Blood Pressure Determination 54 Additional Diagnostic Methods 59 Oximetry 59 ix W9646-Table of contents_W9646-Table of contents.qxd 12/27/2011 6:13 PM Page x x Contents Chest X-ray Studies 59 Two-Dimensional Echocardiography 59 Fetal Echocardiography 60 Doppler Studies 60 Cardiac Catheterization and Angiocardiography 60 Chapter 4 Phonocardiography and the Recording of External Pulses 63 Phonocardiography 63 Electrocardiography 64 Carotid Pulse Tracing 64 Jugular Pulse Tracing 67 Apexcardiography 67 Chapter 5 Auscultation Areas 71 Traditional Areas to Auscultate 71 Revised Areas to Auscultate 71 Left Ventricular Area 73 Right Ventricular Area 73 Left Atrial Area 74 Right Atrial Area 74 Aortic Area 75 Pulmonary Area 76 Back and Head 77 Where Should One Listen? 78 Maneuvers That Aid Cardiac Auscultation 78 Chapter 6 The First Heart Sound (S1) 81 The Origin of S1 81 The Nature of S1 81 Listening for S1 81 Splitting of S1 83 Normal Splitting of S1 83 Wide Splitting of S1 83 Intensity of S1 83 Extracardiac Factors Affecting S1 Intensity 84 Cardiac Factors Affecting S1 Intensity 84 Pathologic Conditions Affecting S1 Intensity 85 Beat-to-Beat Variations of S1 85 W9646-Table of contents_W9646-Table
Recommended publications
  • Surgeries by STAT Category
    STAT SURGICAL PROCEDURE CATEGORY ASD repair, Patch 1 AVC (AVSD) repair, Partial (Incomplete) (PAVSD) 1 PFO, Primary closure 1 ASD repair, Primary closure 1 VSD repair, Patch 1 DCRV repair 1 Aortic stenosis, Subvalvar, Repair 1 Coarctation repair, End to end 1 Vascular ring repair 1 ICD (AICD) implantation 1 ICD (AICD) ([automatic] implantable cardioverter deFibrillator) procedure 1 ASD Repair, Patch + PAPCV Repair 1 VSD repair, Primary closure 1 AVC (AVSD) repair, Intermediate (Transitional) 1 PAPVC repair 1 TOF repair, No ventriculotomy 1 TOF repair, Ventriculotomy, Nontransanular patch 1 Conduit reoperation 1 Valve replacement, Pulmonic (PVR) 1 Valve replacement, Aortic (AVR), Mechanical 1 Valve replacement, Aortic (AVR), Bioprosthetic 1 Sinus oF Valsalva, Aneurysm repair 1 Fontan, TCPC, Lateral tunnel, Fenestrated 1 Coarctation repair, Interposition graFt 1 Pacemaker procedure 1 Glenn (Unidirectional cavopulmonary anastomosis) (Unidirectional Glenn) 1 PAPVC Repair, BaFFle redirection to leFt atrium with systemic vein translocation (Warden) (SVC 1 sewn to right atrial appendage) 1 1/2 ventricular repair 2 PA, Reconstruction (Plasty), Main (Trunk) 2 Valvuloplasty, Aortic 2 Ross procedure 2 LV to aorta tunnel repair 2 Valvuloplasty, Mitral 2 Fontan, Atrio-pulmonary connection 2 PDA closure, Surgical 2 Aortopexy 2 Pacemaker implantation, Permanent 2 Arrhythmia surgery - ventricular, Surgical Ablation 2 Bilateral bidirectional cavopulmonary anastomosis (BBDCPA) (Bilateral bidirectional Glenn) 2 Superior Cavopulmonary anastomosis(es) + PA
    [Show full text]
  • Heart Disease in Children.Pdf
    Heart Disease in Children Richard U. Garcia, MD*, Stacie B. Peddy, MD KEYWORDS Congenital heart disease Children Primary care Cyanosis Chest pain Heart murmur Infective endocarditis KEY POINTS Fetal and neonatal diagnosis of congenital heart disease (CHD) has improved the out- comes for children born with critical CHD. Treatment and management of CHD has improved significantly over the past 2 decades, allowing more children with CHD to grow into adulthood. Appropriate diagnosis and treatment of group A pharyngitis and Kawasaki disease in pe- diatric patients mitigate late complications. Chest pain, syncope, and irregular heart rhythm are common presentations in primary care. Although typically benign, red flag symptoms/signs should prompt a referral to car- diology for further evaluation. INTRODUCTION The modern incidence of congenital heart disease (CHD) has been reported at 6 to 11.1 per 1000 live births.1,2 The true incidence is likely higher because many miscar- riages are due to heart conditions incompatible with life. The unique physiology of CHD, the constantly developing nature of children, the differing presenting signs and symptoms, the multiple palliative or corrective surgeries, and the constant devel- opment of new strategies directed toward improving care in this population make pe- diatric cardiology an exciting field in modern medicine. THE FETAL CIRCULATION AND TRANSITION TO NEONATAL LIFE Cardiovascular morphogenesis is a complex process that transforms an initial single- tube heart to a 4-chamber heart with 2 separate outflow tracts. Multiple and Disclosure Statement: All Authors take responsibility for all aspects of the reliability and freedom from bias of the information presented and their discussed interpretation.
    [Show full text]
  • Interstage Monitoring for the Infant with Hypoplastic Left Heart Syndrome What the Direct Care Nurse Needs to Know Jennifer Stra
    Interstage Monitoring for the Infant with Hypoplastic Left Heart Syndrome What the Direct Care Nurse Needs to Know Jennifer Strawn, BSN, RN, CPN, Children’s Hospital & Medical Center, Omaha, Nebraska Jo Ann Nieves MSN, CPN, ARNP, PNP-BC, FAHA, Miami Children’s Hospital Bronwyn Bartle, DNP, CPNP-AC/PC, Duke Children’s Pediatric and Congenital Heart Center Mary Rummell, MN, RN, CNS, CPNP, FAHA, Oregon Health and Science University Introduction: Children born with hypoplastic left heart syndrome (HLHS) are at high risk for serious morbidity, growth failure and mortality during the time from discharge home after first stage HLHS palliation, until admission for the second stage surgical intervention. To improve outcomes and survival during this time, referred to as the “interstage period”, multiple strategies have been successfully implemented resulting in improved interstage survival. A critical element of interstage care is family education and training. Variations in practice and interstage home surveillance do exist but general guidelines are described below. Definitions: Possible newborn interventions for HLHS Figure 1: First stage surgical palliation procedures for hyoplastic left heart syndrome A. Norwood Procedure B. Norwood Procedure with C. Hybrid Stage I with BT shunt RV to PA shunt (“Sano”) Procedure Surgical: Norwood /Modified Blalock Taussig (BT) shunt procedure – the Norwood aortic reconstruction of the ascending aorta and arch consists of enlarging the ascending aorta by using part of the proximal native main pulmonary artery (PA) with other material (Gore-Tex or homograft material) to connect the PA to the aorta. Pulmonary blood flow is provided by a controlled shunt (BT shunt) usually made from Gore-Tex and connects the right subclavian artery to the right pulmonary artery.
    [Show full text]
  • Long Term Consequences of the Fontan Procedure and How to Manage Them
    ACCEPTED MANUSCRIPT Long Term Consequences of the Fontan Procedure and How to Manage Them Authors: W. Aaron Kay, MD1 Tabitha Moe, MD2 Blair Suter, MD3 Andrea Tennancour, NP1 Alice Chan, NP4 Richard A. Krasuski, MD5 Ali N. Zaidi, MD4 1. Indiana University School of Medicine, Krannert Institute of Cardiology, IN 2. University of Arizona School of Medicine, Phoenix, AZ 3. Indiana University School of Medicine, Departments of Medicine and Pediatrics, IN 4. Children’s Hospital at Montefiore, Montefiore Medical Center, Albert Einstein College of Medicine, NY 5. Duke University Health System, Durham, NC *Address reprint requests to: W. Aaron Kay, MD. 1801 N. Senate Blvd Suite 2000, Indianapolis IN. Email: [email protected] Emails of additional authors: Moe TG: [email protected] Suter BC: [email protected] Tennancour AE: [email protected] Chan A: [email protected] Krasuski RA: [email protected] Zaidi AN: [email protected] Disclosures: W. Aaron Kay: Nothing to disclose Tabitha Moe: Nothing to disclose Blair Suter, MD: Nothing to disclose Andrea Tennancour, NP: Nothing to disclose Alice Chan, NP: Nothing to disclose Ali N. Zaidi, MD: Nothing to disclose Richard A. Krasuski, MD: Dr. Krasuski serves a consultant and receives research funding from Actelion Pharmaceuticals.ACCEPTED He also serves as anMANUSCRIPT investigator for Edwards Lifesciences and is an unpaid member of the scientific advisory board for Ventripoint. ___________________________________________________________________ This is the author's manuscript of the article published in final edited form as: Kay, W. A., Moe, T., Suter, B., Tennancour, A., Chan, A., Krasuski, R. A., & Zaidi, A. N. (2018). Long Term Consequences of the Fontan Procedure and How to Manage Them.
    [Show full text]
  • Comparison of Hybrid and Norwood Strategies in Hypoplastic Left Heart Syndrome
    SURGERY | REVIEW Comparison of Hybrid and Norwood Strategies in Hypoplastic Left Heart Syndrome Hideyuki Kato, MD, Osami Honjo, MD, PhD, Glen Van Arsdell, MD, Christopher A. Caldarone, MD Division of Cardiovascular Surgery, Hospital for Sick Children, Labatt Family Heart Center Received 12/12/2011, Reviewed 27/12/2011, Accepted 1/1/2012 Key words: Hybrid strategy, Norwood strategy, single ventricle, hypoplastic left heart syndrome DOI: 10.5083/ejcm.20424884.70 ABSTRACT CORRESPONDENCE Current surgical palliation for neonates with single ventricle physiology includes Norwood-based Christopher A. Caldarone, MD, and Hybrid-based surgical strategies. When transplantation is not available, clinicians must choose Professor and Chair, Division of Cardiac Surgery, between these two strategies with distinctly different learning curves and risk profiles. The Norwood University of Toronto, strategy has evolved over several decades while the rising popularity of the Hybrid strategy is a Watson Family Chair in much more recent addition to our therapeutic options. Based upon the premise that avoiding cardio Cardiovascular Science – pulmonary bypass in the neonatal period and deferral of aortic arch reconstruction until a second Labatt Family Heart Center, stage procedure have an important influence on outcomes, the Hybrid strategy has compelling Hospital for Sick Children, theoretical advantages and disadvantages in comparison to the Norwood strategy. The purpose 555 University Avenue, of this review is to summarise the currently available data to support
    [Show full text]
  • Risk Factors for Mortality After the Norwood Procedureq
    European Journal of Cardio-thoracic Surgery 22 (2002) 82–89 www.elsevier.com/locate/ejcts Risk factors for mortality after the Norwood procedureq J. William Gaynora,*, William T. Mahleb, Mitchell I. Cohenb, Richard F. Ittenbachc, William M. DeCamplia, James M. Stevend, Susan C. Nicolsond, Thomas L. Spraya Downloaded from https://academic.oup.com/ejcts/article/22/1/82/516394 by guest on 28 September 2021 aDivision of Cardiothoracic Surgery, The Cardiac Center at The Children’s Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Suite 8527, Philadelphia, PA 19104, USA bDivision of Cardiology, The Cardiac Center at The Children’s Hospital of Philadelphia, Philadelphia, PA, USA cDivision of Biostatistics and Epidemiology, The Cardiac Center at The Children’s Hospital of Philadelphia, Philadelphia, PA, USA dDivision of Cardiac Anesthesiology, The Cardiac Center at The Children’s Hospital of Philadelphia, Philadelphia, PA, USA Received 18 September 2001; received in revised form 7 March 2002; accepted 22 March 2002 Abstract Objectives: Recent studies have suggested that survival following the Norwood procedure is influenced by anatomy and is worse for patients with hypoplastic left heart syndrome (HLHS), particularly aortic atresia (AA), as compared to other forms of functional single ventricle and systemic outflow tract obstruction. The current study was undertaken to evaluate our recent experience with the Norwood procedure and to evaluate potential predictors of operative and 1-year mortality. Methods: A retrospective study of risk factors for operative and 1-year mortality in 158 patients undergoing the Norwood procedure between January 1, 1998 and June 30, 2001. Results: HLHS was present in 102 patients (70 with AA) and other forms of functional single ventricle with systemic outflow tract obstruction in the remaining 56.
    [Show full text]
  • Chest Pain in Children and Adolescents Surendranath R
    Article cardiology Chest Pain in Children and Adolescents Surendranath R. Veeram Objectives After completing this article, readers should be able to: Reddy, MD,* Harinder R. Singh, MD* 1. Enumerate the most common causes of chest pain in pediatric patients. 2. Differentiate cardiac chest pain from that of noncardiac cause. 3. Describe the detailed evaluation of a pediatric patient who has chest pain. Author Disclosure 4. Screen and identify patients who require a referral to a pediatric cardiologist or other Drs Veeram Reddy specialist. and Singh have 5. Explain the management of the common causes of pediatric chest pain. disclosed no financial relationships relevant Case Studies to this article. This Case 1 commentary does not During an annual physical examination, a 12-year-old girl complains of intermittent chest contain a discussion pain for the past 5 days that localizes to the left upper sternal border. The pain is sharp and of an unapproved/ stabbing, is 5/10 in intensity, increases with deep breathing, and lasts for less than 1 minute. investigative use of a The patient has no history of fever, cough, exercise intolerance, palpitations, dizziness, or commercial product/ syncope. On physical examination, the young girl is in no pain or distress and has normal vital signs for her age. Examination of her chest reveals no signs of inflammation over the sternum device. or rib cage. Palpation elicits mild-to-moderate tenderness over the left second and third costochondral junctions. The patient reports that the pain during the physical examination is similar to the chest pain she has experienced for the past 5 days.
    [Show full text]
  • The Intensive Care of Infants with Hypoplastic Left Heart Syndrome
    F97 Arch Dis Child Fetal Neonatal Ed: first published as 10.1136/adc.2004.064337 on 21 February 2005. Downloaded from RECENT ADVANCES The intensive care of infants with hypoplastic left heart syndrome U Theilen, L Shekerdemian ............................................................................................................................... Arch Dis Child Fetal Neonatal Ed 2005;90:F97–F102. doi: 10.1136/adc.2004.051276 Until a little over two decades ago, hypoplastic left heart excessive pulmonary blood flow, an important subgroup may have inadequate inter-atrial mix- syndrome was considered an inoperable and fatal ing due to a restrictive atrial septal defect (ASD). condition, with most deaths occurring in early infancy, and This results in global hypoperfusion, with pro- almost all of those affected dying before their first birthday. found hypoxaemia and acidosis, severe pulmon- ary venous hypertension, and overwhelming However, the advent of surgical palliation and advances in pulmonary venous congestion on chest x ray. peri-operative care, have offered hope to these patients These infants are generally unresponsive to and their families. measures aimed at improving pulmonary flow such as aggressive mechanical ventilation with ........................................................................... high inspired oxygen fractions or nitric oxide, and if left untreated they rapidly develop ypoplastic left heart syndrome (HLHS) is a progressive pulmonary venous hypertension. continuum which can affect all left sided This is associated with increased mortality in Hcardiac structures, from the mitral valve to infants with HLHS.34 the aortic arch. Since Norwood’s first description A restrictive ASD requires urgent intervention. of surgical palliation in 1981,1 HLHS has been If this has been diagnosed antenatally, delivery managed either by staged palliation in the should be planned in a centre able to urgently majority of cases, or, in a minority, by primary institute cardiopulmonary bypass.
    [Show full text]
  • Norwood/Batista Operation for a Newborn with Dilated Myopathy of the Left Ventricle
    612 Brief communications The Journal of Thoracic and Cardiovascular Surgery September 2000 NORWOOD/BATISTA OPERATION FOR A NEWBORN WITH DILATED MYOPATHY OF THE LEFT VENTRICLE Richard D. Mainwaring, MD, Regina M. Healy, BS, John D. Murphy, MD, and William I. Norwood, MD, PhD, Wilmington, Del Partial left ventriculectomy for dilated cardiomyopathy was contractile function. The variable results that have been first reported by Batista and associates1 in 1996. The rationale reported in the adult literature may reflect patient selection for this procedure is the increase in left ventricular cavity size according to the reversibility or recoverability of the underly- in the absence of compensatory left ventricular wall thickness ing disease process. that is observed in dilated cardiomyopathy. This combination Despite the substantial worldwide experience with the of factors results in an increase in wall stress per unit muscle Batista procedure in adult patients, there is limited experience mass, as predicted by the LaPlace equation. As wall stress with this procedure in children. The current case report increases, mechanical load eventually becomes nonsustain- describes the treatment of a patient in whom the diagnosis of able and contributes to further dilation of the ventricle. Partial dilated cardiomyopathy was made in utero. left ventriculectomy has been advocated as a method of Clinical summary. A female infant was recognized in restoring the balance between cavity size and wall thickness. utero as having a dilated, poorly functioning left ventricle. Fundamental to this concept is the assumption that the left Labor was induced at 36 weeks’ gestation, and she was deliv- ventricular muscle is intrinsically normal or has recoverable ered by normal, spontaneous, vaginal delivery.
    [Show full text]
  • Chest Pain in Pediatrics
    PEDIATRIC CARDIOLOGY 0031-3955/99 $8.00 + .OO CHEST PAIN IN PEDIATRICS Keith C. Kocis, MD, MS Chest pain is an alarming complaint in children, leading an often frightened and concerned family to a pediatrician or emergency room and commonly to a subsequent referral to a pediatric cardiologist. Because of the well-known associ- ation of chest pain with significant cardiovascular disease and sudden death in adult patients, medical personnel commonly share heightened concerns over pediatric patients presenting with chest pain. Although the differential diagnosis of chest pain is exhaustive, chest pain in children is least likely to be cardiac in origin. Organ systems responsible for causing chest pain in children include*: Idiopathic (12%-85%) Musculoskeletal (15%-31%) Pulmonary (12%-21%) Other (4%-21%) Psychiatric (5%-17%) Gastrointestinal (4'/0-7%) Cardiac (4%4%) Furthermore, chest pain in the pediatric population is rareZy associated with life-threatening disease; however, when present, prompt recognition, diagnostic evaluation, and intervention are necessary to prevent an adverse outcome. This article presents a comprehensive list of differential diagnostic possibilities of chest pain in pediatric patients, discusses the common causes in further detail, and outlines a rational diagnostic evaluation and treatment plan. Chest pain, a common complaint of pediatric patients, is often idiopathic in etiology and commonly chronic in nature. In one study,67 chest pain accounted for 6 in 1000 visits to an urban pediatric emergency room. In addition, chest pain is the second most common reason for referral to pediatric cardiologist^.^, 23, 78 Chest pain is found equally in male and female patients, with an average *References 13, 17, 23, 27, 32, 35, 44, 48, 49, 63-67, 74, and 78.
    [Show full text]
  • Identifying and Treating Chest Pain
    Identifying and Treating Chest Pain The Congenital Heart Collaborative Cardiac Chest Pain University Hospitals Rainbow Babies & Children’s Hospital Chest pain due to a cardiac condition is rare in children and and Nationwide Children’s Hospital have formed an innovative adolescents, with a prevalence of less than 5 percent. The affiliation for the care of patients with congenital heart disease cardiac causes of chest pain include inflammation, coronary from fetal life to adulthood. The Congenital Heart Collaborative insufficiency, tachyarrhythmias, left ventricular outflow tract provides families with access to one of the most extensive and obstruction and connective tissue abnormalities. experienced heart teams – highly skilled in the delivery of quality clinical services, novel therapies and a seamless continuum of care. Noncardiac Chest Pain Noncardiac chest pain is, by far, the most common cause of chest pain in children and adolescents, accounting for 95 percent of Pediatric Chest Pain concerns. Patients are often unnecessarily referred to a pediatric In pediatrics, chest pain has a variety of symptomatic levels and cardiologist for symptoms. This causes increased anxiety and causes. It can range from a sharp stab to a dull ache; a crushing distress within the family. Noncardiac causes of chest pain are or burning sensation; or even pain that travels up to the neck, musculoskeletal, pulmonary, gastrointestinal and miscellaneous. jaw and back. Chest pain can be cause for alarm in both patients The most common cause of chest pain in children and and parents, and it warrants careful examination and treatment. adolescents is musculoskeletal or chest-wall pain. Pediatric chest pain can be broadly classified as cardiac chest pain Reassurance, rest and analgesia are the primary treatments or noncardiac chest pain.
    [Show full text]
  • Kounis Syndrome: a Forgotten Cause of References Chest Pain/ Cardiac Chest Pain in Children 1
    382 Editöre Mektuplar Letters to the Editor Kounis syndrome: A forgotten cause of References chest pain/ Cardiac chest pain in children 1. Çağdaş DN, Paç FA. Cardiac chest pain in children. Anadolu Kardiyol Derg 2009;9:401-6. Kounis sendromu: Göğüs ağrısının unutulan bir sebebi/ 2. Coleman WL. Recurrent chest pain in children. Pediatr Clin North Am Çocuklarda kardiyak göğüs ağrısı 1984;31:1007-26. 3. Kounis NG. Kounis syndrome (allergic angina and allergic myocardial infarction): a natural paradigm? Int J Cardiol 2006; 7:7-14. Dear Editor, 4. Biteker M, Duran NE, Biteker F, Civan HA, Gündüz S, Gökdeniz T, et al. Kounis syndrome: first series in Turkish patients. Anadolu Kardiyol Derg I read with interest the article “Cardiac chest pain in children” by 2009;9:59-60. Çağdaş et al. (1) which has retrospectively evaluated 120 children 5. Biteker M. A new classification of Kounis syndrome. Int J Cardiol 2010 Jun admitted to a pediatric cardiology clinic with chest pain. Although chest 7. [Epub ahead of print]. pain in children is rarely reported to be associated with cardiac 6. Biteker M, Duran NE, Ertürk E, Aykan AC, Civan HA, et al. Kounis Syndrome diseases in the literature (2) authors have found that 52 of the patients secondary to amoxicillin/clavulanic acid use in a child. Int J Cardiol 2009;136:e3-5. (42.5%) had cardiac diseases and 28 (23.3%) of these patients’ cardiac 7. Biteker M, Ekşi Duran N, Sungur Biteker F, Ayyıldız Civan H, Kaya H, diseases were thought to directly cause their chest pain.
    [Show full text]