<<

Linear Algebra [1]

4.1 Vectors and Lines

• Definition – : magnitude vector : magnitude and direction

Geometrically, a vector v can be represented by an arrow. We denote the length of v by kvk.

– zero vector 0 : k0k = 0

– Given v, we have the negative −v.

– v = w if the same length and the same direction

Kyu-Hwan Lee Linear Algebra [2] – sum v + w v + w

v

w w v + w

v

Kyu-Hwan Lee Linear Algebra [3] – scalar multiplication av (a ∈ R)

v

1 2v 2v −2v – subtraction u − v = u + (−v)

Kyu-Hwan Lee Linear Algebra [4]

Thm. u, v, w : vectors, k, p ∈ R 1. u + v = v + u, 2. u + (v + w) = (u + v) + w 3. ∃ 0 s.t. 0 + u = u for each u. 4. For each u, ∃ −u s.t. u + (−u) = 0. 5. k(u + v) = ku + kv , (k + p)u = ku + pu 6. (kp)u = k(pu), 7. 1 · u = u

Kyu-Hwan Lee Linear Algebra [5]

Thm. A, B, C : matrices of the same , k, p ∈ F 1. A + B = B + A, 2. A + (B + C) = (A + B) + C 3. ∃ O s.t. O + A = A for each A. 4. For each A, ∃ −A s.t. A + (−A) = O. 5. k(A + B) = kA + kB , (k + p)A = kA + pA 6. (kp)A = k(pA), 7. 1 · A = A

Kyu-Hwan Lee Linear Algebra [6]

Thm. f, g, h : continuous functions on D, k, p ∈ F 1. f + g = g + f, 2. f + (g + h) = (f + g) + h 3. ∃ 0 s.t. 0 + f = f for each f. 4. For each f, ∃ −f s.t. f + (−f) = 0. 5. k(f + g) = kf + kg , (k + p)f = kf + pf 6. (kp)f = k(pf), 7. 1 · f = f

Kyu-Hwan Lee Linear Algebra [7]

The notion of ! 1. The set of matrices of the same size

2. The set of vectors in R3

3. The set of continuous functions on D

4. ...

5. ... and so on.

Kyu-Hwan Lee Linear Algebra [8]

The theorem says that we can manipulate vectors as if they are variables w.r.t. addition and scalar multiplication.

Eg.

5(u − 2v) + 6(5u + 2v) = 5u − 10v + 30u + 12v = 35u + 2v.

Kyu-Hwan Lee Linear Algebra [9] • Coordinates Consider a point P = (x, y, z). Then we obtain a vector −−→ p = OP : the position vector. Conversely, a vector p determines a unique point P . Thus we identify each point with the corresponding position vector.

P (x, y, z)

p O

Kyu-Hwan Lee Linear Algebra [10]

Given u = (x, y, z) and u1 = (x1, y1, z1), we have

u + u1 = (x + x1, y + y1, z + z1),

au = (ax, ay, az), u − u1 = (x − x1, y − y1, z − z1).

Kyu-Hwan Lee Linear Algebra [11]

• Lines P0 d P

p0 p

O

Assume that p0 and d are given. Then p is the position vector of a point P on the line if and only if

p = p0 + td (t ∈ R).

Kyu-Hwan Lee Linear Algebra [12]

If p = (x, y, z), d = (a, b, c), p0 = (x0, y0, z0), then we have

x = x0 + ta,  y = y0 + tb, (t ∈ R). z = z0 + tc,   This is the equation of the line through p0 parallel to d.

• Planes Later ... we need the notion of inner product and cross product of vectors.

Kyu-Hwan Lee Linear Algebra [13] 5.1 Subspaces and Dimension

• Subspaces of Fn

vector = point in R3 ↔ (x, y, z) coordinates

????? ↔ (a1, a2, · · · , an)

n R = {(a1, a2, · · · , an)|ai ∈ R}

a1     a2  ∼  i R =  .  a ∈   .    an     

Kyu-Hwan Lee Linear Algebra [14]

n C = {(a1, a2, · · · , an)|ai ∈ C}

a1     a2  ∼  i C =  .  a ∈   .    an      Fn = Rn or Cn The n-tuples in Fn will be called vectors.

Kyu-Hwan Lee Linear Algebra [15]

• Subspaces A subset U of Fn is called a subspace if it satisfies the following conditions. 1. If X, Y ∈ U, then X + Y ∈ U. 2. If X ∈ U, then rX ∈ U for r ∈ F.

Eg. 1. Fn

2. {0} : the zero subspace

Kyu-Hwan Lee Linear Algebra [16] 3. a line through the origin in Rn : {td}

If t1d and t2d on the line, then t1d + t2d = (t1 + t2)d and r(t1d) = (rt1)d.

4. Let A be an m × n . We define

n nullA = kerA = {X ∈ F |AX = O} and

m n imA = {Y ∈ F |Y = AX for some X ∈ F }.

If X1, X2 ∈ kerA, then A(X1 +X2) = AX1 +AX2 = O and A(rX1) = r(AX1) = O. If Y1, Y2 ∈ imA, then ∃ X1, X2 s.t. AX1 = Y1 and AX2 = Y2. Now A(X1 + X2) = Y1 + Y2 and A(rX1) = rY1.

Kyu-Hwan Lee Linear Algebra [17] 5. U = {(x, y) ∈ R2|x2 + y2 = 1}.

We have (1, 0), (0, 1) ∈ U, but (1, 0) + (0, 1) = (1, 1) ∈/ U. Thus U is not a subspace of R2.

Kyu-Hwan Lee Linear Algebra [18]

• Spanning sets

n Def. Assume that X1, X2, · · · , Xk ∈ F . An expression

a1X1 + a2X2 + · · · + akXk

is called a linear combination of X1, X2, · · · , Xk (ai ∈ F).

The span of X1, X2, · · · , Xk is the set of all linear combinations of X1, X2, · · · , Xk.

span{X1, X2, · · · , Xk} = {a1X1+a2X2+· · ·+akXk|ai ∈ F}

Kyu-Hwan Lee Linear Algebra [19]

n Thm. Assume that X1, X2, · · · , Xk ∈ F . n 1. The span{X1, X2, · · · , Xk} is a subspace of F .

2. If W is a subspace containing X1, X2, · · · , Xk, then

span{X1, X2, · · · , Xk} ⊂ W .

Proof. 1. Let U = span{X1, X2, · · · , Xk}. If

Y = s1X1 + · · · + skXk, Z = t1X1 + · · · + tkXk ∈ U,

then Y + Z = (s1 + t1)X1 + · · · + (sk + tk)Xk ∈ U and rY = rs1X1 + · · · + rskXk ∈ U. 2. Clear! 2

Kyu-Hwan Lee Linear Algebra [20]

The span{X1, X2, · · · , Xk} is the smallest subspace containing X1, · · · , Xk.

If U = span{X1, X2, · · · , Xk}, then {X1, X2, · · · , Xk} is a spanning set of U, and U is spanned by the Xi’s.

Eg. Recall

Thm. Given AX = O, every solution is a linear combination of the basic solutions.

Equivalently, the kerA is the span of the basic solutions.

Kyu-Hwan Lee Linear Algebra [21]

Assume A = C1 C2 · · · Cn : m × n matrix. Then   imA = span{C1, C2, · · · , Cn}.

Proof. For X ∈ Fn,

x1   x2 AX = C1 C2 · · · Cn  .  = x1C1+x2C2+· · ·+xnCn    .    xn

n imA = {AX|X ∈ F } = {x1C1 + x2C2 + · · · + xnCn}

= span{C1, C2, · · · , Cn}

2

Kyu-Hwan Lee Linear Algebra [22]

• Independence

Def. {X1, X2, · · · , Xk} : linearly independent if t1X1 + t2X2 + · · · + tkXk = 0 implies t1 = t2 = · · · = tk = 0.

Thm. If {X1, X2, · · · , Xk} is linearly independent, X ∈ span{X1, X2, · · · , Xk} has a unique representation as a linear combination of the Xi’s.

Proof.

r1X1 + · · · + rkXk = s1X1 + · · · + skXk

(r1 − s1)X1 + · · · + (rk − sk)Xk = 0 Thus we have ri = si for all i. 2

Kyu-Hwan Lee Linear Algebra [23]

Eg. X1, X2, X1 + X2

2X1 + 2X2 = 2(X1 + X2)

Eg.

1 0 1 1 0 1 0               0 1 1 0 1 1 0   ,   ,   r   + s   + t   =   1 1 1 1 1 1 0               2 2 3 2 2 3 0

1 0 1 0 1 0 0   r     0 1 1   0 0 1 0   s =   ⇒   , r = s = t = 0 1 1 1   0 0 0 1   t     2 2 3 0 0 0 0

Kyu-Hwan Lee Linear Algebra [24]

Eg. 1 1 −3 2         2 , −2 , 2 , 0         −1  1   1  0 1 1 −3 2 0           r1 2 + r2 −2 + r3 2 + r4 0 = 0           −1  1  −1 0 0 r1 1 1 −3 2   0   r2   2 −2 2 0   = 0   r3   −1 1 −1 0   0 r4

Kyu-Hwan Lee Linear Algebra [25]

1 1 −3       2 , −2 , 2       −1  1  −1 1 1 −3 1 0 −1     2 −2 2 ⇒ 0 1 −2     −1 1 −1 0 0 0 

Eg. {X, Y } : indep. ⇒ {2X + 3Y, X − 5Y }: indep.

r(2X + 3Y ) + s(X − 5Y ) = O

(2r + s)X + (3r − 5s)Y = O 2r + s = 0, 3r − 5s = 0 r = s = 0

Kyu-Hwan Lee Linear Algebra [26]

Eg. lin. dep. lin. indep.

lin. dep.

lin. indep.

Kyu-Hwan Lee Linear Algebra [27]

Thm. TFAE 1. A is invertible.

2. The columns of A are linearly independent.

3. The columns of A span Fn.

4. The rows of A are linearly independent.

5. The rows of A span Fn.

6. imA = Fn.

7. kerA = O.

Kyu-Hwan Lee Linear Algebra [28]

Proof.

x1   x2 AX = C1 C2 · · · Cn  .  = x1C1+x2C2+· · ·+xnCn    .    xn

AX = O ⇔ x1C1 + x2C2 + · · · + xnCn = O 2 ⇔ AX = O has only the trivial solution. ⇔ kerA = O

AX = B ⇔ x1C1 + x2C2 + · · · + xnCn = B

3 ⇔ AX = B has a solution for every B ∈ Fn ⇔ imA = Fn A is invertible ⇔ AT is invertible 2

Kyu-Hwan Lee Linear Algebra [29]

Eg. 1 5 2 1         0 −3 8 3   ,   ,   ,   −2  7  −1 0          4   0   6  2

1 5 2 1   0 −3 8 3 A =   , det A = 36 6= 0 −2 7 −1 0    4 0 6 2

Kyu-Hwan Lee Linear Algebra [30]

• Dimension

Def. U ∈ Fn : a subspace A set {X1, X2, · · · , Xk} is a basis of U, if

1. {X1, X2, · · · , Xk} is linearly independent,

2. U = span{X1, X2, · · · , Xk}.

Thm. If {X1, X2, · · · , Xk} and {Y1, Y2, · · · , Ym} are two bases of U, then k = m.

Def.

the of vectors in a basis of U = the dimension of U = dim U

Kyu-Hwan Lee Linear Algebra [31]

Eg. For Fn,

0 1   0     1 . 0   . E1 = . , E2 = 0 , · · · , En =   ; . . 0   .   0   1 0

the standard basis of Fn

n Eg. If {X1, X2, · · · , Xn} is a basis of F and A is invertible, n then {AX1, AX2, · · · , AXn} is also a basis of F .

Kyu-Hwan Lee Linear Algebra [32]

Eg. Consider AX = O. Recall that kerA=the span of the basic solutions. In fact, the basic solutions are linearly independent. The basic solutions form a basis for kerA.

Eg. Subspaces of R3. 1. If dim U = 3, then U = R3.

2. If dim U = 2, then U is a plane through O.

3. If dim U = 1, then U is a line through O.

4. If dim U = 0, then U = {O}.

Kyu-Hwan Lee Linear Algebra [33]

Thm. Assume that dim U = m = |B|. Then

B is linearly independent ⇔ B spans U;

in either case, B is a basis of U.

Kyu-Hwan Lee