4.1Vectorsandlines • Definition – Scalar :Magnitude Vector :Magnitudeanddirection Geometrically,Avector V Canberepresentedby

4.1Vectorsandlines • Definition – Scalar :Magnitude Vector :Magnitudeanddirection Geometrically,Avector V Canberepresentedby

Linear Algebra [1] 4.1 Vectors and Lines • Definition { scalar : magnitude vector : magnitude and direction Geometrically, a vector v can be represented by an arrow. We denote the length of v by kvk. { zero vector 0 : k0k = 0 { Given v, we have the negative −v. { v = w if the same length and the same direction Kyu-Hwan Lee Linear Algebra [2] { sum v + w v + w v w w v + w v Kyu-Hwan Lee Linear Algebra [3] { scalar multiplication av (a 2 R) v 1 2v 2v −2v { subtraction u − v = u + (−v) Kyu-Hwan Lee Linear Algebra [4] Thm. u, v, w : vectors, k; p 2 R 1. u + v = v + u, 2. u + (v + w) = (u + v) + w 3. 9 0 s.t. 0 + u = u for each u. 4. For each u, 9 −u s.t. u + (−u) = 0. 5. k(u + v) = ku + kv , (k + p)u = ku + pu 6. (kp)u = k(pu), 7. 1 · u = u Kyu-Hwan Lee Linear Algebra [5] Thm. A, B, C : matrices of the same size, k; p 2 F 1. A + B = B + A, 2. A + (B + C) = (A + B) + C 3. 9 O s.t. O + A = A for each A. 4. For each A, 9 −A s.t. A + (−A) = O. 5. k(A + B) = kA + kB , (k + p)A = kA + pA 6. (kp)A = k(pA), 7. 1 · A = A Kyu-Hwan Lee Linear Algebra [6] Thm. f, g, h : continuous functions on D, k; p 2 F 1. f + g = g + f, 2. f + (g + h) = (f + g) + h 3. 9 0 s.t. 0 + f = f for each f. 4. For each f, 9 −f s.t. f + (−f) = 0. 5. k(f + g) = kf + kg , (k + p)f = kf + pf 6. (kp)f = k(pf), 7. 1 · f = f Kyu-Hwan Lee Linear Algebra [7] The notion of vector space! 1. The set of matrices of the same size 2. The set of vectors in R3 3. The set of continuous functions on D 4. ... 5. ... and so on. Kyu-Hwan Lee Linear Algebra [8] The theorem says that we can manipulate vectors as if they are variables w.r.t. addition and scalar multiplication. Eg. 5(u − 2v) + 6(5u + 2v) = 5u − 10v + 30u + 12v = 35u + 2v: Kyu-Hwan Lee Linear Algebra [9] • Coordinates Consider a point P = (x; y; z). Then we obtain a vector −−! p = OP : the position vector. Conversely, a vector p determines a unique point P . Thus we identify each point with the corresponding position vector. P (x; y; z) p O Kyu-Hwan Lee Linear Algebra [10] Given u = (x; y; z) and u1 = (x1; y1; z1), we have u + u1 = (x + x1; y + y1; z + z1); au = (ax; ay; az); u − u1 = (x − x1; y − y1; z − z1): Kyu-Hwan Lee Linear Algebra [11] • Lines P0 d P p0 p O Assume that p0 and d are given. Then p is the position vector of a point P on the line if and only if p = p0 + td (t 2 R): Kyu-Hwan Lee Linear Algebra [12] If p = (x; y; z), d = (a; b; c), p0 = (x0; y0; z0), then we have 8x = x0 + ta; > <>y = y0 + tb; (t 2 R): z = z0 + tc; > :> This is the equation of the line through p0 parallel to d. • Planes Later ... we need the notion of inner product and cross product of vectors. Kyu-Hwan Lee Linear Algebra [13] 5.1 Subspaces and Dimension • Subspaces of Fn vector = point in R3 $ (x; y; z) coordinates ????? $ (a1; a2; · · · ; an) n R = f(a1; a2; · · · ; an)jai 2 Rg a1 82 3 9 > a2 > ∼ > i R> = <>6 . 7 a 2 => 6 . 7 6 7 >4an5 > > > : ; Kyu-Hwan Lee Linear Algebra [14] n C = f(a1; a2; · · · ; an)jai 2 Cg a1 82 3 9 > a2 > ∼ > i C> = <>6 . 7 a 2 => 6 . 7 6 7 >4an5 > > > : ; Fn = Rn or Cn The n-tuples in Fn will be called vectors. Kyu-Hwan Lee Linear Algebra [15] • Subspaces A subset U of Fn is called a subspace if it satisfies the following conditions. 1. If X; Y 2 U, then X + Y 2 U. 2. If X 2 U, then rX 2 U for r 2 F. Eg. 1. Fn 2. f0g : the zero subspace Kyu-Hwan Lee Linear Algebra [16] 3. a line through the origin in Rn : ftdg If t1d and t2d on the line, then t1d + t2d = (t1 + t2)d and r(t1d) = (rt1)d. 4. Let A be an m × n matrix. We define n nullA = kerA = fX 2 F jAX = Og and m n imA = fY 2 F jY = AX for some X 2 F g: If X1; X2 2 kerA, then A(X1 +X2) = AX1 +AX2 = O and A(rX1) = r(AX1) = O. If Y1; Y2 2 imA, then 9 X1; X2 s.t. AX1 = Y1 and AX2 = Y2. Now A(X1 + X2) = Y1 + Y2 and A(rX1) = rY1. Kyu-Hwan Lee Linear Algebra [17] 5. U = f(x; y) 2 R2jx2 + y2 = 1g: We have (1; 0); (0; 1) 2 U, but (1; 0) + (0; 1) = (1; 1) 2= U. Thus U is not a subspace of R2. Kyu-Hwan Lee Linear Algebra [18] • Spanning sets n Def. Assume that X1; X2; · · · ; Xk 2 F . An expression a1X1 + a2X2 + · · · + akXk is called a linear combination of X1; X2; · · · ; Xk (ai 2 F). The span of X1; X2; · · · ; Xk is the set of all linear combinations of X1; X2; · · · ; Xk. spanfX1; X2; · · · ; Xkg = fa1X1+a2X2+· · ·+akXkjai 2 Fg Kyu-Hwan Lee Linear Algebra [19] n Thm. Assume that X1; X2; · · · ; Xk 2 F . n 1. The spanfX1; X2; · · · ; Xkg is a subspace of F . 2. If W is a subspace containing X1; X2; · · · ; Xk, then spanfX1; X2; · · · ; Xkg ⊂ W : Proof. 1. Let U = spanfX1; X2; · · · ; Xkg. If Y = s1X1 + · · · + skXk; Z = t1X1 + · · · + tkXk 2 U; then Y + Z = (s1 + t1)X1 + · · · + (sk + tk)Xk 2 U and rY = rs1X1 + · · · + rskXk 2 U. 2. Clear! 2 Kyu-Hwan Lee Linear Algebra [20] The spanfX1; X2; · · · ; Xkg is the smallest subspace containing X1; · · · ; Xk. If U = spanfX1; X2; · · · ; Xkg, then fX1; X2; · · · ; Xkg is a spanning set of U, and U is spanned by the Xi's. Eg. Recall Thm. Given AX = O, every solution is a linear combination of the basic solutions. Equivalently, the kerA is the span of the basic solutions. Kyu-Hwan Lee Linear Algebra [21] Assume A = C1 C2 · · · Cn : m × n matrix. Then imA = spanfC1; C2; · · · ; Cng: Proof. For X 2 Fn, x1 2 3 x2 AX = C1 C2 · · · Cn 6 . 7 = x1C1+x2C2+· · ·+xnCn 6 . 7 6 7 4xn5 n imA = fAXjX 2 F g = fx1C1 + x2C2 + · · · + xnCng = spanfC1; C2; · · · ; Cng 2 Kyu-Hwan Lee Linear Algebra [22] • Independence Def. fX1; X2; · · · ; Xkg : linearly independent if t1X1 + t2X2 + · · · + tkXk = 0 implies t1 = t2 = · · · = tk = 0. Thm. If fX1; X2; · · · ; Xkg is linearly independent, X 2 spanfX1; X2; · · · ; Xkg has a unique representation as a linear combination of the Xi's. Proof. r1X1 + · · · + rkXk = s1X1 + · · · + skXk (r1 − s1)X1 + · · · + (rk − sk)Xk = 0 Thus we have ri = si for all i. 2 Kyu-Hwan Lee Linear Algebra [23] Eg. X1; X2; X1 + X2 2X1 + 2X2 = 2(X1 + X2) Eg. 1 0 1 1 0 1 0 2 3 2 3 2 3 2 3 2 3 2 3 2 3 0 1 1 0 1 1 0 6 7 ; 6 7 ; 6 7 r 6 7 + s 6 7 + t 6 7 = 6 7 617 617 617 617 617 617 607 6 7 6 7 6 7 6 7 6 7 6 7 6 7 425 425 435 425 425 435 405 1 0 1 0 1 0 0 2 3 r 2 3 2 3 0 1 1 2 3 0 0 1 0 6 7 s = 6 7 ) 6 7 ; r = s = t = 0 61 1 17 6 7 607 60 0 17 6 7 4t5 6 7 6 7 42 2 35 405 40 0 05 Kyu-Hwan Lee Linear Algebra [24] Eg. 1 1 −3 2 2 3 2 3 2 3 2 3 2 ; −2 ; 2 ; 0 6 7 6 7 6 7 6 7 4−15 4 1 5 4 1 5 405 1 1 −3 2 0 2 3 2 3 2 3 2 3 2 3 r1 2 + r2 −2 + r3 2 + r4 0 = 0 6 7 6 7 6 7 6 7 6 7 4−15 4 1 5 4−15 405 405 r1 1 1 −3 2 2 3 0 2 3 r2 2 3 2 −2 2 0 6 7 = 0 6 7 6r37 6 7 4−1 1 −1 05 6 7 405 4r45 Kyu-Hwan Lee Linear Algebra [25] 1 1 −3 2 3 2 3 2 3 2 ; −2 ; 2 6 7 6 7 6 7 4−15 4 1 5 4−15 1 1 −3 1 0 −1 2 3 2 3 2 −2 2 ) 0 1 −2 6 7 6 7 4−1 1 −15 40 0 0 5 Eg. fX; Y g : indep. ) f2X + 3Y; X − 5Y g: indep. r(2X + 3Y ) + s(X − 5Y ) = O (2r + s)X + (3r − 5s)Y = O 2r + s = 0; 3r − 5s = 0 r = s = 0 Kyu-Hwan Lee Linear Algebra [26] Eg. lin. dep. lin. indep. lin. dep. lin. indep. Kyu-Hwan Lee Linear Algebra [27] Thm. TFAE 1. A is invertible. 2. The columns of A are linearly independent. 3. The columns of A span Fn.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    33 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us