Environmental Changes and Development of the Nutrient Budget of Histosols in North Iceland During the Holocene
Total Page:16
File Type:pdf, Size:1020Kb
Environmental changes and development of the nutrient budget of Histosols in North Iceland during the Holocene Susanne Claudia Möckel Faculty of Life and Environmental Sciences University of Iceland 2016 Environmental changes and development of the nutrient budget of Histosols in North Iceland during the Holocene Susanne Claudia Möckel 60 ECTS thesis submitted in partial fulfillment of a Magister Scientiarum degree in Geography Advisors Guðrún Gísladóttir Egill Erlendsson Master’s Examiner Ian Thomas Lawson Faculty of Life and Environmental Sciences School of Engineering and Natural Sciences University of Iceland Reykjavik, September 2016 Environmental changes and development of the nutrient budget of Histosols in North Iceland during the Holocene 60 ECTS thesis submitted in partial fulfillment of a Magister Scientiarum degree in Geography Copyright © 2016 Susanne Claudia Möckel All rights reserved Faculty of Life and Environmental Sciences School of Engineering and Natural Sciences University of Iceland Sturlugata 7 101, Reykjavik Iceland Telephone: 525 4000 Bibliographic information: Susanne Claudia Möckel, 2016, Environmental changes and development of the nutrient budget of Histosols in North Iceland during the Holocene, Master’s thesis, Faculty of Life and Environmental Sciences, University of Iceland, pp. 74. ISBN XX Printing: Háskólaprent Reykjavik, Iceland, September 2016 Abstract Little work has been done in Iceland regarding vegetation changes in peatlands in the context of soil chemical properties. This study examines interactions between climate, Histosols, vegetation and land use during the Holocene. Emphasis is on the development of cation exchange capacity (CEC), base saturation (BS), and decomposition rates using C:N and von Post humification. Soil physical properties were also determined. Vegetation development was reconstructed based on pollen analysis. In order to examine the impact of different geographic settings (coastal, inland and highland fringe), results from three sloping fens in Northwest Iceland were compared. Minerogenic soil content is highest in the proximity of the active volcanic belt, reflected in higher C:N values and greater ability to bind nutrients. The site closest to the sea reveals exceptionally high BS values. Overestimation of CEC due to oceanic precipitation may explain this pattern. Contrary to an expected decline of C:N with depth, values were stable or increased with depth. Evidently, C:N alone is not a reliable indicator of decomposition rates, but depends on the chemical composition of the organic parent material. The pollen record suggests optimal plant growth conditions at intermediate fertility levels. Differences in plant species richness between fertility levels are minor, but species diversity, species evenness and pollen concentrations are greatest at intermediate nutrient content. Environmental conditions driven by climate changes caused some changes in vegetation and soil properties before the settlement, but overall the Histosols showed resilience towards adverse impacts and severe degradation. After the settlement, they struggled to buffer the severe impact caused by destruction of vegetation and enhanced erosion. By connecting soil chemical and physical characteristics with palaeobotanical data, this study increases our understanding of environmental and anthropogenic determinants of soil- and vegetation development. Útdráttur Gróðurfarsbreytingar í mýrum með tilliti til efnaeiginleika jarðvegs hafa lítið verið rannsakaðar á Íslandi. Fyrirliggjandi rannsókn snýr að víxlverkunum loftslags, mýrarjarðvegs, gróðurfars og landnotkunar á nútíma (s. l. 10000 ár). Sérstök áhersla er á katjónrýmd (e: cation exchange capacity; CEC), mettun jónrýmdar af katjónum (e: base saturation; BS) og ákvörðun niðurbrotsstigs á grundvelli hlutfalls lífræns kolefnis og köfnunarefnis (C:N) sem og matskvarða von Post fyrir niðurbrot lífræns efnis. Eðliseiginleikar jarðvegs voru einnig ákvarðaðir. Frjókornagreiningar voru notaðar til að draga upp mynd af gróðurfarsbreytingum. Til að rannsaka áhrif landfræðilegrar legu voru niðurstöður frá þremur hallamýrum á Norðvesturlandi bornar saman, ein staðsett nálægt sjó, önnur inn í landi á láglendi og sú þriðja á hálendisbrún. Innihald steinefna reyndist mest nálægt virka gosbeltinu, sem endurspeglast í hærra hlutfalli C:N og meiri bindingu næringarefna. Nærri sjó endurspeglast áhrif sjávar í óvenjulega háu BS. Möguleg skýring er ofmat á CEC vegna hafrænna áhrifa á efnainnihald úrkomu. Hlutfall C:N er stöðugt eða eykst með dýpi, sem er andstætt því sem búist var við. Eitt og sér er C:N hlutfallið ekki nógu góður mælikvarði á niðurbrotsstig en það tengist efnafræðilegri samsetningu lífræns móðurefnis. Frjókornagreiningin bendir til að bestu vaxtarskilyrði séu þegar næringarefnainnihald jarðvegs er í meðallagi. Ekki er mikill munur á tegundafjölda (e: species richness) við breytilegt næringarefnainnihald jarðvegs, en tegundafjölbreytni (e: species diversity), tegundajafnvægi (e: species evenness) og þéttleiki frjókorna (e: pollen concentration) eru mest þegar næringarefnainnihald jarðvegs er í meðallagi. Þær breytingar á gróðri og jarðvegseiginleikum sem urðu fyrir landnám orsökuðust af loftlagsbreytingum, en í heildina litið er seigla mýrarjarðvegs gagnvart hnignandi umhverfisskilyrðum mikil. Eftir landnám, í kjölfar gróðureyðinar og aukins jarðvegsrofs, minnkar geta mýrarjarðvegs til að veita utan að komandi breytingum viðnám. Með því að tengja efna- og eðliseiginleika jarðvegs við upplýsingar um fornt gróðurfar eykur rannsóknin þekkingu okkar á áhrifum umhverfisþátta og mannvistar á þróun jarðvegs og gróðurs. Dedication For my sister Table of Contents List of Figures .......................................................................................................... viii List of Tables .............................................................................................................. ix Abbreviations .............................................................................................................. x Acknowledgements .................................................................................................... xi 1 General Information ............................................................................................. 1 1.1 Iceland – a brief overview .............................................................................. 1 1.2 Climate change and vegetation development ................................................. 2 1.3 Soils in Iceland ............................................................................................... 4 1.3.1 Andosols ........................................................................................................ 5 1.3.2 Vitrisols – soils of the deserts ........................................................................ 5 1.3.3 Histosols – soils of the wetlands .................................................................... 6 1.4 Use of palynology in pedologic research ....................................................... 7 1.4.1 Pollen-analytical studies ................................................................................ 7 1.4.2 Pedologic research on peatlands .................................................................... 8 References ................................................................................................................. 10 2 Environmental changes and development of the nutrient budget of Histosols in North Iceland during the Holocene ............................................................... 15 2.1 Introduction .................................................................................................. 15 3 Methods ................................................................................................................ 18 3.1 Research area ............................................................................................... 18 3.2 Sampling ...................................................................................................... 19 3.3 Soil morphology and physical properties ..................................................... 20 3.4 Chemical soil properties ............................................................................... 21 3.4.1 C:N ratio based on organic C and N ............................................................ 21 3.4.2 pH in water and NaF .................................................................................... 21 3.4.3 Cation Exchange Capacity ........................................................................... 22 3.5 Chronology, soil accumulation rate and carbon sequestration..................... 22 3.6 Analysis of pollen and spores ...................................................................... 23 4 Results ................................................................................................................... 24 4.1 Soil accumulation rate .................................................................................. 24 4.2 Soil morphology ........................................................................................... 25 4.3 Physical and chemical soil properties .......................................................... 28 4.3.1 Dry bulk density, soil organic matter and soil water content ...................... 28 4.3.2 pHwater and pHNaF ......................................................................................... 31 4.3.3 Base cations, CECbases and CECpot