Publications of the Astronomical Society of Australia (PASA) doi: 10.1017/pasa.2019.xxx.

The Mopra Southern Galactic Plane CO Survey — Data Release 3

Catherine Braiding1,8, G. F. Wong1,2, N. I. Maxted1,2, D. Romano1, M. G. Burton1,3, R. Blackwell4, M. D. Filipović2, M. S. R. Freeman1, B. Indermuehle5, J. Lau4, D. Rebolledo6,7, G. Rowell4, C. Snoswell4, N. F. H. Tothill2, F. Voisin4, and P. de Wilt4

1School of Physics, University of New South Wales, Sydney, NSW 2052, Australia 2School of Computing Engineering and Mathematics, Western Sydney University, Locked Bay 1797, Penrith, NSW 2751, Australia 3Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, UK 4School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia 5CSIRO Astronomy & Space Science, Australia Telescope National Facility, PO Box 76, Epping, NSW 2121, Australia 6Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile 7National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA 8Email: [email protected]

Abstract We present observations of fifty square degrees of the Mopra carbon monoxide (CO) survey of the Southern Galactic Plane, covering Galactic longitudes l = 300–350◦ and latitudes |b| ≤ 0.5◦. These data have been taken at 0.6 arcminute spatial resolution and 0.1 km s−1spectral resolution, providing an unprecedented view of the molecular clouds and gas of the Southern Galactic Plane in the 109–115 GHz J = 1–0 transitions of 12CO, 13CO, C18O and C17O. We present a series of velocity-integrated maps, spectra and position-velocity plots that illustrate 6 Galactic arm structures and trace masses on the order of ∼10 M per square degree; and include a preliminary catalogue of C18O clumps located between l = 330–340◦. Together with information about the noise statistics of the survey these data can be retrieved from the Mopra CO website, the PASA data store and the Harvard Dataverse.

Keywords: Galaxy: kinematics and dynamics – Galaxy: structure – ISM: clouds – ISM: molecules – radio lines: ISM – surveys

1 INTRODUCTION publicly release CO2, 13CO and C18O(1–0) data3 for the region from l = 300 to 350◦, and b = ±0.5◦ (see Since its astronomical discovery in 1970 (Wilson et al., Figure 1). This release encompasses updated reductions 1970), the carbon monoxide (CO) molecule has been of data contained within the previous Mopra CO data utilised as a key tracer of molecular gas in the Galaxy. arXiv:1902.04249v2 [astro-ph.GA] 26 Feb 2019 releases (Burton et al., 2013; Braiding et al., 2015) and, Second in numerical abundance only to the H2 molecule, along with the Mopra CO maps of the Carina/Gum 31 the large abundance (∼10−4) and low electric dipole region (Rebolledo et al., 2016) and the Central Molecular moment (0.122 D) of CO allows cold molecular gas to Zone (CMZ, Blackwell et al., 2018), will eventually be be well-traced by the J=1–0 rotational transition. CO incorporated into a larger mosaic with coverage spanning surveys of the molecular gas in the Galactic Plane can longitude l ∼260 to +11◦ and a latitudinal range of ±1◦. help shape an understanding of formation, dynamics, Additional targeted extensions beyond 1◦ will also be and chemistry within the Milky Way. included. The Mopra Galactic Plane CO survey1 is the highest resolution large-scale 3-dimensional molecular gas survey 2To avoid confusion we henceforth refer to this isotopologue as of the inner Galactic Plane so far. With this paper, we 12CO, using ‘CO’ to refer to the molecule more generally. 3We have also surveyed the C17O(1–0) transition, but it is too weak to be detected above a 1-σ level over most of the surveyed region and will be excluded from our discussion; nevertheless the 1http://newt.phys.unsw.edu.au/mopraco/ fully-reduced data is being made publicly available in DR3. 1 2 Braiding et al.

Figure 1. Three-colour image of the Galactic Plane from the Mopra CO survey (red; peak intensity image from v = −150 to +50 km s−1) together with the Spitzer MIPSGAL 24 µm (green; Carey et al., 2009) and GLIMPSE 8 µm (blue; Churchwell et al., 2009; Benjamin et al., 2003) surveys.

The Columbia CO(1–0) survey (Dame et al., 2001) components, complementing observatories such as the has been a revolutionary tool for the study of the Milky Cherenkov Telescope Array (CTA, Cherenkov Telescope Way; its 80-resolution has helped enable a large number Array Consortium et al., 2017) and the High Elevation of important astronomical results. Some examples in- Antarctic Telescope (HEAT, Walker et al., 2004). Our clude the constraining of the CO X-factor and Galactic survey also goes one step further than historical 12CO cloud masses, the identification of Galactic structures surveys of the Galactic Plane by mapping multiple CO (e.g. Dame & Thaddeus, 2011; Vallée, 2014) and implica- isotopologues that probe the regions where CO(1–0) tions for dark matter research (e.g. Drlica-Wagner et al., becomes optically thick, tracing additional mass compo- 2014). nents. In this paper, we present 50 square degrees of Mo- The Mopra Galactic Plane CO survey will enable new pra 12CO, 13CO, C18O and C17O data4. Section 3 is Galactic science. ALMA offers arcsecond-level spatial an update on the data-processing techniques used by resolution in the CO(1–0) transition (e.g. Mathews et al., the survey, descriptions of the data quality, and a list 2013), and the very fine field of view of ALMA is well- of regions affected by contaminated reference positions. complemented by a large sub-arcminute-scale map which A series of images and characterisations of Mopra data can allow the identification of molecular gas components are presented in Section 4 alongside a new catalogue of for observations. Furthermore, comprehensive investi- C18O clumps located within the region l = 330–340◦. gations of the ‘missing’ gas of the Galaxy (as inferred Finally, we outline recent region and source-specific in- from dust and gamma-ray observations, e.g. Planck Col- vestigations that utilise Mopra CO isotopologue data laboration et al., 2015) require molecular clouds to be imaged at a resolution able to separate these ‘dark’ 4available at doi:10.7910/DVN/LH3BDN Mopra CO Data Release 3 3

and propose additional work to be performed, in con- total gas is well represented by a lognormal function, junction with other surveys, to determine the evolution but a tail at high densities is clearly observed, which is of molecular clouds, and the origins of cosmic rays (Sec- a common feature of nebulae with active star formation tion 5 & 6). (Pineda et al., 2010; Rebolledo et al., 2016). Regional variations in the masses recovered from the Mopra CO emission and Herschel dust maps revealed the different 2 PREVIOUS DATA RELEASES evolutionary stages of the molecular clouds that comprise The Mopra CO Galactic Plane survey was first described the Carina Nebula–Gum 31 complex. in Burton et al. (2013), which presented the results of The Central Molecular Zone (CMZ) of the Galaxy the pilot observations undertaken in March 2011 of the contains dense (e.g. Jones et al., 2012, 2013), high- single square degree, l = 323–324◦, b = ±0.5◦. The aims temperature (e.g. Ao et al., 2013) molecular clouds with 7 and the approach of the Mopra CO survey were also a total cumulative mass of ∼5×10 M (e.g. Pierce-Price discussed in detail, with science goals of comparing the et al., 2000). The fourth data release of the Mopra CO emission of Gamma and Cosmic rays to emission from Survey will cover the Galactic Centre region(358.5 ≤ l ≤ nearby molecular clouds, and characterising the forma- 3.5◦, −0.5 ≤ b ≤ +1.0◦; Blackwell et al., 2018), which tion of molecular clouds. The initial observations were has required the development of new observing and data used to describe a number of giant molecular clouds processing techniques to produce high quality spectral along the G323 line of sight, demonstrating how the maps. As the star formation behaviour of molecular multiple isotopologue CO survey data could be used in clouds in the CMZ is linked to their orbital dynamics conjunction with Hi data from the Southern Galactic (e.g. Kruijssen et al., 2015), the high resolution Mopra Plane Survey (SGPS; McClure-Griffiths et al., 2005) to CO maps will enable new studies of the inner Galaxy determine the mass and column densities within these gas dynamics and triggered star formation. clouds. This data remains some of the noisiest in the Mopra CO survey (see Figures 2–4), as the initial obser- 3 DATA RELEASE 3 vations were conducted during summer months. The first data release by Braiding et al. (2015, here- Observations for this data release were carried out after DR1), presented the first ten degrees of the Mopra over the Southern Hemisphere winters of 2011–2016 CO Survey, covering Galactic longitudes l = 320–330◦ using Mopra, a 22 m single-dish radio telescope located and latitude b = ±0.5◦, and l = 327–330◦, b = −0.5– ∼450 km north-west of Sydney, Australia (at 31◦1600400 +1.0◦. The maps possessed a typical rms noise of ∼1.2 K S, 149◦0505900 E, 866 m a.s.l.). Observations utilised the in the 12CO data and ∼0.5 K in the other isotopologue UNSW Digital Filter Bank (the UNSW-MOPS) in its frequency bands. It was noted that the line intensities ‘zoom’ mode, with 8×137.5 MHz dual-polarization bands. from the Mopra CO survey are ∼1.3 times higher than These bands were tuned to target the J=1–0 transi- those of Dame et al. (2001, see also §4.1), although tion of 12CO, 13CO, C18O and C17O (with central the average line profiles for each square degree show frequencies of 115271.202, 110201.354, 109782.176 and similar qualitative features. The calculated mass of the 112358.988 MHz, respectively). Three bands were tuned molecular clouds in the ten square degrees of DR1 was to sample a CO(1–0) velocity coverage of ∼1,100 kms−1, 7 13 18 found to be ∼ 4 × 10 M , and included many complex while the CO(1–0) and C O(1–0) transitions each filamentary structures from the tangent point to the had two dedicated bands to sample a velocity-coverage spiral arm of the Galaxy. Data release 3 contains of ∼770 km s−1. One band was allocated to the least- an improved reduction of these ten square degrees, and abundant molecular transition, C17O(1–0), resulting in although the changes are very minor (∼ 1% of voxels ∼380 km s−1 of velocity coverage. The targeted central differ from their previous values, most by  0.1 K), it is frequencies were offset according to Galactic Longitude recommended that current Mopra CO users download to maximise overlap with expected Galactic rotation ve- the newer files for future work. locities. As in DR1, the observations from l = 323–331◦, Data release 2 (DR2; Rebolledo et al., 2016) comprised b = ±0.5◦ cover a smaller velocity range, as only 4 ‘zoom’ 8 square degrees of observations covering the Carina bands were utilized during the 2011 observing period, Nebula and Gum 31 molecular complex. In addition one for each isotopologue. Our observations across the to the molecular gas distribution derived from 12CO full 50 square degrees of DR3 suggest that it is unlikely and 13CO line emission maps, this paper presented total that there are any high-velocity clouds in this region, as gas column density and dust temperature maps. The all of the 12CO clouds detected to date have been within Mopra CO data were complemented by dust maps from the velocity range of the primary zoom band. Herschel (Molinari et al., 2010), allowing the calculation As described in Burton et al. (2013), Fast-On-The-Fly of dust column densities within the nebula of between (FOTF) mapping has been carried out in 1 square degree 6.3×1020 and 1.4×1023 cm−2, and dust temperatures segments, with each segment being comprised of orthog- within a range of 17 to 43 K. The distribution of the onal scans (in longitudinal and latitudinal directions) to 4 Braiding et al. reduce scanning artefacts. The exposure of each square GRIDZILLA (Gooch, 1996), employing a median filter degree is at least ∼20 hrs, more in places where poor for the interpolation of the oversampled data onto each weather or technical issues interrupt observations and grid location. GRIDZILLA excludes from the grid those triggered a repeat of the affected scans. spectra for which the Tsys values are above 1000 K for The angular resolution of the Mopra beam at 115 GHz the 12CO cube, and 700 K for the other lines (see §3.2). is 33-arcsec FWHM (Ladd et al., 2005); after a median The output of these processes is a fits data cube in (l, filter convolution is applied during the data reduction b, VLSR) coordinates. process, the dataset possesses a beam size of around Noisy outlier pixels, rows and columns are then 0.6 arcmin. Since the survey region is spatially fully- cleaned using an IDL routine that first detects voxels sampled, the extended beam efficiency, ηXB = 0.55 at that differ from their neighbours by more than 5 stan- 115 GHz, should be used to convert brightness tem- dard deviations, then rows and columns where the mean peratures into line fluxes (rather than the main beam spectra differs by more than 3 standard deviations from efficiency ηMB = 0.42; Ladd et al., 2005). the median of the entire data set (typically caused by DR3 has been made available at the survey website the passage of clouds during the sky reference measure- and in the PASA data archive as a series of fits files cov- ment). These ‘bad’ data are replaced by interpolating ering a square degree for each isotopologue, separated the values of their neighbouring pixels, as described in by half a degree along the Galactic Plane. Although Burton et al. (2013), and the process is repeated until the full range of velocity space available for 12CO is no further ‘bad’ data are detected. [−1000,+1000] km s−1 (with file sizes of ∼ 800 MB per The data are then continuum-subtracted using first a square degree), it is expected that most users would fourth-order and then a seventh-order polynomical fit, to prefer to download the smaller (∼300 MB per square de- yield data cubes of the brightness temperature for each gree) files covering the velocity range [−150, +50] km s−1 spectral line as a function of Galactic coordinate and illustrated in this paper. No emission has as yet been de- VLSR velocity. Finally, data cubes that have been affected tected outside this range, although closer to the Galactic by contamination from faint molecular clouds present centre this range will be extended. Also available are within the reference position (see §3.3), are corrected the Tsys, beam coverage and RMS noise images for each by modelling the contaminant component and adding line. that back into the final clean spectrum (Braiding et al., 2015).

3.1 Data Processing 3.2 Data Quality From September 2015 observations were affected by a recurring synchronisation loss between the telescope and The observations for DR3 were carried out over a wide spectrometer, creating a spike in the central channel of variety of weather conditions, ranging from those of late ∼0.03% of spectra. This was not automatically flagged by Southern Hemisphere summer (March, 2011, 2014, and software during observations or using the data reduction 2015) when the system temperature was high (∼900 K for 12 processes from DR1 and DR2, and if left unchecked these CO) to deep winter (2011–2016) where the conditions 12 artefacts would propagate throughout the reduction, are quite stable and Tsys in the CO band is quite stable particularly when spikes appeared in the sky reference at around 400 K. This is reflected in the noise maps of 12 13 18 spectra. A new IDL routine was created to mask the the CO, CO, and C O data, which are are presented affected channels in the raw data from the telescope; by in Figures 2, 3, and 4 respectively. The noise value for coincidence this also flags other poor spectra caused by each pixel was determined from the standard deviation clouds or system fluctuations. of the continuum channels for line-of-sight velocities The rest of the data reduction remains unchanged containing no apparent signal. The thick striping seen from DR1 and DR2, involving six main stages of pro- within these maps is an effect of scanning in l and cessing (Braiding et al., 2015; Rebolledo et al., 2016). b directions under different system temperatures and Firstly, LIVEDATA5 (Gooch, 1996) was used to perform observing conditions. Thinner stripes and spots of low the band-pass correction and background subtraction noise indicate the positions of ‘bad’ pixels, rows, or using data from the nearest reference position to create columns that were identified and interpolated over (see the calibrated spectra. These are then analysed using §3.1; Burton et al., 2013). an IDL routine that flags any spectra that are poorly- The system temperature of Mopra (Tsys, discussed calibrated or particularly noisy (mostly in the 12CO further in Appendix A.2) reflects the total level of signal bands where the system temperature is higher). The received from the instrument, telescope, and sky, in data are then interpolated onto a uniform grid using addition to that from the source (which contributes a near-insignificant portion to Tsys). It is calibrated with 5Both LIVEDATA and GRIDZILLA can be downloaded from: reference to an ambient temperature paddle every 30 www.atnf.csiro.au/computing/software/livedata/index.html minutes, allowing us to control for variations in the Mopra CO Data Release 3 5

12CO RMS Noise 2.50 +00.4° 2.25 2.00 +00.2° 1.75 +00.0° 1.50 (K) 1.25 -00.2° 1.00 -00.4° 0.75 Galactic Latitude 0.50 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

2.50 +00.4° 2.25 2.00 +00.2° 1.75 +00.0° 1.50 (K) 1.25 -00.2° 1.00 -00.4° 0.75 Galactic Latitude 0.50 340° 339° 338° 337° 336° 335° 334° 333° 332° 331° 330° Galactic Longitude

2.50 +00.4° 2.25 2.00 +00.2° 1.75 +00.0° 1.50 (K) 1.25 -00.2° 1.00 -00.4° 0.75 Galactic Latitude 0.50 330° 329° 328° 327° 326° 325° 324° 323° 322° 321° 320° Galactic Longitude

2.50 +00.4° 2.25 2.00 +00.2° 1.75 +00.0° 1.50 (K) 1.25 -00.2° 1.00 -00.4° 0.75 Galactic Latitude 0.50 320° 319° 318° 317° 316° 315° 314° 313° 312° 311° 310° Galactic Longitude

2.50 +00.4° 2.25 2.00 +00.2° 1.75 +00.0° 1.50 (K) 1.25 -00.2° 1.00 -00.4° 0.75 Galactic Latitude 0.50 310° 309° 308° 307° 306° 305° 304° 303° 302° 301° 300° Galactic Longitude

12 ◦ ∗ Figure 2. 1 σ noise images for the CO data covering the full 50 square degrees from l = 300–350 in units of TA (K) (as indicated by the scale bars). The striping pattern is inherent to the data set, resulting from scanning in the l and b directions in variable observing conditions.

weather. Observations with an average Tsys greater than 3.3 Sky Reference Positions 1000 K were repeated under better weather conditions, while any individual measurement which possessed a Table 1 lists coordinates of the sky reference positions Tsys greater than 1000 K was filtered out during the used for each square degree of observations. Several of imaging stage of the data reduction (see §3.1). these reference positions contained 12CO, 13CO and in at least one instance C18O line emission, which propagate into the data cubes as negative “emission”. The line of sight velocity and peak intensity of the reference position 12 13 To examine the Mopra beam resolution, observations CO line emission are included in Table 1; the CO 12 of SiO(2-1,v=1) maser emission from the red super- line emission is typically fainter than the CO line by a 18 giant variable star, AH Scorpii, were taken in Novem- factor of 5, and similarly C O emission is only detected 12 ber 2017 (Figure 9 in §A.1). The data were integrated when the CO contamination is exceptionally bright. over all masers in velocity-space, and gaussian line pro- As mentioned in §3.1, data affected by contaminated files were fitted to the diametral distribution in both reference positions are corrected in the last stage of right-ascension and . The measured FWHM data processing. An area of the cube which does not was then deconvolved with the map smoothing by sub- contain emission within ±2 kms−1 of the contamination tracting the smoothing kernal FWHM in quadrature. is averaged and a gaussian profile is fitted to the spec- The resultant Mopra beam FWHM was calculated to trum, creating a clean model of the line emission at be 3500 ± 100 and 3400 ± 100 for the Mopra beam axis at the reference position. The gaussian profile is then sub- 86 GHz. This is consistent with previous calibration mea- tracted from each pixel, taking into account frequency surements that characterised the Mopra beam FWHM shifts relating to Doppler tracking corrections across the as 3600±300 (Ladd et al., 2005). cube. In some instances when the observations have been 6 Braiding et al.

Table 1 Sky reference beam positions for each square degree of DR3. Several cubes were contaminated by negative 12CO, 13 18 ? 12 CO and C O line emission from the sky reference position; the central velocity and intensity (in TA [K] units) of the CO contamination are noted here. Cube Reference Reference Contamination Contamination Peak −1 ? Longitude Latitude Velocity (km s ) Intensity (TA [K]) G300 300.500 +2.000 G301 301.375 +2.375 G302 302.875 −1.875 −6.2 −0.7 G303 303.000 −2.000 −5.4 −0.5 G304 304.000 −2.000 G305 305.000 −2.000 G306 306.000 −2.000 +38.3 −0.3 G307 307.500 −2.500 −46.2 −0.6 G308 309.000 −2.120 G309 309.375 −2.500 G310 310.500 −2.500 G311 311.000 −2.500 G312 312.500 −2.500 G313 313.500 −2.500 G314 314.875 −2.000 −4.9 −0.4 G315 315.500 −2.000 G316 316.500 +2.000 G317 318.000 +2.000 G318 318.750 −2.000 G319 319.000 −2.125 −22.9 −0.3 G320 320.375 −3.000 G321 321.500 −2.500 −1.7 −3.2 G322 322.500 −2.000 −56.1, −13.0 −1.3, −0.4 G323 323.500 −2.000 G324 324.500 −2.000 +0.9 −0.8 G325 325.500 −2.200 −46.6 −0.5 G326 326.500 −2.000 −19.5 −0.3 G327 327.500 −2.200 G328 328.500 −2.200 +2.7 −0.4 G329 329.500 −2.200 G330 329.500 −2.200 G331 331.500 −2.000 G332 332.500 −2.000 G333 333.500 −2.000 G334 333.500 −2.000 G335 333.500 −2.000 G336 336.500 −4.500 −61.8 −0.46 G337 337.500 −2.600 G338 337.500 −2.600 G339 339.500 +2.000 G340 339.500 +2.000 G341 342.500 −3.000 −0.89 −0.26 G342 342.500 −3.000 −10.1 −0.22 G343 343.500 +2.500 G344 344.500 +3.000 G345 345.635 −3.125 −18.7, −28.4 −0.81, −0.63 G346 346.250 −3.000 G347 347.500 +2.625 G348 349.250 −2.000 G349 349.250 −2.000 Mopra CO Data Release 3 7

13CO RMS Noise 1.20 +00.4° 1.12 1.04 +00.2° 0.96 0.88 +00.0° 0.80 0.72 (K) -00.2° 0.64 0.56 -00.4° Galactic Latitude 0.48 0.40 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

1.20 +00.4° 1.12 1.04 +00.2° 0.96 0.88 +00.0° 0.80 0.72 (K) -00.2° 0.64 0.56 -00.4° Galactic Latitude 0.48 0.40 340° 339° 338° 337° 336° 335° 334° 333° 332° 331° 330° Galactic Longitude

1.20 +00.4° 1.12 1.04 +00.2° 0.96 0.88 +00.0° 0.80 0.72 (K) -00.2° 0.64 0.56 -00.4° Galactic Latitude 0.48 0.40 330° 329° 328° 327° 326° 325° 324° 323° 322° 321° 320° Galactic Longitude

1.20 +00.4° 1.12 1.04 +00.2° 0.96 0.88 +00.0° 0.80 0.72 (K) -00.2° 0.64 0.56 -00.4° Galactic Latitude 0.48 0.40 320° 319° 318° 317° 316° 315° 314° 313° 312° 311° 310° Galactic Longitude

1.20 +00.4° 1.12 1.04 +00.2° 0.96 0.88 +00.0° 0.80 0.72 (K) -00.2° 0.64 0.56 -00.4° Galactic Latitude 0.48 0.40 310° 309° 308° 307° 306° 305° 304° 303° 302° 301° 300° Galactic Longitude

Figure 3. As in Figure 2, these are the 1 σ noise images for the 13CO data covering the full 50 square degrees from l = 300–350◦ in ∗ units of TA (K) (as indicated by the scale bars).

taken many months apart and the Doppler corrections Plane CO survey between longitudes 300◦ and 350◦ are are large, the data are processed into separate cubes presented in Appendix A.3. The 12CO average spectra for each time period, and these are combined into a from the Dame et al. (2001) CO survey are included single cube after the reference contamination has been for comparison and are consistent with the features of corrected. This technique was developed in response Mopra CO survey data. We note a systematic shift in the to reference-contaminated Mopra CO spectra from the brightnesses between the Mopra and Columbia surveys Central Molecular Zone (CMZ, Blackwell et al., 2018). of a factor of ∼ 1.35 as discussed in Braiding et al. (2015), which is calculated per square degree in Table 2 of Appendix A.3. The same shift is also apparent in the 4 RESULTS Nanten2 CO Survey data, which has very similar fluxes to the Mopra CO Survey (H. Sano, March 2017, private We present here images from DR3, comparing the in- communication). creased resolution of Mopra CO data to the lower spatial (8 arcmin) and spectral (1.3 km s−1) resolution Columbia survey (Dame et al., 2001). We note consistent features between the two CO datasets, and illustrate the structure of the Milky Way through a series of position-velocity Integrated intensity maps from DR3 are presented in and mass-distribution plots. Appendix A.4, calculated over an interval of 10 km s−1 in the velocity range of −150 to +50 km s−1. We note 4.1 Spectra & Moment Maps similar features to those present in the Columbia CO survey (Dame et al., 2001), but also scanning artefacts The average line profiles of 12CO and 13CO for each of 1◦-long line features in longitude or latitude near the central square degree of the Mopra Southern Galactic edges of individual square degrees. 8 Braiding et al.

C18O RMS Noise 1.20 +00.4° 1.12 1.04 +00.2° 0.96 0.88 +00.0° 0.80 0.72 (K) -00.2° 0.64 0.56 -00.4° Galactic Latitude 0.48 0.40 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

1.20 +00.4° 1.12 1.04 +00.2° 0.96 0.88 +00.0° 0.80 0.72 (K) -00.2° 0.64 0.56 -00.4° Galactic Latitude 0.48 0.40 340° 339° 338° 337° 336° 335° 334° 333° 332° 331° 330° Galactic Longitude

1.20 +00.4° 1.12 1.04 +00.2° 0.96 0.88 +00.0° 0.80 0.72 (K) -00.2° 0.64 0.56 -00.4° Galactic Latitude 0.48 0.40 330° 329° 328° 327° 326° 325° 324° 323° 322° 321° 320° Galactic Longitude

1.20 +00.4° 1.12 1.04 +00.2° 0.96 0.88 +00.0° 0.80 0.72 (K) -00.2° 0.64 0.56 -00.4° Galactic Latitude 0.48 0.40 320° 319° 318° 317° 316° 315° 314° 313° 312° 311° 310° Galactic Longitude

1.20 +00.4° 1.12 1.04 +00.2° 0.96 0.88 +00.0° 0.80 0.72 (K) -00.2° 0.64 0.56 -00.4° Galactic Latitude 0.48 0.40 310° 309° 308° 307° 306° 305° 304° 303° 302° 301° 300° Galactic Longitude

Figure 4. As in Figure 2, these are the 1 σ noise images for the C18O data covering the full 50 square degrees from l = 300–350◦ in ∗ units of TA (K) (as indicated by the scale bars).

4.2 Velocity & Mass Distribution could also be giant molecular clouds at far Galactic dis- tances, but such clouds are generally expected to be Figures 5 and 6 show position-velocity (PV) slices of somewhat extended in longitude. the CO emission averaged over 4 different ranges in latitude overlaid with the positions of four spiral arms However, while the molecular gas does tend to follow from the Galaxy model of (Vallée, 2016, i.e. a pitch angle the trajectory of the spiral arm model in Figure 7, the of 13.1◦, central bar length of 2.2 kpc inclined at −30◦ detailed agreement is only modest. The differences be- to our sightline, Galactic Centre distance of 8.0 kpc and tween the PV-plots for the different latitude ranges are a flat rotation curve with velocity 220 km s−1). Figure 5 also striking, showing how discrete molecular gas is even 12 shows the central plane |b| < ±0.05◦ and the entire within the Galactic Plane. Little CO(1–0) emission data range of |b| < ±0.5◦, while Figure 6 shows the is evident at ‘forbidden’ velocities, i.e. those that are very top (b = +0.4 to +0.5◦) and bottom (b = −0.5 to more negative than the tangent point velocity at each −0.4◦) of the surveyed field. The spiral arm model and latitude, and in particular the most negative velocities its associated distance-velocity relationship are shown for each of the 4 model spiral arm positions. in Figure 7. Figure 8 shows the distribution of molecular mass The observed features generally correspond to giant with Galactic longitude, averaged for each square degree molecular cloud complexes within the spiral arms, with of the survey range. This calculation is as in Braiding their velocity widths corresponding to internal motions et al. (2015) for l = 320–330◦, now extended to l = 300– within the complexes rather than the differential dis- 350◦ and covering the entirety of DR3: applying the tances that could be inferred by applying a Galactic CO X-factor to convert 12CO flux to column density rotation model. In a few instances prominent outflows using a conversion factor of 2.7×1020cm−2 (K km s−1)−1, are evident as molecular emission that is quite extended the value derived for |b| < 1◦ in Dame et al. (2001). in velocity but narrow in the longitudinal direction; these Though larger than the 1.8×1020cm−2 commonly used Mopra CO Data Release 3 9

12 −1 Figure 5. CO position-velocity plots as a function of Galactic longitude. l is on the x-axis, VLSR (the ) in km s is on the y-axis. The data has been averaged between latitudes b = −0.05◦ and +0.05◦ (top) and b = −0.5◦ to +0.5 (bottom), respectively representing the midpoint of the plane and the entire surveyed plane. The solid lines are the model positions for the centres of the four spiral arms in the model of Vallée (2016). Note also that some artefacts are visible as features extending across the entire velocity direction, resulting from residual systematic effects. 10 Braiding et al.

12 −1 Figure 6. CO position-velocity plots as a function of Galactic longitude, l, on the x-axis and the radial velocity, VLSR, in km s on the y-axis. The data has been averaged between latitudes b = +0.5◦ and +0.4◦ (top) and b = −0.5◦ to −0.4◦ (bottom), respectively representing the top and the bottom of the surveyed plane. The solid lines are the model positions for the centres of the four spiral arms in the model of Vallée (2016). Note also that some artefacts of residual systematic effects are visible as features extending across the entire velocity direction. Mopra CO Data Release 3 11

Figure 8. Molecular mass distribution for the inner degree of lat- itude across the Galaxy, extending from l = 300–350◦. Masses are calculated using a 12CO X-factor of 2.7×1020cm−2 (K km s−1)−1 to convert line fluxes to column densities for all gas detected within the solar circle (i.e. that with negative velocities). The solid line illustrates the mass calculated using the assumption of near-side distances; the dotted line assumes far-side distances (and is divided by a factor of 10 for presentation).

◦ Figure 7. A schematic of the 4 spiral arms of the Milky Way the Galactic Plane, in the 50 degrees from l = 300-350 , 8 Galaxy. Arm names, the Galactic Centre, and the location of the is found to be ∼ 2 × 10 M (if all were at the near Sun are indicated. A colour-scale displays the expected kinematic 8 distance) and ∼ 9 × 10 M (all at the far distance). line-of-sight velocity from the reference point of the Sun. The Galaxy is modelled as having a pitch angle of 13.1◦, a central While not included in the plot, the total amount of gas bar length of 2.2 kpc inclined at −30◦ to our sightline, a Galactic lying beyond the solar circle is estimated to be around 7 Centre distance of 8.0 kpc and a flat rotation curve with velocity 4 × 10 M . This would contribute an additional 5 to −1 220 km s (Vallée, 2016). 20% to the total molecular gas content calculated here. From the moment maps in Appendix A.4, it is clear that we have observed not only 12CO, but also 13CO at far −1 for |b| < 5◦, it is within the uncertainties discussed distances with velocities > +30 km s . by Bolatto et al. (2013) from their meta-analysis of X- factor values derived from a variety of observational 4.3C 18O clump catalogue and theoretical studies. The mass is calculated from the column density by applying a Galactic rotation When the faint C18O line is detected it is almost certainly curve to convert velocity to distance. This included optically thin due to the low abundance of the molecule making assumptions regarding whether gas velocities with respect to 12CO, and so provides a sightline that relate to near- or far-side distances. Comparison with penetrates entirely through clouds. Thus the highest the spiral arm positions suggest that the bulk of the column density molecular clumps are detected in C18O. gas observed does arise at near distances, similar to the In order to investigate the distribution of C18O clumps assumption in Braiding et al. (2015). However, we now across the Milky Way, we isolate individual clumps by present mass estimates based on the two extremes, of applying the Clumpfind6 algorithm (Williams et al., all the gas being at the near-distance and all at the far- 1994) to the region between 330 < l < 340◦ where −1 distance. We have not included, however, molecular gas −0.5 < b < +0.5, and −140 < VLSR < +50km s . In at positive velocities, which lie beyond the Solar Circle in order to efficiently run this calculation on the Mopra this calculation. While such gas is clearly present at some CO data cubes, a number of simplifications needed to PV-plot positions, the low fluxes when averaged over be performed: firstly the data was binned by 10 spec- an entire degree, combined with their large distances, tral channels (reducing the velocity resolution to ∼0.92 result in large absolute errors in the mass determination. km s−1) and secondly it was box smoothed using the IDL Hence, we have not included them in Figure 8 (but see routine smooth7. The relative 1σ emission level of the also the note at the end of the next paragraph). We find C18O data cube is then ∼0.10 K (derived by computing 6 that typically there are a few×10 M of molecular gas the standard deviation of the spectra in an emission-free per square degree from l = 300◦ to l = 330◦. The mass 7 6http://www.ifa.hawaii.edu/users/jpw/clumpfind.shtml then rises to a peak of around 10 M per square degree 7 ◦ ◦ We employed a box smoothing kernel of dimensions [2,2,1]; between l = 330 and 340 , before falling by a factor of utilising 2 voxels in the angular directions and 1 along the velocity 2 at l = 350◦. The total molecular gas within ±0.5◦ of axis. 12 Braiding et al. region). giving 2 square degrees of overlap with the Northern Clumpfind operates by finding local peaks of emission Hemisphere FOREST Unbiased Galactic plane Imaging and then contouring around them to decompose the survey with the Nobeyama 45-m telescope (FUGIN; Mi- data cube into a set of clumps of C18O emission. It namidani et al., 2015; Umemoto et al., 2017), a similarly requires two input parameters to work: the increment high resolution 12CO(1–0) survey covering from l = 10– between contour levels, inc, and the desired lower limit 50◦ and l = 198–236◦ where |b| < 1◦. Preliminary work of clump emission, low; after a series of tests both of comparing these surveys is now underway, but as men- these were assigned the value of 0.45 K, equivalent to tioned in §4, similar comparisons with the Nanten2 CO the 4.5σ emission level. survey suggest that the observed fluxes and structures The resulting bright C18O clumps are presented in in the overlapping region will be equivalent (H. Sano, Table 3 of Appendix A.5; for each of these we report the March 2017, pers.comm.). coordinates of the clump centroid, the average and peak Combining Mopra CO with data from other surveys main beam brightness temperature, the relative FWHM presents the opportunity to fully characterise regions extensions in arcsec and km s−1, and its radius in arc- of interest in order to probe the origins and history of seconds. Prior to computing the physical properties of molecular clouds (Burton et al., 2013). Recently, Sano each clump, we compare the C18O and 13CO spectral et al. (2017a) presented work using data from this sur- profiles for each line of sight, rejecting those false detec- vey, ASTE and Nanten2 to investigate high-mass star tions that are noisy spikes in the C18O band without a cluster formation triggered by cloud-cloud collisions, in clear peak in both CO isotopologues. We also check the particular focusing on the H i i region RCW 36, located clumpfind ID assignation to ensure each clump is phys- in the Vela Molecular Ridge. They suggested that a ically distinct (as it lists nearby local maxima within cloud-cloud collision formed RCW 36 and its stellar clus- the same physical structure as independent clumps); ter, with a relative velocity separation of ∼5 km s−1. The within the catalogue the minimum separation between estimated cloud separation of ∼0.85 pc was estimated to two centroids is 9 voxels. occur over a time-scale of ∼0.2 Myr, assuming a distance Using the model described above in §4.2 we calculate of 1.9 kpc, consistent with the age of the cluster. The near and far distances to each clump, which are also resulting O-type star formation lead to a high measured listed in Table 3. Following Wilson et al. (2009) we derive CO rotational temperature. the C18O column density for each clump, assuming that CO isotopologue data from DR1 of the Mopra Galactic the gas is in local thermodynamic equilibrium (LTE) at Plane Survey was exploited in an investigation of the a fixed Tex = 10 K, to be: so-called ‘dark’ component of molecular gas towards T Z a cold, filamentary molecular cloud in the G328 sight- N(C18O) = 3.0 × 1014 ex τ dv, (1) −(T 18/T ) 18 line (Burton et al., 2014, 2015). The authors compared 1 − e 0 ex the distribution of atomic H i-traced gas to atomic C 18 where T0 = 5.27 K is the energy level of the J = 1–0 emission (which traces some CO-dark molecular gas) C18O transition, and dv is the velocity interval in km s−1. and the CO-traced molecules observed in DR1. They The optical depth, τ18, is: found that 13CO and [C i] show similar distributions and 18 −1 velocity profiles, the abundance of atomic C increases  T  −1   τ = − ln 1− MB e5.27/Tex −1 −0.16 . (2) towards the molecular cloud edges, consistent with CO 18 5.27 photodissociation by an average interstellar radiation The column density of H2, N(H2) is then calculated for field and cosmic-ray ionisation at low optical depths. 18 each clump using the abundance ratio of [H2/C O]= Further comparison to dust images from Herschel showed 5.88×106 from Frerking et al. (1982). Finally, we are able that the cloud was IR-dark and that no star formation to derive near and far masses for each clump. Assuming is yet occurring within the young filament. Extended that the clumps are all located at the near distance, studies using C+ observations from the Stratospheric the total mass traced by C18O in this region is ∼ 2.5 × Observatory for Infrared Astronomy (SOFIA) will target 6 10 M , equivalent to 10% of the total molecular gas gas that may be in the transition phase between atomic mass traced by 12CO in the same portion of Galactic and molecular forms of Carbon (Risacher et al., 2016), Plane, as only the highest density regions are traced allowing a better tracing of the dark molecular gas that by C18O. Nevertheless, the C18O molecule provides an has been inferred from gamma-ray observations (see §6) important optically thin tracer of the molecular gas. and to study molecular cloud formation in detail. The APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) has been used to perform an unbiased 5 ISM SURVEY SYNERGIES census of massive dense clumps in the Galactic Plane at The Mopra CO survey is a timely addition to several 870 µm, using Mopra CO data to provide radial velocities Galactic Plane surveys currently under way. In particu- to ∼ 500 of the clumps (Urquhart et al., 2018). The lar, we have observed to a Galactic longitude of l = 11◦, properties of these clumps were exploited to develop Mopra CO Data Release 3 13 an evolutionary classification scheme showing trends by 13CO(2-1) data from SEDIGISM (Structure, Exci- for increasing dust temperatures and luminosities as a tation, and Dynamics of the Inner Galactic Interstellar function of evolution, showing that most of the clumps Medium; Schuller et al., 2017), allowing the calculation are already associated with star formation. We expect to of rotational temperature estimates for regions that are determine a similar evolutionary scheme for molecular optically-thick in 12CO and 13CO(1–0). Similarly, James cloud cores (including the C18O cores presented in §4.3), Clerk Maxwell Telescope (JCMT) 12CO(3-2) observa- using the Mopra CO and other survey data in future. tions (Dempsey et al., 2013) will be used to refine tem- The OH λ = 18 cm lines are complementary to CO perature and column density estimations for molecular and H i when estimating the mass of H2 in molecular clouds of interest. clouds, as at densities well below 103 cm−3 CO is af- Perhaps most importantly the Mopra CO survey data fected by ultraviolet shielding, interstellar chemistry, will be used as a finder chart for objects of interest to and sub-thermal processes (Dickey et al., 2013). The be observed with ALMA, which offers arcsecond-level GASKAP (The Galactic Australian Square Kilometre spatial resolution in the CO(1–0) transition (Mathews Array Pathfinder) Survey will trace atomic hydrogen di- et al., 2013). We note that Mopra CO data has guided rectly through the H i transition and OH (Dickey et al., successful ALMA and SOFIA applications for obser- 2013). The GASKAP survey will achieve spatial reso- vations towards molecular cores interacting with the lutions of 20–60 arcsec for H i and 90–180 arcsec for young supernova remnant, RX J1713.7−3946 (Rowell, OH, the former comparable with the Mopra CO sur- 2017; Sano, 2017). The resultant data will reveal the vey, allowing astronomers to carry out pixel to pixel extremely fine details of these structures and provide comparisons between the different tracers. Also using an important step towards understanding cosmic ray ASKAP, the EMU (Evolutionary Map of the Universe) origins. Survey will provide a similar-resolution high sensitivity Future ISM catalogues of sources of interest traced by map of radio continuum emission in the Galactic Plane, the Mopra CO survey will be essential for determining allowing the detection of H i i regions, supernova rem- the best objects to follow-up with ALMA. A sample nants and planetary nebulae at similar resolutions to catalogue of bright C18O clumps is in Appendix A.5, Mopra CO and GASKAP (Norris et al., 2011). Future along with characterisations of the location, size, tem- improvements to the velocity resolution of ASKAP may perature and mass. The complete catalogue will provide bring it closer to that of Mopra. supplementary information useful for targeting dense Towards a better understanding of the motions of clumps in star formation research. the Galactic Centre, Yan et al. (2017) employed Mopra 12CO and 13CO data in conjunction with OH absorption data from the Southern Parkes Large-Area Survey in 6 GAMMA-RAY OBSERVATIONS Hydroxyl (SPLASH; Dawson et al., 2014) to create a Gamma-ray maps provide an important window into the 3-dimensional image of the Galactic Centre region at gas distribution of the Galaxy that rely on studies of CO, a spatial resolution of 38 pc. The Galactic Centre was [C i], [C i i] and H i. A large component of gamma-ray well-described with a bar-like structure at an angle of emission from the Milky Way comes from three distinct ◦ 67±2 to the line-of-sight. More generally the Mopra so-called ‘diffuse’ source types (see e.g. Acero et al., 2013, CO data from the Central Molecular Zone (Blackwell 2017; Dubus et al., 2013): et al., 2018) will be key to studies of star formation and its effect on the evolution of the CMZ (e.g. Kruijssen 1. Truly diffuse gamma-rays from Cosmic Rays (CRs) 6 et al., 2015). circulating in the Galactic Plane for &10 years, i.e. Interstellar medium surveys are critical to X-ray and the diffuse CR ‘sea’; other high-energy studies, where they are used to de- 2. Local gamma-ray enhancements from CRs escaping 5 termine distances to supernova remnants, particularly local accelerators on time-frames .10 years; and using morphology anti-correlations and photoelectric 3. Unresolved sources of gamma-ray emission across absorption studies (e.g. Maxted et al., 2018). Heinz et al. the Galaxy. (2015) observed X-ray light echoes from the X-ray binary Circinus X-1, which demonstrated four well-defined rings Diffuse sources of type (1) and (2) involve cosmic-ray with radii from 5 to 13 arcmin. By modelling the dust protons interacting with gas in the Galactic Plane via distribution towards Circinus X-1 and comparing that proton-proton collisions that produce charged and neu- to 12CO emission from Data Release 3 they were able to tral pions. The neutral pions quickly decay into gamma- identify the source clouds for the innermost rings and ray photons. Diffuse sources of type (3) may also have determine the distance to Circinus X-1 to be ∼9.4 kpc a component of gamma-ray emission produced via this for the binary system, ruling out previous near distance mechanism, depending on the source. estimates of ∼ 4 kpc. Unlike spectral line emission, gamma-rays from pion- The Mopra CO survey will also be well-complemented decay can be considered a general tracer of gas density 14 Braiding et al. independent of temperature or chemistry. As the gamma- topologue data to investigate the gamma-ray sources ray flux generated by proton-proton interactions is a HESS J1640−465 and HESS J1641−463, which are po- product of cosmic ray density and gas density, gamma- sitionally coincident with the SNRs G338.3−0.0 and ray maps can be used to highlight excesses of both gas G338.5+0.1. The authors found coincident diffuse molec- and CRs. It follows that gas studies and gamma-ray ular gas, with a bright complex of dense gas and H i i astronomy are intimately tied together. regions connecting the SNRs. CO-derived masses were In order to identify gamma-ray sources in the Galactic then utilised to estimate the density of >1TeV CRs Plane maps from Fermi-LAT, which operates in the assuming that the gamma-ray emission was caused by 0.02-300 GeV gamma-ray regime (Atwood et al., 2009), pion-decay following proton-proton interactions. The a model of the gamma-ray emission from diffuse source values inferred were in the range of 100–1000 times the (1) was required. This model was constructed from H i Solar value (Lau et al., 2017b). Similarly, CO and CS and CO gas maps of similar resolution (e.g. McClure- observations that identify filamentary molecular features Griffiths et al., 2005; Dame et al., 2001) and revealed that towards the unidentified objects HESS J1614−518 and previous work underestimated the gamma-ray Galactic HESS J1616−508 (Lau et al., 2017a) represent the first contribution at high latitudes and hence overestimated steps in forming an understanding of the nature gamma- the background CR ‘sea’ (e.g. Strong et al., 2004). ray emitters. Galactic molecular cores resolved at sub-arcminute Maxted et al. (2018) compared line-of-sight column scales in both gamma-rays and CO(1–0) emission will densities from Mopra CO and the SGPS H i emis- enable the identification of pion-decay signatures near sion to X-ray absorption column densities for the cosmic-ray sources (Cameron, 2012; Acharya et al., bright shell-type gamma-ray SNR, HESS J1731−347. 2013), and may deliver kinematic distance solutions This enabled the calculation of a kinematic dis- for cosmic-ray sources (Cherenkov Telescope Array Con- tance to the source, and revealed a large associated sortium et al., 2017). The signature of this decay will molecular gas cloud that bridged the region between be particularly strong if the gamma-ray spectral index HESS J1731−347 and a nearby unidentified gamma-ray is altered by CR diffusion into molecular cores due to source, HESS J1729−345. Such a discovery adds weight energy-dependent propagation (e.g. Gabici et al., 2007; to the suggestion that some unidentified gamma-ray Maxted et al., 2012). Indeed, a common theme develop- sources are the product of so-called ‘runaway cosmic ing for young gamma-ray shell-type supernova remnants rays’ that escape a CR acceleration site and diffuse into (which are regarded as key PeV CR acceleration candi- nearby molecular gas clouds (i.e. diffuse sources of type dates) is the existence of sub-arcminute-scale molecular 2). Similar CR scenarios have also been investigated cores embedded in the perimeter of regions blown out by for pulsar wind nebulae and their progenitor supernova the progenitor star (Fukui, 2008; Moriguchi et al., 2005; remnants (e.g. HESS J1826−130, Voisin et al., 2016). Sano et al., 2013; Maxted et al., 2013; Fukuda et al., With the CTA now under construction (Cherenkov 2014; Kavanagh et al., 2015; Fukui et al., 2017; Sano Telescope Array Consortium et al., 2017), subarcminute et al., 2017b). The next-generation Cherenkov Telescope resolution gamma-ray maps will soon become available. Array (CTA Cherenkov Telescope Array Consortium As with Fermi-LAT, CTA will require similar-resolution et al., 2017) is expected to provide gamma-ray maps gas maps to characterise the diffuse gamma-ray emission at a resolution sufficient to identify local peaks due to components (1 and 2) and enable studies of gamma-ray cloud clumps and filaments. Furthermore, the Mopra sources and dark gas. Furthermore, CTA’s improved CO survey will probe interstellar medium dynamics by sensitivity will enable it to detect sources across the revealing broad-line or asymmetric emission indicative Galactic disk, expanding on the rather limited (few of the shock-gas interactions, as is expected of some kpc for sources of <10% Crab flux) horizon achieved gamma-ray sources like older supernova shocks and pul- by current telescopes like H.E.S.S. Towards this future, sar wind nebulae (e.g. Arikawa et al., 1999). we are preparing molecular gas maps that will fully Data from the Mopra Galactic Plane CO Survey have parametrise Mopra CO, FUGIN and GASKAP data for already been used to examine the nature of gamma-ray use in gamma-ray modelling of the Galactic Plane (e.g. sources observed with the highest resolution gamma-ray using GALPROP, PICARD and DRAGON; Strong & telescope, H.E.S.S. (High Energy Stereoscopic System, Moskalenko, 1998; Kissmann, 2014; Evoli et al., 2017, Aharonian et al., 2006). Understanding the links be- respectively). tween TeV gamma-ray emission and the parent high energy particle populations local to extreme Galactic 7 SUMMARY objects is a step forward in the search for elusive CR hadron acceleration sites; pulsar wind nebulae and SNRs We present the third data release of the Mopra Southern with associated gamma-ray detections are the primary Galactic Plane CO Survey, covering 50 square degrees candidates in the pursuit for Galactic CR sources. between Galactic longitude l = 300–350◦ and latitude Lau et al. (2017b) exploited Mopra CO and CS iso- b = ±0.5◦. These data are part of a larger campaign to Mopra CO Data Release 3 15 map the molecular gas of the inner Galactic Plane in Arikawa Y., Tatematsu K., Sekimoto Y., Takahashi T., 12CO, 13CO, C18O and C17O(1–0) emission. 1999, PASJ, 51, L7 We find general agreement between the CO spec- Astropy Collaboration et al., 2013, A&A, 558, A33 tral line profiles of the Mopra survey and those of the Atwood W. B., et al., 2009, ApJ, 697, 1071 Columbia survey for each square degree of coverage. Benjamin R. A., et al., 2003, PASP, 115, 953 Furthermore, we find a modest agreement between the Blackwell R., et al., 2018, in prep Mopra survey position-velocity structure and a recent Bolatto A. D., Wolfire M., Leroy A. K., 2013, ARA&A, Galactic Plane model (Vallée, 2016). A preliminary cat- 51, 207 18 alogue of C O clumps presented traces ∼ 10% of the Braiding C., et al., 2015, PASA, 32, e020 12 observed CO molecular gas, illustrating the impor- Burton M. G., et al., 2013, PASA, 30, e044 tance of this optically thin tracer of molecular gas. Burton M. G., et al., 2014, ApJ, 782, 72 The Mopra CO survey, which is estimated to trace Burton M. G., et al., 2015, ApJ, 811, 13 6 a ∼few×10 M of molecular gas per square degree, is Cameron R. A., 2012, in Ground-based and Airborne already making an impact on the search for Galactic Telescopes IV. p. 844418, doi:10.1117/12.926614 cosmic-ray sources and star formation research. We dis- Carey S. J., et al., 2009, PASP, 121, 76 cuss past and future multi-wavelength investigations Cherenkov Telescope Array Consortium T., et al., 2017, towards a number of Galactic Plane sources and syner- preprint, (arXiv:1709.07997) gies with other surveys. Churchwell E., et al., 2009, PASP, 121, 213 The Mopra CO survey is still ongoing, with the in- Dame T. M., Thaddeus P., 2011, ApJ, 734, L24 tention of covering the entire fourth quadrant and ex- Dame T. M., Hartmann D., Thaddeus P., 2001, ApJ, panding to Galactic latitudes beyond b = ±1.0◦ by the 547, 792 end of 2018. As the data are published, they are being Dawson J. R., et al., 2014, MNRAS, 439, 1596 made available at the survey website, and the PASA Dempsey J. T., Thomas H. S., Currie M. J., 2013, ApJS, data archive. 209, 8 Dickey J. M., et al., 2013, PASA, 30, e003 8 ACKNOWLEDGEMENTS Drlica-Wagner A., Gómez-Vargas G. A., Hewitt J. W., Linden T., Tibaldo L., 2014, ApJ, 790, 24 The Mopra radio telescope is part of the Australia Telescope Dubus G., et al., 2013, Astroparticle Physics, 43, 317 National Facility. Operations support was provided by the University of New South Wales, the University of Adelaide Evoli C., Gaggero D., Vittino A., Di Bernardo G., Di and Western Sydney University. Many staff of the ATNF have Mauro M., Ligorini A., Ullio P., Grasso D., 2017, contributed to the success of the remote operations at Mopra. JCAP, 2, 015 We particularly wish to acknowledge the contributions of Frerking M. A., Langer W. D., Wilson R. W., 1982, ApJ, David Brodrick, Philip Edwards, Brett Hiscock, and Peter 262, 590 Mirtschin. Fukuda T., Yoshiike S., Sano H., Torii K., Yamamoto This research made use of Astropy, a community-developed H., Acero F., Fukui Y., 2014, ApJ, 788, 94 core Python package for Astronomy (Astropy Collaboration Fukui Y., 2008, in Aharonian F. A., Hofmann W., et al., 2013) and the IDL Astronomy Library (Landsman, Rieger F., eds, American Institute of Physics Confer- 1993). ence Series Vol. 1085, American Institute of Physics We are indebted also to the financial support of the #Team- Conference Series. pp 104–111 (arXiv:0810.5416), Mopra kickstarter contributors, listed at www.mopra.org. doi:10.1063/1.3076625 The University of New South Wales Digital Filter Bank used Fukui Y., et al., 2017, preprint, (arXiv:1708.07911) for the observations with the Mopra Telescope (the UNSW– Gabici S., Aharonian F. A., Blasi P., 2007, Ap&SS, 309, MOPS) was provided with support from the Australian Re- 365 search Council (ARC). We also acknowledge ARC support Gooch R., 1996, in Jacoby G. H., Barnes J., eds, As- through Discovery Project DP120101585 and Linkage, Infras- tronomical Society of the Pacific Conference Series tructure, Equipment and Facilities project LE160100094. Vol. 101, Astronomical Data Analysis Software and Systems V. p. 80 REFERENCES Heinz S., et al., 2015, ApJ, 806, 265 Jones P. A., et al., 2012, MNRAS, 419, 2961 Acero F., et al., 2013, Astroparticle Physics, 43, 276 Jones P. A., Burton M. G., Cunningham M. R., Tothill Acero F., et al., 2017, ApJ, 840, 74 N. F. H., Walsh A. J., 2013, MNRAS, 433, 221 Acharya B. S., et al., 2013, Astroparticle Physics, 43, 3 Kavanagh P. J., Sasaki M., Bozzetto L. M., Filipović Aharonian F., et al., 2006, A&A, 457, 899 M. D., Points S. D., Maggi P., Haberl F., 2015, A&A, Ao Y., et al., 2013, A&A, 550, A135 16 Braiding et al.

573, A73 Wilson T. L., Rohlfs K., Hüttemeister S., 2009, Tools of Kissmann R., 2014, Astroparticle Physics, 55, 37 Radio Astronomy. Springer-Verlag, doi:10.1007/978- Kruijssen J. M. D., Dale J. E., Longmore S. N., 2015, 3-540-85122-6 MNRAS, 447, 1059 Yan Q.-Z., et al., 2017, MNRAS, 471, 2523 Ladd N., Purcell C., Wong T., Robertson S., 2005, PASA, 22, 62 Landsman W. B., 1993, in Hanisch R. J., Brissenden R. J. V., Barnes J., eds, Astronomical Society of the A SUPPLEMENTARY MATERIALS Pacific Conference Series Vol. 52, Astronomical Data A.1 The Mopra Beam Analysis Software and Systems II. p. 246 Lau J. C., et al., 2017a, PASA, 34, e064 To characterise the Mopra beam resolution, observa- Lau J. C., et al., 2017b, MNRAS, 464, 3757 tions of the red supergiant variable star AH Scorpii Mathews G. S., et al., 2013, A&A, 557, A132 were performed on the 14th of November, 2017. SiO(2– Maxted N., et al., 2012, MNRAS, 422, 2230 1,v=1) masers from AH Scorpii are point-like, allowing Maxted N., et al., 2013, PASA, 30, e055 the Mopra beam size and shape to be characterised. The integrated data, described more fully in §3.2, are Maxted N., et al., 2018, MNRAS, 474, 662 illustrated in Figure 9. McClure-Griffiths N. M., Dickey J. M., Gaensler B. M., Green A. J., Haverkorn M., Strasser S., 2005, ApJS, 158, 178 Minamidani T., et al., 2015, in EAS Publications Series. -25.73 pp 193–194, doi:10.1051/eas/1575036 Molinari S., et al., 2010, PASP, 122, 314 -25.74 Moriguchi Y., Tamura K., Tawara Y., Sasago H., Ya- -25.75 maoka K., Onishi T., Fukui Y., 2005, ApJ, 631, 947 Norris R. P., et al., 2011, PASA, 28, 215 -25.76 Pierce-Price D., et al., 2000, ApJ, 545, L121 Pineda J. L., Goldsmith P. F., Chapman N., Snell R. L., -25.77 Li D., Cambrésy L., Brunt C., 2010, ApJ, 721, 686 Planck Collaboration et al., 2015, A&A, 582, A31 Dec. (deg.) -25.78

Rebolledo D., et al., 2016, MNRAS, 456, 2406 -25.79 Risacher C., et al., 2016, A&A, 595, A34 Rowell G. e. a., 2017, SOFIA Proposal P06-0122 -25.80 Sano H. e. a., 2017, ALMA Proposal XXXXXX Sano H., et al., 2013, ApJ, 778, 59 110.78 110.76 110.74 110.72 110.70 Sano H., et al., 2017a, preprint, (arXiv:1706.05763) Sano H., et al., 2017b, ApJ, 843, 61 R.A. (deg.) Schuller F., et al., 2017, A&A, 601, A124 Figure 9. A Mopra SiO(2–1,v=1) image of the red supergiant Strong A. W., Moskalenko I. V., 1998, ApJ, 509, 212 variable star, AH Scorpii, integrated between 2 and 48 km s−1. Red Strong A. W., Moskalenko I. V., Reimer O., 2004, ApJ, contours indicate 1% steps between 0 to 10% total intensity, and 613, 962 10% steps between 10 and 100% the total intensity. Observations were carried out on the 14th of November, 2017. Umemoto T., et al., 2017, PASJ, 69, 78 Urquhart J. S., et al., 2018, MNRAS, 473, 1059 Vallée J. P., 2014,AJ, 148, 5 Vallée J. P., 2016,AJ, 151, 55 A.2 System Temperature Voisin F., Rowell G., Burton M. G., Walsh A., Fukui Y., Aharonian F., 2016, MNRAS, 458, 2813 Maps of the system temperature for the 12CO isotopo- Walker C. K., et al., 2004, in Oschmann Jr. J. M., ed., logue are shown in Figure 10, with values approximately 13 18 Proc. SPIEVol. 5489, Ground-based Telescopes. pp twice those of the CO and C O isotopologues shown 470–480, doi:10.1117/12.551424 in Figure 11 (which occur in the same 2 GHz band of the Williams J. P., de Geus E. J., Blitz L., 1994, ApJ, 428, spectrometer). Striping in these images occurs because 693 the data is scanned in the l and b directions to minimize Wilson R. W., Jefferts K. B., Penzias A. A., 1970, ApJ, artefacts from poor sky conditions, while spots indicate 161, L43 points where high Tsys values have been removed (see §3 and Braiding et al., 2015, for additional details). Mopra CO Data Release 3 17

12 CO Tsys +00.4° 960 880

+00.2° 800 ) K

720 ( +00.0° ∗ 640 A -00.2° 560 T -00.4° 480

Galactic Latitude 400 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

+00.4° 960 880

+00.2° 800 ) K

720 ( +00.0° ∗ 640 A -00.2° 560 T -00.4° 480

Galactic Latitude 400 340° 339° 338° 337° 336° 335° 334° 333° 332° 331° 330° Galactic Longitude

+00.4° 960 880

+00.2° 800 ) K

720 ( +00.0° ∗ 640 A -00.2° 560 T -00.4° 480

Galactic Latitude 400 330° 329° 328° 327° 326° 325° 324° 323° 322° 321° 320° Galactic Longitude

+00.4° 960 880

+00.2° 800 ) K

720 ( +00.0° ∗ 640 A -00.2° 560 T -00.4° 480

Galactic Latitude 400 320° 319° 318° 317° 316° 315° 314° 313° 312° 311° 310° Galactic Longitude

+00.4° 960 880

+00.2° 800 ) K

720 ( +00.0° ∗ 640 A -00.2° 560 T -00.4° 480

Galactic Latitude 400 310° 309° 308° 307° 306° 305° 304° 303° 302° 301° 300° Galactic Longitude

12 ◦ ∗ Figure 10. Tsys images for the CO data covering the full 50 square degrees from l = 300–350 in units of TA (K) (as indicated by the scale bars). The striping pattern is inherent to the data set, resulting from scanning in the l and b directions in variable observing conditions.

A.3 Averaged Spectra A.4 Integrated intensity maps

Figs. 22 to 41 are integrated intensity maps of TMB∆V from DR3. Grey scale images are taken from the 12CO The average line profiles for the 12CO, 13CO, and 12CO data and the contours are from the 13CO data, between from the Columbia survey (Dame et al., 2001), averaged the velocity range of -150 and +50 km s−1 with an inter- over each square degree are displayed in Figures 12–21. A val of 10 km s−1. Note that some scanning artefacts are distinct progression towards increasingly negative veloc- present in these images, evident as 1◦-long line features ities is seen from longitudes l = 300–350◦. At l = 300◦, in longitude or latitude, particularly near the edges of the line of sight spectral line velocities are all higher than individual square degrees. −50 km/s, consistent with the lower limit on velocity set by the Scutum-Crux arm tangent in the Galactic model adopted in this paper (see Figure 7). Positive-velocity A.5C 18O clump catalogue spectral lines typically indicate emission seen from the Table 3 presents a sample of C18O molecular clumps far-side of the Galaxy (beyond the Solar Circle). extracted from the Galactic longitude range 330 ≤ l ≤ 340◦data cubes as described in §4.3. These are the first With increasing longitude, the range of spectral line items from a wider database that is in preparation and velocities increases, and the negative extent of the range will describe all the C18O clumps comprised in the Mopra decreases beyond −100 km/s, consistent with expecta- CO survey data (300 ≤ l ≤ 350◦ and beyond). tions of the inner-Galaxy (see Figure 7). The mean in- Two methods are used to compute the cloud areas: In tensity ratio between the average spectra illustrated in the first (labelled A in Table 3), we define the clump Figures 12–21 from the MopraCO and the Dame survey area as the number of non-zero pixels in the integrated is 1.35 (with a median value of 1.36), with the individual intensity map multiplied by the area of the single pixel values for each square degree listed in Table 2 below. in square arcseconds. The second (labelled Afwhm) is the 18 Braiding et al.

13CO and C18O T sys 550 +00.4° 500 450

+00.2° ) 400 K (

+00.0° 350 ∗ 300 A T -00.2° 250 -00.4° 200

Galactic Latitude 150 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

550 +00.4° 500 450

+00.2° ) 400 K (

+00.0° 350 ∗ 300 A T -00.2° 250 -00.4° 200

Galactic Latitude 150 340° 339° 338° 337° 336° 335° 334° 333° 332° 331° 330° Galactic Longitude

550 +00.4° 500 450

+00.2° ) 400 K (

+00.0° 350 ∗ 300 A T -00.2° 250 -00.4° 200

Galactic Latitude 150 330° 329° 328° 327° 326° 325° 324° 323° 322° 321° 320° Galactic Longitude

550 +00.4° 500 450

+00.2° ) 400 K (

+00.0° 350 ∗ 300 A T -00.2° 250 -00.4° 200

Galactic Latitude 150 320° 319° 318° 317° 316° 315° 314° 313° 312° 311° 310° Galactic Longitude

550 +00.4° 500 450

+00.2° ) 400 K (

+00.0° 350 ∗ 300 A T -00.2° 250 -00.4° 200

Galactic Latitude 150 310° 309° 308° 307° 306° 305° 304° 303° 302° 301° 300° Galactic Longitude

13 18 Figure 11. Tsys images for CO and C O (which share the same 2 GHz band of the spectrometer) covering the full 50 square degrees ◦ ∗ from l = 300–350 in units of TA (K) (as indicated by the scale bars). The striping pattern is inherent to the data set, resulting from scanning in the l and b directions in variable observing conditions.

area of an ellipse with semi-axes defined by the FWHM angular extensions ∆l and ∆b. Note that for nine clumps we used the tangent point distance for both near and far distances, since their coordinates have no solution in the Galactic rotation curve; as a consequence their near and far masses are the same. Mopra CO Data Release 3 19

Table 2 Intensity ratios between the average spectra for each square degree of Mopra CO and the Columbia CO Survey (Dame et al., 2001), calculated using the integrated intensities of each spectrum. The mean over the 50 square degrees is 1.35, and the median 1.36.

Cube Ratio Cube Ratio Cube Ratio Cube Ratio Cube Ratio G300 1.12 G310 1.44 G320 1.30 G330 1.39 G340 1.41 G301 1.25 G311 1.48 G321 1.20 G331 1.47 G341 1.38 G302 1.63 G312 1.45 G322 1.18 G332 1.43 G342 1.39 G303 1.42 G313 1.43 G323 1.23 G333 1.45 G343 1.13 G304 1.44 G314 1.35 G324 1.28 G334 1.45 G344 1.44 G305 1.59 G315 1.23 G325 1.28 G335 1.23 G345 1.49 G306 1.19 G316 1.27 G326 1.27 G336 1.32 G346 1.14 G307 1.67 G317 1.34 G327 1.27 G337 1.54 G347 1.40 G308 1.38 G318 1.26 G328 1.33 G338 1.47 G348 1.26 G309 1.40 G319 1.01 G329 1.33 G339 1.41 G349 1.30 20 Braiding et al.

Figure 12. Average spectra for each square degree along the Galactic Plane between l = 300–305◦, labelled by their lower longitude −1 12 13 limit, from −150 < VLSR < +50km s . The dark solid lines are the Mopra CO data, while the blue is the CO emission offset by −0.2 K. The dashed lines are the equivalent average 12CO spectra from the Columbia CO Survey (Dame et al., 2001), which show systematic lower line intensities by a factor of ∼ 1.35 (see Table 2 for degree-specific values). Mopra CO Data Release 3 21

Figure 13. Average spectra for each square degree along the Galactic Plane between l = 305–310◦, labelled by their lower longitude −1 12 13 limit, from −150 < VLSR < +50km s . The dark solid lines are the Mopra CO data, while the blue is the CO emission offset by −0.2 K. The dashed lines are the equivalent average 12CO spectra from the Columbia CO Survey (Dame et al., 2001), which show systematic lower line intensities by a factor of ∼ 1.35 (see Table 2 for degree-specific values). 22 Braiding et al.

Figure 14. Average spectra for each square degree along the Galactic Plane between l = 310–315◦, labelled by their lower longitude −1 12 13 limit, from −150 < VLSR < +50km s . The dark solid lines are the Mopra CO data, while the blue is the CO emission offset by −0.2 K. The dashed lines are the equivalent average 12CO spectra from the Columbia CO Survey (Dame et al., 2001), which show systematic lower line intensities by a factor of ∼ 1.35 (see Table 2 for degree-specific values). Mopra CO Data Release 3 23

Figure 15. Average spectra for each square degree along the Galactic Plane between l = 315–320◦, labelled by their lower longitude −1 12 13 limit, from −150 < VLSR < +50km s . The dark solid lines are the Mopra CO data, while the blue is the CO emission offset by −0.2 K. The dashed lines are the equivalent average 12CO spectra from the Columbia CO Survey (Dame et al., 2001), which show systematic lower line intensities by a factor of ∼ 1.35 (see Table 2 for degree-specific values). 24 Braiding et al.

Figure 16. Average spectra for each square degree along the Galactic Plane between l = 320–325◦, labelled by their lower longitude −1 12 13 limit, from −150 < VLSR < +50km s . The dark solid lines are the Mopra CO data, while the blue is the CO emission offset by −0.2 K. The dashed lines are the equivalent average 12CO spectra from the Columbia CO Survey (Dame et al., 2001), which show systematic lower line intensities by a factor of ∼ 1.35 (see Table 2 for degree-specific values). Mopra CO Data Release 3 25

Figure 17. Average spectra for each square degree along the Galactic Plane between l = 325–330◦, labelled by their lower longitude −1 12 13 limit, from −150 < VLSR < +50km s . The dark solid lines are the Mopra CO data, while the blue is the CO emission offset by −0.2 K. The dashed lines are the equivalent average 12CO spectra from the Columbia CO Survey (Dame et al., 2001), which show systematic lower line intensities by a factor of ∼ 1.35 (see Table 2 for degree-specific values). 26 Braiding et al.

Figure 18. Average spectra for each square degree along the Galactic Plane between l = 330–335◦, labelled by their lower longitude −1 12 13 limit, from −150 < VLSR < +50km s . The dark solid lines are the Mopra CO data, while the blue is the CO emission offset by −0.2 K. The dashed lines are the equivalent average 12CO spectra from the Columbia CO Survey (Dame et al., 2001), which show systematic lower line intensities by a factor of ∼ 1.35 (see Table 2 for degree-specific values). Mopra CO Data Release 3 27

Figure 19. Average spectra for each square degree along the Galactic Plane between l = 335–340◦, labelled by their lower longitude −1 12 13 limit, from −150 < VLSR < +50km s . The dark solid lines are the Mopra CO data, while the blue is the CO emission offset by −0.2 K. The dashed lines are the equivalent average 12CO spectra from the Columbia CO Survey (Dame et al., 2001), which show systematic lower line intensities by a factor of ∼ 1.35 (see Table 2 for degree-specific values). 28 Braiding et al.

Figure 20. Average spectra for each square degree along the Galactic Plane between l = 340–345◦, labelled by their lower longitude −1 12 13 limit, from −150 < VLSR < +50km s . The dark solid lines are the Mopra CO data, while the blue is the CO emission offset by −0.2 K. The dashed lines are the equivalent average 12CO spectra from the Columbia CO Survey (Dame et al., 2001), which show systematic lower line intensities by a factor of ∼ 1.35 (see Table 2 for degree-specific values). Mopra CO Data Release 3 29

Figure 21. Average spectra for each square degree along the Galactic Plane between l = 345–350◦, labelled by their lower longitude −1 12 13 limit, from −150 < VLSR < +50km s . The dark solid lines are the Mopra CO data, while the blue is the CO emission offset by −0.2 K. The dashed lines are the equivalent average 12CO spectra from the Columbia CO Survey (Dame et al., 2001), which show systematic lower line intensities by a factor of ∼ 1.35 (see Table 2 for degree-specific values). 30 Braiding et al.

Moment 0, v = -150 to -140 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

Figure 22. Moment 0 image for l = 340–350◦ calculated over the velocity interval v = −150 to −140 km s−1 using the main beam 12 13 intensity, TMB. The grayscale CO image runs from 0 to 40 K.km/s, while the CO contours are at 1, 6, 11, 16 K.km/s. None of the other data cubes demonstrate significant emission in this velocity range. Note that some scanning artefacts are present in this and following images, evident as 1◦-long line features in longitude or latitude.

Moment 0, v = -140 to -130 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

Moment 0, v = -140 to -130 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 340° 339° 338° 337° 336° 335° 334° 333° 332° 331° 330° Galactic Longitude

Figure 23. Moment 0 images for l = 330–350◦ calculated over the velocity interval v = −140 to −130 km s−1. The grayscale 12CO image runs from 0 to 40 K.km/s, while the 13CO contours are at 1, 6, 11, 16 K.km/s. None of the other data cubes demonstrate significant emission in this velocity range.

Moment 0, v = -130 to -120 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

Moment 0, v = -130 to -120 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 340° 339° 338° 337° 336° 335° 334° 333° 332° 331° 330° Galactic Longitude

Figure 24. Moment 0 images for l = 330–350◦ calculated over the velocity interval v = −130 to −120 km s−1. The grayscale 12CO image runs from 0 to 40 K.km/s, while the 13CO contours are at 1, 6, 11, 16 K.km/s. None of the other data cubes demonstrate significant emission in this velocity range. Mopra CO Data Release 3 31

Moment 0, v = -120 to -110 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

Moment 0, v = -120 to -110 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 340° 339° 338° 337° 336° 335° 334° 333° 332° 331° 330° Galactic Longitude

Figure 25. Moment 0 images for l = 330–350◦ calculated over the velocity interval v = −120 to −110 km s−1. The grayscale 12CO image runs from 0 to 40 K.km/s, while the 13CO contours are at 1, 6, 11, 16 K.km/s. None of the other data cubes demonstrate significant emission in this velocity range.

Moment 0, v = -110 to -100 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

Moment 0, v = -110 to -100 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 340° 339° 338° 337° 336° 335° 334° 333° 332° 331° 330° Galactic Longitude

Moment 0, v = -110 to -100 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 330° 329° 328° 327° 326° 325° 324° 323° 322° 321° 320° Galactic Longitude

Figure 26. Moment 0 images for l = 320–350◦ calculated over the velocity interval v = −110 to −100 km s−1. The grayscale 12CO image runs from 0 to 40 K.km/s, while the 13CO contours are at 1, 6, 11, 16 K.km/s. None of the other data cubes demonstrate significant emission in this velocity range. 32 Braiding et al.

Moment 0, v = -100 to -90 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

Moment 0, v = -100 to -90 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 340° 339° 338° 337° 336° 335° 334° 333° 332° 331° 330° Galactic Longitude

Moment 0, v = -100 to -90 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 330° 329° 328° 327° 326° 325° 324° 323° 322° 321° 320° Galactic Longitude

Figure 27. Moment 0 images for l = 320–350◦ calculated over the velocity interval v = −100 to −90 km s−1. The grayscale 12CO image runs from 0 to 40 K.km/s, while the 13CO contours are at 1, 6, 11, 16 K.km/s. None of the other data cubes demonstrate significant emission in this velocity range.

Moment 0, v = -90 to -80 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

Moment 0, v = -90 to -80 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 340° 339° 338° 337° 336° 335° 334° 333° 332° 331° 330° Galactic Longitude

Moment 0, v = -90 to -80 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 330° 329° 328° 327° 326° 325° 324° 323° 322° 321° 320° Galactic Longitude

Figure 28. Moment 0 images for l = 320–350◦ calculated over the velocity interval v = −90 to −80 km s−1. Note that the scales have changed here from previous images: the grayscale 12CO image now runs from 0 to 80 K.km/s, while the 13CO contours are at 4, 12, 20, 28 K.km/s. None of the other data cubes demonstrate significant emission in this velocity range. Mopra CO Data Release 3 33

Moment 0, v = -80 to -70 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

Moment 0, v = -80 to -70 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 340° 339° 338° 337° 336° 335° 334° 333° 332° 331° 330° Galactic Longitude

Moment 0, v = -80 to -70 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 330° 329° 328° 327° 326° 325° 324° 323° 322° 321° 320° Galactic Longitude

Moment 0, v = -80 to -70 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 320° 319° 318° 317° 316° 315° 314° 313° 312° 311° 310° Galactic Longitude

Figure 29. Moment 0 images for l = 310–350◦ calculated over the velocity interval v = −80 to −70 km s−1. The grayscale 12CO image runs from 0 to 80 K.km/s, while the 13CO contours are at 4, 12, 20, 28 K.km/s. None of the other data cubes demonstrate significant emission in this velocity range. 34 Braiding et al.

Moment 0, v = -70 to -60 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

Moment 0, v = -70 to -60 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 340° 339° 338° 337° 336° 335° 334° 333° 332° 331° 330° Galactic Longitude

Moment 0, v = -70 to -60 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 330° 329° 328° 327° 326° 325° 324° 323° 322° 321° 320° Galactic Longitude

Moment 0, v = -70 to -60 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 320° 319° 318° 317° 316° 315° 314° 313° 312° 311° 310° Galactic Longitude

Moment 0, v = -70 to -60 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 310° 309° 308° 307° 306° 305° 304° 303° 302° 301° 300° Galactic Longitude

Figure 30. Moment 0 images for l = 300–350◦ calculated over the velocity interval v = −70 to −60 km s−1. The grayscale 12CO image runs from 0 to 80 K.km/s, while the 13CO contours are at 4, 12, 20, 28 K.km/s. Mopra CO Data Release 3 35

Moment 0, v = -60 to -50 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

Moment 0, v = -60 to -50 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 340° 339° 338° 337° 336° 335° 334° 333° 332° 331° 330° Galactic Longitude

Moment 0, v = -60 to -50 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 330° 329° 328° 327° 326° 325° 324° 323° 322° 321° 320° Galactic Longitude

Moment 0, v = -60 to -50 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 320° 319° 318° 317° 316° 315° 314° 313° 312° 311° 310° Galactic Longitude

Moment 0, v = -60 to -50 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 310° 309° 308° 307° 306° 305° 304° 303° 302° 301° 300° Galactic Longitude

Figure 31. Moment 0 images for l = 300–350◦ calculated over the velocity interval v = −60 to −50 km s−1. The grayscale 12CO image runs from 0 to 80 K.km/s, while the 13CO contours are at 4, 12, 20, 28 K.km/s. 36 Braiding et al.

Moment 0, v = -50 to -40 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

Moment 0, v = -50 to -40 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 340° 339° 338° 337° 336° 335° 334° 333° 332° 331° 330° Galactic Longitude

Moment 0, v = -50 to -40 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 330° 329° 328° 327° 326° 325° 324° 323° 322° 321° 320° Galactic Longitude

Moment 0, v = -50 to -40 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 320° 319° 318° 317° 316° 315° 314° 313° 312° 311° 310° Galactic Longitude

Moment 0, v = -50 to -40 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 310° 309° 308° 307° 306° 305° 304° 303° 302° 301° 300° Galactic Longitude

Figure 32. Moment 0 images for l = 300–350◦ calculated over the velocity interval v = −50 to −40 km s−1. The grayscale 12CO image runs from 0 to 80 K.km/s, while the 13CO contours are at 4, 12, 20, 28 K.km/s. Mopra CO Data Release 3 37

Moment 0, v = -40 to -30 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

Moment 0, v = -40 to -30 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 340° 339° 338° 337° 336° 335° 334° 333° 332° 331° 330° Galactic Longitude

Moment 0, v = -40 to -30 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 330° 329° 328° 327° 326° 325° 324° 323° 322° 321° 320° Galactic Longitude

Moment 0, v = -40 to -30 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 320° 319° 318° 317° 316° 315° 314° 313° 312° 311° 310° Galactic Longitude

Moment 0, v = -40 to -30 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 310° 309° 308° 307° 306° 305° 304° 303° 302° 301° 300° Galactic Longitude

Figure 33. Moment 0 images for l = 300–350◦ calculated over the velocity interval v = −40 to −30 km s−1. The grayscale 12CO image runs from 0 to 80 K.km/s, while the 13CO contours are at 4, 12, 20, 28 K.km/s. 38 Braiding et al.

Moment 0, v = -30 to -20 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

Moment 0, v = -30 to -20 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 340° 339° 338° 337° 336° 335° 334° 333° 332° 331° 330° Galactic Longitude

Moment 0, v = -30 to -20 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 330° 329° 328° 327° 326° 325° 324° 323° 322° 321° 320° Galactic Longitude

Moment 0, v = -30 to -20 km/s 80 +00.4° 72 64 +00.2° 56 48 +00.0° 40 32 -00.2° 24 16 -00.4° 8 Flux (K.km/s)

Galactic Latitude 0 320° 319° 318° 317° 316° 315° 314° 313° 312° 311° 310° Galactic Longitude

Moment 0, v = -30 to -20 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 310° 309° 308° 307° 306° 305° 304° 303° 302° 301° 300° Galactic Longitude

Figure 34. Moment 0 images for l = 300–350◦ calculated over the velocity interval v = −30 to −20 km s−1. The grayscale 12CO image runs from 0 to 80 K.km/s, while the 13CO contours are at 4, 12, 20, 28 K.km/s. Mopra CO Data Release 3 39

Moment 0, v = -20 to -10 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

Moment 0, v = -20 to -10 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 340° 339° 338° 337° 336° 335° 334° 333° 332° 331° 330° Galactic Longitude

Moment 0, v = -20 to -10 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 330° 329° 328° 327° 326° 325° 324° 323° 322° 321° 320° Galactic Longitude

Moment 0, v = -20 to -10 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 320° 319° 318° 317° 316° 315° 314° 313° 312° 311° 310° Galactic Longitude

Moment 0, v = -20 to -10 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 310° 309° 308° 307° 306° 305° 304° 303° 302° 301° 300° Galactic Longitude

Figure 35. Moment 0 images for l = 300–350◦ calculated over the velocity interval v = −20 to −10 km s−1. The scales have changed again, the grayscale 12CO image runs from 0 to 40 K.km/s, while the 13CO contours are at 1, 6, 11, 16 K.km/s. 40 Braiding et al.

Moment 0, v = -10 to 0 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

Moment 0, v = -10 to 0 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 340° 339° 338° 337° 336° 335° 334° 333° 332° 331° 330° Galactic Longitude

Moment 0, v = -10 to 0 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 330° 329° 328° 327° 326° 325° 324° 323° 322° 321° 320° Galactic Longitude

Moment 0, v = -10 to 0 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 320° 319° 318° 317° 316° 315° 314° 313° 312° 311° 310° Galactic Longitude

Moment 0, v = -10 to 0 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 310° 309° 308° 307° 306° 305° 304° 303° 302° 301° 300° Galactic Longitude

Figure 36. Moment 0 images for l = 300–350◦ calculated over the velocity interval v = −10 to 0 km s−1. The grayscale 12CO image runs from 0 to 40 K.km/s, while the 13CO contours are at 1, 6, 11, 16 K.km/s. Mopra CO Data Release 3 41

Moment 0, v = 0 to 10 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

Moment 0, v = 0 to 10 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 340° 339° 338° 337° 336° 335° 334° 333° 332° 331° 330° Galactic Longitude

Moment 0, v = 0 to 10 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 330° 329° 328° 327° 326° 325° 324° 323° 322° 321° 320° Galactic Longitude

Moment 0, v = 0 to 10 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 320° 319° 318° 317° 316° 315° 314° 313° 312° 311° 310° Galactic Longitude

Moment 0, v = 0 to 10 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 310° 309° 308° 307° 306° 305° 304° 303° 302° 301° 300° Galactic Longitude

Figure 37. Moment 0 images for l = 300–350◦ calculated over the velocity interval v = 0 to +10 km s−1. The grayscale 12CO image runs from 0 to 40 K.km/s, while the 13CO contours are at 1, 6, 11, 16 K.km/s. 42 Braiding et al.

Moment 0, v = 10 to 20 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 350° 349° 348° 347° 346° 345° 344° 343° 342° 341° 340° Galactic Longitude

Moment 0, v = 10 to 20 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 340° 339° 338° 337° 336° 335° 334° 333° 332° 331° 330° Galactic Longitude

Moment 0, v = 10 to 20 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 330° 329° 328° 327° 326° 325° 324° 323° 322° 321° 320° Galactic Longitude

Moment 0, v = 10 to 20 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 320° 319° 318° 317° 316° 315° 314° 313° 312° 311° 310° Galactic Longitude

Moment 0, v = 10 to 20 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 310° 309° 308° 307° 306° 305° 304° 303° 302° 301° 300° Galactic Longitude

Figure 38. Moment 0 images for l = 300–350◦ calculated over the velocity interval v = +10 to +20km s−1. The grayscale 12CO image runs from 0 to 40 K.km/s, while the 13CO contours are at 1, 6, 11, 16 K.km/s.

Moment 0, v = 20 to 30 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 330° 329° 328° 327° 326° 325° 324° 323° 322° 321° 320° Galactic Longitude

Moment 0, v = 20 to 30 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 320° 319° 318° 317° 316° 315° 314° 313° 312° 311° 310° Galactic Longitude

Moment 0, v = 20 to 30 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 310° 309° 308° 307° 306° 305° 304° 303° 302° 301° 300° Galactic Longitude

Figure 39. Moment 0 images for l = 300–330◦ calculated over the velocity interval v = +20 to +30km s−1. The grayscale 12CO image runs from 0 to 40 K.km/s, while the 13CO contours are at 1, 6, 11, 16 K.km/s. None of the other data cubes demonstrate significant emission in this velocity range. Mopra CO Data Release 3 43

Moment 0, v = 30 to 40 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 330° 329° 328° 327° 326° 325° 324° 323° 322° 321° 320° Galactic Longitude

Moment 0, v = 30 to 40 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 320° 319° 318° 317° 316° 315° 314° 313° 312° 311° 310° Galactic Longitude

Moment 0, v = 30 to 40 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 310° 309° 308° 307° 306° 305° 304° 303° 302° 301° 300° Galactic Longitude

Figure 40. Moment 0 images for l = 300–330◦ calculated over the velocity interval v = +30 to +40km s−1. The grayscale 12CO image runs from 0 to 40 K.km/s, while the 13CO contours are at 1, 6, 11, 16 K.km/s. None of the other data cubes demonstrate significant emission in this velocity range.

Moment 0, v = 40 to 50 km/s 40 +00.4° 36 32 +00.2° 28 24 +00.0° 20 16 -00.2° 12 8 -00.4° 4 Flux (K.km/s)

Galactic Latitude 0 320° 319° 318° 317° 316° 315° 314° 313° 312° 311° 310° Galactic Longitude

Figure 41. Moment 0 images for l = 310–320◦ calculated over the velocity interval v = +40 to +50km s−1. The grayscale 12CO image runs from 0 to 40 K.km/s, while the 13CO contours are at 1, 6, 11, 16km s−1. None of the other data cubes demonstrate significant emission in this velocity range. 44 Braiding et al. b , , is l F 18 R

M M 2 N 18 10 M . The near and far 2 b 2 H ∆ − d N cm and 21 2 l H ∆ N 18 MB d T 18 MB T F D kpc K 10 N D 2 fwhm is the area of an ellipse with semi-axes arcsec 3 fwhm , are calculated as described in §4.3. Finally we report the mass of each clump, 2 H RAA d N and 2 H V N ∆ b ∆ respectively, calculated using the model in §4.2. The mean and peak clump brightness temperatures are l F block (see Section 4.3). For each clump we provide a Clump ID based upon its Galactic coordinates ∆ ◦ and D 340 N ≤ LSR l ≤ ) distances. F 18 330 deg. km/s arcsec km/s arcsec 10 b indicate the clump FWHM extensions along the Galactic longitude, latitude, and velocity axes respectively. The clump radius, ) and far (M deg. N 18 V l ∆ and respectively; the mean and peak column densities, b ∆ 18 MB , d l T ∆ and O clump statistics within the 18 18 MB C , while T LSR V Clump IDMCO_330.227-0.019MCO_330.394-0.052 330.227MCO_330.410+0.323 330.394 -0.019MCO_330.685-0.377 330.410 -0.052 -42.7MCO_330.685+0.181 Coordinates 0.323 330.685 -41.8 120 330.685MCO_330.710-0.419 -0.377 -97.0 218MCO_330.802+0.231 86 0.181 V 330.710 187 -67.6 129MCO_330.827-0.510 330.802 -0.419 -63.0 374MCO_330.894-0.377 1.0 76 0.231 330.827 1.0 115 280 -65.7MCO_330.894-0.477 330.894 -0.510 -45.5 209 1.5MCO_330.902-0.352 78 76 330.894 -0.377 107 3.3 343 -64.8 213MCO_330.910+0.156 330.902 -0.477 229 18 -64.8 152 1.0 36MCO_330.944-0.427 330.910 91 -0.352 169 2.3 -66.6MCO_330.977-0.202 71 91 0.156 330.944 1.3 26 -57.4 134 90MCO_331.002+0.315 148 32 74 330.977 -0.427 88 160 -45.5 160MCO_331.052-0.435 331.002 1.6 75 -0.202 3.3 170 3.2 17 -43.6 81 329MCO_331.069+0.248 2.1 94 44 0.315 331.052 11.5 11.6 2.1 71 -92.4 91 106 331.069MCO_331.085-0.052 113 4.7 71 6.8 -0.435 -57.4 247 0.9 112 140MCO_331.102-0.219 0.9 28 10.1 0.248 35 331.085 1.0 137 61 117 8.0 -65.7 220 246 0.9MCO_331.135-0.094 4.6 4.4 40 331.102 -0.052 1.1 1.1 -44.6 178 1.1 215 59MCO_331.152-0.252 3.4 10.3 1.0 10.4 331.135 -0.219 1.3 3.5 154 61 192 -47.3 43 5.9MCO_331.160-0.485 11.4 5.8 1.7 83 331.152 -0.094 1.6 258 1.1 -90.6 33 1.5 1.0MCO_331.160+0.165 4.5 12 71 12.1 331.160 -0.252 68 183 3.2 1.0 22 7.0 63 -47.3 125 7.0 331.160MCO_331.177-0.052 4.5 10.3 2.0 9.2 -0.485 1.2 132 1.1 105 4.6 92 33.5 -87.8 112 156MCO_331.219-0.477 10.3 1.5 13 15.4 0.165 331.177 1.3 186 10.2 17 18.9 -71.2 345 5 9.3 55 104 9MCO_331.227-0.294 33 86 331.219 -0.052 0.0 154 1.3 109 171 7.6 2.2 38.5 -78.6 192 137 4.1MCO_331.227+0.415 2.3 1.1 13.3 49 3.4 491 331.227 -0.477 123 14 62 6.2 154 -46.4 10.7 75 115MCO_331.310-0.202 331.227 16.1 1.1 2.3 15.8 79 66 11.4 -0.294 107 129 2.2 1.9 76 -72.2 3.3 14MCO_331.327-0.335 20.6 128 67 8.7 83 0.415 577 0.9 331.310 4.1 33.3 3.9 36 18.1 4.6 -50.1 193 11.5 0.9 125 36MCO_331.327-0.385 18 88 -0.202 331.327 10.7 52.4 157 81 -48.2 1.1 76 10.3 205 1.2 1.1MCO_331.327+0.415 395 3.4 32.7 50 75 1.0 331.327 -0.335 1.1 170 24 -90.6 77MCO_331.344+0.131 331.327 1.3 11.5 75 73 118 2.5 1.4 101 9.7 -0.385 61 1.1 259 2.8 21 115 -67.6 7.6 1.4 91 331.344 20.4 68 0.415 82 2.6 381 6.1 1.1 494 13.8 -68.5 3.2 3.5 11.6 149 1.8 91 97 30 12.8 0.131 150 17.5 82.5 14 -47.3 70 242 11.3 29.8 8.8 1.6 5.9 104 1.1 21.7 93 3.5 -46.4 129 8 364 71 45.4 3.4 50 15 95.0 8 1.0 63 11.3 1.1 4.9 9.0 9.0 189 2.2 107 32 708 7 298 10.0 2.1 71 58 66 342 13 1.3 0.9 104 125 18.1 1.8 1.1 94 5.3 1511 21 1.8 487 16.8 14 1.7 4.9 86 6.6 34 93 1.1 1.3 157 1.8 34 9.6 3.5 10.0 28 29.7 3.8 15.0 27 11.4 7.8 77 390 8.2 0.9 70 3.7 210 19 51.9 1.1 33 47.0 98 13.5 0.9 11.2 139 151.5 15 3.6 1.0 6.0 32 1.6 7 175 98 208 11.3 1.1 493 1.0 10 6.4 12.9 8.9 4.7 203 4.7 417 2078 67 17 0.9 7.8 106 10.2 1.3 10.2 3.5 12.2 44.3 1.1 3.6 11.4 13.4 1.0 9.0 1.2 1.2 11 11.4 98 1.9 1.1 6.8 20.6 2.2 20.3 2.0 400 6 1.0 37 24.7 11.4 18.5 1.7 60.3 1.2 7 68 12.2 43.0 44.8 111 5 8.7 22.6 62 140 240 64 17.7 51 653 91 307 969 7 76 and reported in arcsec; thedistances area to A the is cloud that centroidgiven covered are by by listed the in clumpcalculated kpc in at as the both D moment the zero near map; (M and A Table 3 Mopra CO Data Release 3 45 F 18

M M 2 N 18 10 M 2 2 H − d N cm 21 2 H N 18 MB d T 18 MB T F D kpc K 10 N D 2 fwhm arcsec 3 RAA V ∆ b ∆ l ∆ LSR deg. km/s arcsec km/s arcsec 10 b deg. l Continued from previous page. Table 3. Clump IDMCO_331.360+0.006MCO_331.360-0.294 331.360MCO_331.369-0.352 0.006 331.360MCO_331.369-0.444 331.369 -0.294 -49.2MCO_331.410+0.140 Coordinates 331.369 -0.352 -97.0 331.410MCO_331.419-0.035 83 -0.444 -67.6 117MCO_331.435-0.294 0.140 V 331.419 80 -71.2 145 148MCO_331.444-0.369 331.435 -0.035 -46.4 225MCO_331.444-0.369 75 1.1 331.444 -0.294 2.0 311 -84.1MCO_331.444-0.269 138 331.444 -0.369 2.6 136 -87.8MCO_331.469-0.302 50 331.444 -0.369 76 -65.7 81MCO_331.510-0.119 0.8 61 -0.269 331.469 1.4 121 76 -98.8 190MCO_331.535-0.110 18 21 -106.2 331.510 -0.302 90 191 46MCO_331.544-0.294 71 85 331.535 -0.119 1.5 176 83 -71.2MCO_331.544-0.377 331.544 -0.110 1.0 21 2.8 75 23 -89.6 200 55 97 103MCO_331.552-0.310 97 331.544 -0.294 3.7 56 -90.6 330 112MCO_331.560-0.152 6.6 4.7 331.552 -0.377 1.1 173 11.3 66 -66.6 336 293 133MCO_331.660+0.490 1.4 10.2 10 32 -0.310 331.560 8.4 0.9 -99.8 169 184 95MCO_331.685-0.169 331.660 3.5 14 1.1 -0.152 4.9 4.0 1.0 68 -98.8 172 1.0MCO_331.702-0.044 11.4 95 0.490 85 331.685 -101.6 10.0 4.8 12 157 1.7 94 114MCO_331.719-0.269 14 1.7 331.702 -0.169 243 1.6 270 1.1 1.2 84 17 -53.8 23 133 5.6 13.0 1.0MCO_331.744-0.210 4.6 13.2 28 331.719 -0.044 112 226 229 115 -51.9 5.8 9.6MCO_331.752-0.085 2.1 10.4 9.3 22.2 331.744 -0.269 1.2 1.4 161 2.0 17 26.6 -86.9 245 83MCO_331.777+0.431 48 14.0 2.1 25 9.1 15.6 -0.210 331.752 304 1.2 1.0 -51.0 70 6.7 14 7.5MCO_331.785+0.048 331.777 77 89 58 22 -0.085 6.4 125 195 33.9 6.0 1.0 76 -50.1 375 1.4 37MCO_331.794-0.010 331.785 4.9 125 107 2.4 8.2 0.431 1.1 130 13.8 280 6.0 145 -86.9 6.4 50MCO_331.802-0.144 10.1 1.5 9.0 18 97 73 16.9 0.048 1.3 11.7 331.794 50 -56.5 1.0 118 91 61 18MCO_331.877-0.127 1.7 8.9 65 76 1.0 331.802 -0.010 1.0 781 51.0 -48.2 148 1.1 8.2 18.5 101 115MCO_331.885+0.048 4.6 1.7 1.3 331.877 -0.144 66 25 18 274 110 1.2 -54.7 75 1.2 147 86MCO_331.944-0.102 331.885 10.3 1.9 1.4 14.2 2.8 85 41 -0.127 16 6.7 1.2 147 9.0 -51.9 198 6.8 10.7 150MCO_331.944-0.077 7.2 2.6 25.7 0.048 754 331.944 0.0 8.2 1.0 23 -52.8 164 17MCO_332.002-0.160 8.2 17 15.6 77 44 8.1 26.2 22.3 91 71 331.944 -0.102 1.3 7.8 88.2 -90.6 137 69 15.8 83MCO_332.019-0.152 1.4 85 3.9 332.002 -0.077 1.1 40 96.1 1.0 26 183 -53.8 26 93 913 43MCO_332.052-0.010 3.8 1.6 95 1.0 26 11.0 22 332.019 -0.160 115 163 8.5 24 -98.8 129 670 2085 MCO_332.060+0.481 11.1 1.1 1.9 27 1.3 -0.152 332.052 5.8 99 3.8 2.0 1.5 38 -51.9 118 124 43 1.4 84 1480 19.3 104 102 MCO_332.110-0.435 332.060 15.0 30 -103.4 -0.010 1.0 11.2 11.3 8.9 166 38 9.2 104MCO_332.144-0.110 64 0.481 1.6 34 148 332.110 2.4 3.7 28.6 158 17 1.6 51 142 -89.6 127MCO_332.152+0.081 5.8 1.8 24.8 1.2 13.3 1.0 34 136 332.144 -0.435 11.3 16.9 -43.6 147 131 4.1 78 332.152 1.0 3.6 11.0 125 -0.110 86 9.2 121 2.5 2.2 78 129 -59.3 122 48 33 38.7 1.3 10.9 1.1 11.4 222 2.3 0.081 30.8 11.7 149 -53.8 205 44 0.9 46 4.0 19 82 9.8 74 79 1.1 1.8 21 115 1.6 1.1 46 -89.6 302 121 3.8 11.0 29.5 133 29 1.2 13.9 3.9 186 22.0 17 278 163 1.5 41 1.6 11.2 1.8 50 1.1 56 104 29 247 11.1 2.5 213 52 28.1 7.2 11.2 32 7.2 1.0 3.9 3.4 6.0 34 1.6 1.3 456 24 99 12.3 74 2.0 123 22 11.1 22.7 11.0 63 1.6 12.2 9.0 82 6.6 199 3.8 2.3 31 48 202 22 1.1 7.4 54 50 157 14 9.4 22.2 124 11.2 1.0 20.9 8.4 7.7 5.9 1.8 530 58 77 102 18.9 44.5 1.0 33 29 1.3 1.0 78 264 14.6 9.1 1.1 3.4 108 21 222 4.2 1.6 9.7 3.9 124 1.2 28.6 11.7 1.0 10.8 1.7 10.0 886 11.1 176 5.9 20.1 8.0 15.4 46 1.4 1.3 25.6 1.2 1.0 9.1 29 13.5 34.6 361 2.3 9.1 2.2 27 1.9 1.0 204 26 18.0 65 20.2 10.4 20.0 227 1.7 221 42.3 48.4 42 31.0 48 15.6 27 76 88 113 32.5 329 493 185 701 443 46 Braiding et al. F 18

M M 2 N 18 10 M 2 2 H − d N cm 21 2 H N 18 MB d T 18 MB T F D kpc K 10 N D 2 fwhm arcsec 3 RAA V ∆ b ∆ l ∆ LSR deg. km/s arcsec km/s arcsec 10 b deg. l Continued from previous page. Table 3. Clump IDMCO_332.185+0.115MCO_332.327-0.127 332.185MCO_332.327+0.490 0.115 332.327MCO_332.327-0.385 332.327 -0.127 -51.0MCO_332.360-0.444 Coordinates 0.490 332.327 176 -51.9MCO_332.394-0.094 332.360 -0.385 -65.7 265 310MCO_332.394+0.106 V -0.444 332.394 154 -51.9 223MCO_332.427-0.510 332.394 -0.094 1.2 -50.1MCO_332.477-0.144 76 68 0.106 332.427 2.1 138 -50.1MCO_332.510+0.323 332.477 -0.510 131 91 -49.2 143 166 1.1 332.510MCO_332.519-0.169 -0.144 201 484 -56.5 132 54MCO_332.552-0.127 0.323 332.519 1.5 127 2.2 361 -51.9 122MCO_332.610+0.023 85 332.552 -0.169 1.7 -48.2 178 147MCO_332.627+0.290 332.610 88 -0.127 2.1 131 217 23 188 58 174 -53.8MCO_332.652-0.202 332.627 3.8 0.023 135 3.8 -49.2 54MCO_332.669+0.265 1.4 11.3 92 11 86 0.290 332.652 264 2.0 -97.0 11.2 187 58 332.669MCO_332.702+0.173 37 -0.202 219 1.0 88 -48.2 138 0.4MCO_332.769-0.477 332.702 68 0.265 1.1 4.6 90 62 142 20 -47.3MCO_332.769+0.048 81 1.6 0.173 10.5 332.769 69 2.0 549 61 3.7 2.0 -51.9 25 235 1.8 3.8 63MCO_332.794-0.019 332.769 74 -0.477 57 11.3 3.7 7.7 3.7 -52.8 116 11.2 1.1 13.0MCO_332.794-0.235 64 0.048 1.0 332.794 136 11.3 11.4 17 130 81 -55.6MCO_332.927-0.269 15.9 115 1.5 34 38.3 1.0 0.9 332.794 -0.019 98 1.7 2.1 -72.2 190 136 59MCO_332.935-0.010 1.3 1.0 21 332.927 -0.235 4.1 10.1 107 3.8 2.9 26 61 112 -97.0 144 1.2 1.9MCO_332.944-0.027 54 -0.269 332.935 11.0 2.2 122 11.2 2.3 18.7 61 102 1.8 -45.5 201 21.4 914 MCO_332.969-0.302 232 12 3.6 8.3 332.944 -0.010 81 1.7 24 16.0 -61.1 262 1.2 47MCO_332.969-0.052 45.0 12 1.1 8.7 88 61 11.4 332.969 -0.027 122 21 1.3 3.7 16.5 198 -50.1 3.9MCO_333.010-0.444 36.1 332.969 -0.302 2.2 108 13 11.4 18.6 3.3 72 1.9 12 62 -71.2 109 11.1 0.9 47 110 MCO_333.019-0.510 57 333.010 -0.052 85 14.9 15 13.9 6.4 56 -52.8 149 114 6 85 37MCO_333.019-0.444 1.2 568 66 1.2 333.019 -0.444 1.0 1.4 212 3.6 3.6 -50.1 183 131 1086 27.9MCO_333.027-0.494 1.0 27.6 23 8.7 518 23 78 -0.510 333.019 141 11.5 2.2 49 11.5 -57.4 138 292 5.9 1.8MCO_333.027-0.144 1.5 3.8 333.027 -0.444 61 3.9 28 1.7 1.0 16.5 57 72 -62.0 113 100 15.2MCO_333.044-0.419 1.1 10.9 1.1 11.3 88 333.027 -0.494 11.2 166 4.0 2.4 36 189 118 -54.7 198 MCO_333.052-0.077 40.3 486 16 1.2 29.5 74 333.044 -0.144 11.1 1.6 2.1 6.3 24 -55.6 100 1.5 0.9 4.9 90MCO_333.077-0.469 1.0 70 6 333.052 -0.419 168 1.7 9.1 12.5 58 17 -43.6 153 135 10.5 10.2 22MCO_333.085+0.015 1.1 8.8 25 -0.077 333.077 1.2 1.5 20 -52.8 100 109 90 89MCO_333.127-0.510 333.085 2.5 14.0 30.2 58 551 35 15.9 -0.469 172 0.9 100 2.5 2.1 1.1 -43.6 189 126 3.5 7.3MCO_333.135-0.427 9.7 23 0.015 25 333.127 4.3 3.5 13.5 19 33 161 -55.6 61 11.6 107 32 168 1.2MCO_333.160-0.102 58 2.2 12.9 7 333.135 -0.510 10.8 3.8 21.9 111 0.1 -46.4 145 4.9 31.5 340 3.9 146 16.5 1.2 36 333.160 -0.427 11.4 8.3 123 36 3.6 -57.4 209 44 1.0 39 10.3 30 79 71 11.2 6 -0.102 42 44.5 36 -52.8 248 13.4 1.7 0.9 76 48 3.8 0.9 1.3 251 95 0.9 151 4.2 3.9 1.1 -90.6 244 150 42 413 14.7 11.4 48 268 18 42 1.1 20 11.0 351 217 7.6 72 4.4 1.2 1.7 790 0.9 29.6 78 52 1.0 166 4.0 5.7 395 8.4 10.8 1.2 11.8 86 13.3 8.9 4.1 11.1 4.1 19 40 86 13 1.5 18.0 96 1.1 163 11.1 2.5 1.7 29.8 74 18.2 15 3.4 11.4 1.2 141 228 3.9 14.3 84 11.8 1.9 17 1.4 27 70 95 9 23.8 275 163 23 11.2 1.8 95 15.5 29.6 3.4 0.9 238 4.1 2.7 19.8 584 117 104 1.1 18 81 11.8 33.0 24 166 11.1 44.3 34 1.2 43.2 4.2 436 164 1.7 3.5 3.9 1.0 80.6 1.8 47 239 11.0 5.9 18.8 11.6 54 5.9 11.3 153 1.4 283 4.4 1.1 61.6 419 9.3 1.0 1.6 1142 7.5 69.5 8.3 2.5 161.1 1.0 91 1.2 4.7 19.5 15.1 5 53.4 434 753 1.7 7.8 70.2 235.1 3252 65 13.5 8 14.5 124 584 36.2 4843 95 870 7 491 1213 79 Mopra CO Data Release 3 47 F 18

M M 2 N 18 10 M 2 2 H − d N cm 21 2 H N 18 MB d T 18 MB T F D kpc K 10 N D 2 fwhm arcsec 3 RAA V ∆ b ∆ l ∆ LSR deg. km/s arcsec km/s arcsec 10 b deg. l Continued from previous page. Table 3. Clump IDMCO_333.160+0.448MCO_333.177-0.094 333.160MCO_333.185-0.002 0.448 333.177MCO_333.219-0.377 333.185 -0.094 -63.0MCO_333.219-0.327 Coordinates 333.219 -0.002 -47.3MCO_333.219-0.135 77 333.219 -0.377 -48.2 150MCO_333.219+0.356 109 V -0.327 333.219 -51.0 199 115MCO_333.227+0.240 333.219 -0.135 -60.2 249 134 1.1MCO_333.244+0.206 333.227 0.356 2.0 267 -47.3MCO_333.244+0.440 333.244 94 0.240 1.4 -62.0 124 333.244MCO_333.269-0.044 83 0.206 117 4.8 99 -50.1MCO_333.294+0.090 58 85 0.440 333.269 128 22 -50.1 137 43MCO_333.302-0.510 333.294 148 -0.044 1.4 172 -63.9 177 196 51MCO_333.310-0.402 1.7 0.090 333.302 113 143 -70.3 1.0 94MCO_333.310-0.435 27 333.310 -0.510 54 1.2 191 -51.0 90 141MCO_333.310-0.027 4.4 88 333.310 -0.402 84 1.4 3.6 289 -58.4 212 209MCO_333.319+0.206 25 81 10.7 333.310 -0.435 139 1.7 3.7 11.6 308 24 -53.8 259MCO_333.319-0.094 333.319 3.8 -0.027 135 11.5 1.8 21 -51.9 173 131 1.0 61MCO_333.335-0.369 1.0 11.4 0.206 333.319 115 2.1 29 -48.2 253 124 58MCO_333.335-0.260 1.0 33 333.335 -0.094 1.2 145 3.5 1.5 -45.5 1.1 139 4.3 41MCO_333.344-0.452 27 88 84 333.335 -0.369 3.6 10.7 206 4.7 1.4 13.6 141 -89.6 10.9 67MCO_333.369-0.477 1.9 80 4.4 333.344 -0.260 11.6 133 3.8 168 4.2 77 -52.8 103 14.8MCO_333.385-0.335 8.3 29.9 68 14.8 68 10.8 1.2 333.369 -0.452 3.8 11.4 156 -51.0 228 100 1.0 88MCO_333.394-0.135 -0.477 333.385 94 1.5 279 20 4.5 11.4 18.7 170 44.0 33 -55.6 132 165 1.0 1.7 1.0 77MCO_333.402-0.219 1.2 333.394 -0.335 1.4 10.7 4.8 1.0 3.8 -47.3 248 163 117 13.9 91 107MCO_333.427+0.423 1.2 25 344 88 333.402 -0.135 1.3 11.8 1.9 10.4 4.3 11.4 76 186 -49.2MCO_333.485-0.185 333.427 1.0 4.2 85 88 27.4 -0.219 68 2.2 248 12.4 2.0 786 -47.3 232 7.2 19.9 88 111MCO_333.485-0.494 1.0 11.0 1.1 18 116 0.423 333.485 201 1.4 4.0 15.0 4.9 24 -62.0 206 191 28MCO_333.485+0.123 24.4 3.9 19.4 24 333.485 -0.185 127 16 11.2 1.2 -64.8 1.2 1.9 93MCO_333.502-0.144 333.485 9.0 32.9 0.5 11.3 90 88 -0.494 181 187 3.9 21 47 172 13.1 -45.5 13 168 MCO_333.510-0.252 9.4 1.8 30 2.0 0.123 27 333.502 17.7 110 118 65 54 107 1.2 -56.5 194 32 3.7MCO_333.527-0.119 1.0 434 31.9 25.9 -105.3 3.5 85 333.510 -0.144 22.7 194 4.5 76 3.9 267 180 11.5MCO_333.527-0.177 5.8 33 496 2.8 181 11.7 333.527 -0.252 111 1.4 1.2 119 145 67.1 55.5 11.3 23 181 -46.4 68MCO_333.535-0.277 64 24.4 220 1.0 96 333.527 -0.119 9.4 186 4.7 199.5 4.1 -51.9 148 991 1.1 178MCO_333.569-0.052 3.8 1.9 -0.177 333.535 139 296 2.7 67.0 11.1 70 29 -50.1 147 132 99 1.2 354 1208 0.9MCO_333.585-0.310 11.4 0.7 31 333.569 -0.277 2.0 150 3.7 -50.1 145 133 4.8 146 2843 10.7MCO_333.594-0.169 15 31 1.1 333.585 -0.052 3.6 1.1 1.0 183 4.1 11.5 137 168 -51.0 9.9 65.9 1250 71MCO_333.594-0.077 136 57 19.1 333.594 -0.310 11.6 105 2.6 139 -48.2 150 1.7 198.1 7.0 1.4 26.6 1.1 333.594 -0.169 3.6 59 136 3.7 18 58 -48.2 212 198 16.8 1.2 110 11 563 10.8 12.2 -0.077 11.6 133 152 2.2 -47.3 306 405 1.9 4.4 13 4.5 59 4675 3.5 41.4 113 125 1.9 23.1 137 2.9 4.1 -43.6 122 178 10.8 24.8 10.7 0.9 56 25 11.7 144 134 122 7.6 7.0 11.1 182 157 8.5 59 19 71.3 1.1 61 1.0 1.1 1003 158 4.0 1.3 225 65 47 8.2 1.1 13.0 62 179 230 166 3.6 3.0 1.7 7.2 78 1.4 2.8 77 1707 172 167 3.9 11.7 2.5 1.1 2.1 13.3 11 33.2 13.5 60 8.6 134 3.8 11.3 15.7 94 1.2 1.7 25.3 93 112 169 270 3.8 11.4 90.1 17.4 57 12 1.6 40.3 11.4 3.8 8.3 1.9 3.7 128 90 172 17 1.0 122 24 123 11.4 3.4 23.6 11.6 1419 13.7 1.0 3.7 60 104 1.9 35.2 131 894 129 67.6 1.6 11.6 103 1.1 3.6 1.6 14.6 87.8 3.4 11.6 3.8 145 15.6 1.2 77 2.2 36.6 11.8 129 39.0 15.8 31.7 1.1 822 3.1 1109 1.1 54 99.8 18.2 50.4 2.0 46 500 1.8 196 155 21.3 63.8 420 15.5 1743 1538 101 43.8 40.9 998 69 71 716 854 48 Braiding et al. F 18

M M 2 N 18 10 M 2 2 H − d N cm 21 2 H N 18 MB d T 18 MB T F D kpc K 10 N D 2 fwhm arcsec 3 RAA V ∆ b ∆ l ∆ LSR deg. km/s arcsec km/s arcsec 10 b deg. l Continued from previous page. Table 3. Clump IDMCO_333.602-0.219MCO_333.627+0.023 333.602MCO_333.660-0.144 333.627 -0.219MCO_333.660+0.365 0.023 333.660 -49.2MCO_333.660-0.135 333.660 Coordinates -0.144 -85.0 208MCO_333.669+0.031 0.365 333.660 172 -50.1 160MCO_333.677-0.027 333.669 V -0.135 -37.2 193 160MCO_333.685+0.356 0.031 333.677 3.5 139 -89.6 236MCO_333.719+0.348 333.685 -0.027 2.8 -86.9 143MCO_333.744-0.227 333.719 94 0.356 169 2.3 106 -51.9MCO_333.752-0.310 98 0.348 333.744 162 -37.2 0.7 90MCO_333.777-0.094 71 -0.227 333.752 71 185 1.1 -36.3 83MCO_333.785+0.323 66 142 333.777 -0.310 108 120 -48.2 105MCO_333.819-0.152 333.785 132 99 3.8 -0.094 120 565 -51.0 105 96MCO_333.902-0.002 1.8 3.7 0.323 333.819 119 31 153 -89.6 752 1.4MCO_333.910+0.031 5.6 11.5 29 333.902 -0.152 1.7 90 -35.4 3.8 189 294 333.910MCO_333.969+0.156 90 -0.002 9.7 3.9 178 1.2 11.5 -97.0 119MCO_333.977+0.056 333.969 25 41 86 0.031 112 5.2 189 25 -89.6 152 48MCO_334.027+0.323 333.977 1.1 2.7 0.156 1.2 3.0 262 1.7 23 -87.8 178 40MCO_334.035-0.144 334.027 5.8 53 27.4 0.056 12.2 1.3 215 358 22 2.0 -49.2 2.3MCO_334.044-0.052 90 136 31 0.323 334.035 9.4 103 404 16.4 2.9 79.4 -50.1 5.7 1.2 21.8MCO_334.060+0.340 95 27 45 334.044 -0.144 3.9 169 87 271 -63.9 226 150 1.0 33 334.060MCO_334.060+0.023 55.4 1.1 100 9.6 46.0 3.0 -0.052 1.8 11.4 3.0 129 695 201 124 3.7 -89.6 90 1435 MCO_334.060+0.256 334.060 186 0.340 12.2 0.9 1.2 12.3 147 1.1 150 11.6 3.8 -86.9 107 9.4 0.9 0.9 52MCO_334.077+0.223 334.060 0.023 68 71 1357 1.1 557 -59.3 11.4 1.2 106 8.0MCO_334.110-0.319 334.077 1.4 83 82 1.8 15.3 0.256 1.4 1.1 1.4 5.8 68 100 -87.8 14MCO_334.119+0.398 2.9 21.7 81 0.223 1.1 14.8 334.110 85 1.8 123 2.5 52 108 -84.1 241 3.4 12 7.9MCO_334.127+0.315 334.119 9.4 1.0 12.3 14 -0.319 12.9 132 6.2 21.1 54.1 21 -51.0 188 249 2.0 29.8 48 34 334.127MCO_334.127-0.177 23 0.398 188 19.3 1.7 1.8 1.0 1.4 122 148 -49.2 25.1 104.4 17.8 55MCO_334.144+0.231 9.0 44.7 0.315 77 70 334.127 5.8 2.9 25 -61.1 202 90 13MCO_334.144+0.356 334.144 1.3 379 78 30 2.7 53.3 88 -0.177 12 0.4 1.0 32 -63.0 230 220 5.7 56 15 127 9.5 97MCO_334.185+0.048 334.144 3764 17.0 0.231 95 3.7 113 171 3.8 462 8.9 115 162 -88.7 198 0.9MCO_334.219-0.210 334.185 1.2 553 9.6 10 30 0.356 11.5 1.0 4.5 11.5 4114 41.9 1.4 -63.0 164 86 92 19.5MCO_334.252-0.127 99 28 0.048 334.219 10.8 2.4 9.2 0.9 -61.1 149 1.1 1.1MCO_334.302-0.302 1.0 53 57 78 23 -0.210 334.252 5.8 128 44 14 -42.7 281 149 34 188 1.4 20.2MCO_334.327-0.135 1.0 1.1 1022 6.1 334.302 -0.127 1.4 158 1.2 19 135 166 -50.1 5.7 9.5 4.3 51 116 MCO_334.344-0.369 0.0 5.7 334.327 -0.302 1.2 1.6 82 6.6 124 87 341 -87.8 8.9 103 78 11.0MCO_334.394+0.048 6.9 7.3 9.6 1.0 334.344 -0.135 9.6 3.1 182 -49.2 114 5.5 171 334.394 8.5 12.6 30 15.3 33 76 -0.369 80 13.2 1.1 139 1.6 0.9 -87.8 13 117 1.2 1.0 92 99 0.048 3.8 9.8 15.8 176 3.7 2.0 14 18 -87.8 147 61 11 1.9 21 4.4 130 1.0 11.5 8.2 129 1.4 11.6 35 -92.4 36 1.0 97 12.7 0.3 42 10.9 85 85 108 10.6 191 202 38 117 13.8 1.0 52 4.5 8.9 4.4 0.9 27 70 1.1 27.0 239 129 1.1 91 18.0 147 10.8 1.2 67 93 1.3 19 5.8 20.9 4.5 1.1 6.2 30 4.4 1.8 53 90 15 1.4 1.1 10.8 196 117 27 9.5 8.2 1.1 103 10.9 9.0 15.7 49 202 3.4 7.1 3.8 25 1.8 1.2 327 43 14.3 0.9 33 11.9 14.4 33.3 1.1 11.5 72 11.1 35 74 20 2.1 103 1.1 10 1.3 1.8 28 16 37 1.1 5.7 21.6 10.9 17 39 61 19.2 646 5.9 3.7 2.6 270 89 1.8 9.6 5.7 28.0 32 11.6 17.3 44.2 24 13.1 25 7.0 1.1 9.6 190 59 157 5.7 1.0 46.8 31.9 5.9 16 1.4 1.0 345 979 9.6 1.3 107 45 9.4 7.2 1.5 10.5 43 0.9 983 565 1.0 13.5 9.1 19.3 1.0 1.5 21.6 28 16 6.7 9.1 43 156 12.0 78 16.0 123 16 24 44 60 Mopra CO Data Release 3 49 F 18

M M 2 N 18 10 M 2 2 H − d N cm 21 2 H N 18 MB d T 18 MB T F D kpc K 10 N D 2 fwhm arcsec 3 RAA V ∆ b ∆ l ∆ LSR deg. km/s arcsec km/s arcsec 10 b deg. l Continued from previous page. Table 3. Clump IDMCO_334.452-0.252MCO_334.510+0.006 334.452MCO_334.535+0.098 334.510 -0.252MCO_334.627-0.285 334.535 0.006 -42.7MCO_334.660+0.431 Coordinates 0.098 -109.0 334.627 292 334.660MCO_334.669+0.023 136 -0.285 -48.2 210MCO_334.710+0.023 334.669 0.431 V 159 54 -47.3MCO_334.760+0.490 334.710 0.023 3.1 -67.6 124 144MCO_334.810-0.135 334.760 0.023 1.1 188 -33.5 135MCO_334.985+0.431 0.490 334.810 0.7 218 410 -86.9 202 334.985MCO_335.010-0.052 -0.135 149 1.5 -64.8 134 78MCO_335.069-0.444 75 0.431 335.010 1.7 166 -47.3 86MCO_335.102+0.415 118 19 335.069 -0.052 0.9 120 193 -63.9 187 261MCO_335.127-0.469 335.102 23 -0.444 226 158 3.4 -95.2 1.0 45MCO_335.135-0.419 76 0.415 335.127 161 148 1.6 23 12.0 -40.9MCO_335.152+0.148 87 81 335.135 -0.469 -62.0 62 153 68 7.1 335.152MCO_335.177-0.260 1.1 68 1.0 -0.419 61 141 242 90 237 -40.9 175 3.7 1.2MCO_335.202-0.094 0.148 8.2 335.177 3.7 4.7 14 125 -40.0 112 1.7 62 11.6 107MCO_335.235-0.369 85 335.202 -0.260 1.1 11.7 1.6 10.7 -63.9 214 108 1.0 15.0MCO_335.302+0.415 88 36 335.235 -0.094 1.0 2.8 1.3 123 -47.3MCO_335.310-0.369 335.302 93 1.1 28 1.2 47.4 97 -0.369 1.2 12.5 130 1.5 24 78 -46.4 270 1.3MCO_335.444-0.244 109 0.415 5.7 335.310 134 4.6 113 0.9 1.6 2.4 -40.9 335 181 63 7.8 53MCO_335.444+0.123 1.2 19 335.444 -0.369 6.2 10.8 1404 107 13.2 -63.0 9.7 14.9 158 453 57 1.1MCO_335.460-0.252 335.444 3.7 43 14.4 -0.244 124 2.0 1.8 380 -40.9 186 36MCO_335.585-0.219 11.7 1.0 24.9 45.1 8.8 0.9 0.123 4.5 335.460 84 3.8 23 111 -45.5 33 49MCO_335.602+0.181 9.9 91 90 93 10.9 335.585 -0.252 234 0.9 163 1.5 3.3 1.8 -41.8 35 152 1.1 6.1MCO_335.602-0.310 335.602 127 9 -0.219 38 1196 20.7 4.4 2.1 242 12.1 10.8 25 44 119 -43.6 0.9 84MCO_335.660-0.194 1.2 87 359 9.3 7.7 0.181 335.602 83 11.0 156 185 3.3 -45.5 201MCO_335.702+0.190 22.0 0.8 24 158 1.1 86 335.660 -0.310 1.2 155 7.5 3.3 12.1 1.7 12.4 -51.0 1.0 227 77 154MCO_335.744+0.040 335.702 1.1 32 95 -0.194 468 476 12.2 1.7 61 -48.2 131 7.8 76 1.0 13.3MCO_335.760-0.369 335.744 89 1.4 3.7 0.190 1.3 16 4.5 76 125 1.7 13.4 3.6 -45.5MCO_335.769-0.102 2.1 342 150 1.1 11.8 78 13.4 0.040 10.9 10.0 335.760 92 16 10.4 0.5 2.9 -51.9 11.8 18 106 103 133 50MCO_335.810+0.156 31.9 46 170 335.769 -0.369 3.3 1.7 20.9 -48.2 163 1.0 15.9 151 1.0 17 1.4 125 163 335.810MCO_335.827-0.110 23.5 4.5 33 1.0 -0.102 136 12.1 129 34 -40.9MCO_336.119-0.069 1.5 10.9 8.7 39.9 87 36 1.7 0.156 50 335.827 57 1.3 30 0.1 51 141 99 -46.4 337 1.7 102 59MCO_336.127+0.248 1.1 459 11.3 336.119 -0.110 3.3 17.3 3.6 1.1 -51.9 43 36 193 117 8.3 1.4MCO_336.144-0.094 336.127 313 72 9.3 32 97 -0.069 12.1 0.7 11.9 2.0 24.5 182 177 -46.4 60 3.4 97MCO_336.194+0.006 1.6 20 485 15.0 0.248 336.144 -106.2 93 1.3 11.7 31.1 145 30 106 12.1 0.9 336.194 3.5 1.1 10.9 98 56 30 -0.094 113 274 3.6 1.0 -36.3 42 73 19 12.0 25.5 196 35 0.006 99 1.1 1.0 2.0 148 11.9 26.6 1.9 139 575 -42.7 128 41 3.9 42 109 1050 1.1 120 14.6 -40.0 183 43 100 50 11.6 5.9 69 1.4 0.5 1.2 74 3.7 148 1.4 45 115 45 3.6 1.8 36.6 80 579 57 10.8 11.7 7.8 1.1 1.6 1.7 435 69 4.0 107 124 11.9 15.6 3.8 64 0.8 41 15.2 11.5 1.0 90 107 1.6 8.4 3.3 36 5 127 11.7 40.3 1.0 11.6 448 3.7 12.2 83 0.9 25 1.2 1.2 13 16.2 50 85 1.1 1.2 41 11.8 68 20.6 4.0 1.0 60 167 9.8 2.2 28 23 11.6 6.6 1.5 486 68 1.0 29 3.7 13.8 25 1.3 80 21.6 304 6.6 11.9 7.5 1.2 14 1.2 8.1 29.4 221 3.1 8.9 36 18 8.9 12.8 12.5 1.0 2.4 7.0 11 3.5 33 19.7 176 16 14.2 1.1 12.1 1.0 1.2 19 13.6 123 283 3.3 30 41.8 1.5 183 6.5 1.0 1.5 12.3 19 401 10.1 68 11.0 7.8 1.2 195 1.0 21.6 578 17.3 6.7 14 1.3 49 13.9 144 16 8.7 89 268 14.6 8 6 97 83 50 Braiding et al. F 18

M M 2 N 18 10 M 2 2 H − d N cm 21 2 H N 18 MB d T 18 MB T F D kpc K 10 N D 2 fwhm arcsec 3 RAA V ∆ b ∆ l ∆ LSR deg. km/s arcsec km/s arcsec 10 b deg. l Continued from previous page. Table 3. Clump IDMCO_336.202+0.190MCO_336.252+0.190 336.202MCO_336.277-0.019 336.252 0.190MCO_336.277+0.406 0.190 336.277 -46.4MCO_336.285+0.181 336.277 Coordinates -0.019 -48.2 149 336.285MCO_336.327+0.181 0.406 100 146 -42.7MCO_336.369+0.190 336.327 0.181 -113.6 V 107 433MCO_336.369-0.035 336.369 115 0.181 1.4 -47.3 160MCO_336.410+0.198 0.190 336.369 1.7 96 -48.2MCO_336.419-0.269 336.410 93 -0.035 135 1.2 -48.2 106MCO_336.485+0.048 121 0.198 336.419 -128.3 0.0 103 123 96 58MCO_336.502+0.131 336.485 -0.269 129 153 -48.2 178 1.8MCO_336.594+0.098 336.502 29 0.048 130 1.5 111 -89.6 68 74MCO_336.619+0.165 336.594 0.131 -131.0 68 1.3 115 107 100MCO_336.710+0.231 336.619 3.3 14 0.098 3.7 -41.8 84 34 94 218MCO_336.752-0.235 336.710 81 32 0.165 120 11.9 1.7 -41.8 129 3.8MCO_336.827+0.015 91 121 3.5 28 0.231 -103.4 336.752 35 45 11.8MCO_336.827+0.123 336.827 1.1 1.3 50 75 12.1 -0.235 107 46 -74.9 61 35 7.2 1.8MCO_336.835-0.210 336.827 109 0.015 1.2 2.5 118 1.1 41 -98.8 36 3.7 0.4MCO_336.852+0.265 72 0.123 -115.4 57 8.4 68 336.835 13.7 11.8 3.8 0.4 53 1.8MCO_336.869+0.281 336.852 103 76 2.0 79 -0.210 3.8 1.5 -83.2 70 14 1.0 11.8MCO_336.877-0.202 336.869 16.5 38.8 6.7 79 0.265 40 1.2 11.8 54 8.0 20 -78.6 1.4MCO_336.877-0.019 94 73 70 0.281 -100.7 336.877 1.2 33.9 1.1 3.8 6.7 47 20 109 70 1.8MCO_336.885-0.027 1.2 16.2 27 -0.202 336.877 1.5 11.8 87 15 -69.4 85 6.2 1.5 1.6MCO_336.910-0.044 15.9 30 488 1.0 24 90 79 15 336.885 -0.019 5.8 1.7 31 -83.2MCO_336.910-0.177 14.9 1.1 64 52 30 6.8 3.0 336.910 -0.027 36.2 289 11.3 1.5 7.9 20 61 163 -74.9 9.8MCO_336.910+0.098 1.3 17 380 68 3.4 336.910 -0.044 23.6 65 1.7 13.3 23 6.8 100 -77.7 203 1.4MCO_336.927-0.202 336.910 24.6 31 12 20 3.4 12.2 0.9 -0.177 -122.8 15.3 93 14 134 6.4MCO_336.952-0.252 26 38.5 23 89 1.0 0.098 12.2 1.5 83 336.927 103 308 2.5 32 -74.0 1.0 1.0MCO_336.985+0.431 33.1 27 28 126 58 5.1 9.2 119 -0.202 336.952 254 2.8 13 -81.4 22 211 86 1.3 1.2MCO_336.985-0.035 336.985 310 16 10.5 6.4 -0.252 1.3 116 35 66 11 119 -81.4 105 6.2 10.2 1.0MCO_336.994-0.144 3.2 72 0.431 7.2 336.985 1.9 103 26 2.2 12.3 -73.1 6.8 1.0 42MCO_337.002+0.106 336 14 124 97 31 9.4 20.9 336.994 -0.035 1.2 2.5 -54.7 5.5 8.4 223 8.7 108 33 337.002MCO_337.044-0.085 14 11.7 -0.144 -122.8 1.4 13 5.3 63 166 10.1 1.0 183 9.8 41 1.1 94MCO_337.119-0.019 15.4 1.1 0.106 6.3 37 337.044 -118.2 171 51 10.4 10.6 120 13 151MCO_337.135-0.152 39 18.1 1.0 1.3 7 28 337.119 -0.085 196 86 0.8 5.5 2.7 -79.5 41 4.9 9.3 72 1.8 20.3 1.0 45MCO_337.152-0.410 76 7 11.8 337.135 -0.019 -119.1 1.6 10.2 5.1 258 10.8 35 1.7 15.7 27MCO_337.177-0.060 88 2.8 84 0.9 337.152 -0.152 -116.3 522 1.3 24 10.5 18 102 20.5 66 28 20.2 88 5.2 1.2 86 28.7 1.1 337.177 -0.410 164 148 70 136 55 -76.8 1.2 102 9.8 7.0 10.4 1.4 1.1 175 14 45.6 24 -0.060 137 23 2.9 5.1 2.1 -43.6 1.5 59 52 28 4.9 95 8.7 20.0 7.0 1.1 96 10.6 1.7 17.7 -67.6 235 13.1 72 2.3 192 54 5.4 68 128 145 19 13.2 16.7 70 190 109 1.1 26 1.9 51.4 1.0 211 23.4 79 247 10.2 105 5.0 14 278 5.4 67 2.6 21.5 34.6 148 140 16 100 1.7 4.2 10.6 1.8 1.5 99 7.7 10.2 0.9 18 11.5 16.8 56.3 68 4.8 13.0 64 116 0.9 243 36 340 7.7 19 83 1.1 1.1 147 90 40.5 1.4 30.8 95 271 7.8 42 7.5 5.3 199 1.2 1.2 8.7 1.7 68 71 101 10.3 124 3.3 377 66 7.8 8.1 6.9 7.3 2.0 12.7 7.8 101 14.4 57 1.0 287 19.4 1.0 0.9 81 13.1 166 8.4 11.5 20 5.2 38.9 1.5 3.6 59.0 4.8 1.7 1.1 10.5 1.2 19 13 12.1 14.0 64 72 10.9 14.2 487 7.5 1.0 2.0 83 34.8 488 1.1 49 35.7 1.1 487 18.7 17.8 1.6 116 530 1.6 2.0 19.8 51.5 27 437 12.9 20.9 530 295 42.9 28.6 31 72.4 397 99 261 49 1348 402 559 Mopra CO Data Release 3 51 F 18

M M 2 N 18 10 M 2 2 H − d N cm 21 2 H N 18 MB d T 18 MB T F D kpc K 10 N D 2 fwhm arcsec 3 RAA V ∆ b ∆ l ∆ LSR deg. km/s arcsec km/s arcsec 10 b deg. l Continued from previous page. Table 3. Clump IDMCO_337.177-0.177MCO_337.185+0.106 337.177MCO_337.194-0.010 337.185 -0.177MCO_337.269+0.390 0.106 337.194 -120.9MCO_337.277-0.244 337.269 Coordinates -0.010 129 -65.7MCO_337.285-0.177 0.390 337.277 115 124 -76.8MCO_337.285-0.010 V -0.244 337.285 -45.5 106MCO_337.294+0.081 53 1.9 337.285 -0.177 107 -89.6MCO_337.319-0.385 337.294 95 -0.010 162 -53.8 1.8MCO_337.344-0.152 79 0.081 337.319 -109.0 97 166MCO_337.419-0.410 1.7 105 -109.9 337.344 -0.385 134 1.1 144 30MCO_337.419-0.310 72 129 -0.152 337.419 -56.5 65MCO_337.427+0.073 0.7 179 93 337.419 -0.410 110 2.5 16 -73.1 119MCO_337.427-0.260 337.427 -0.310 47 1.8 27 463 231 -43.6 38MCO_337.469-0.244 3.4 0.073 76 337.427 106 7.8 194 -44.6 418MCO_337.510-0.302 21 337.469 -0.260 1.3 -62.0 18 131 83 35MCO_337.519+0.173 7.8 135 66 31 55 4.7 337.510 -0.244 6.8 -43.6MCO_337.519-0.127 337.519 56 117 11.0 22 -0.302 5.2 58 3.7 1.1 139 2.0 -62.0 148MCO_337.527-0.210 26 0.173 337.519 75 10.5 12.0 74 197 -54.7 128 0.9 60MCO_337.527-0.244 1.1 1.6 80 337.527 -0.127 5.8 122 222 4.1 -91.5 254 154 27 72 1.0MCO_337.527+0.115 1.1 15.7 1.5 337.527 -0.210 1.1 155 11.6 149 -79.5 9.9MCO_337.544+0.073 337.527 6.7 1.1 6.8 61 74 -0.244 87 1.4 29.1 282 1.6 0.9 -56.5 7.9 337.544MCO_337.594-0.410 155 1.0 80 0.115 1.0 9.0 8.9 11.7 172 4.3 3.5 61 124 5.0 17 -54.7 193MCO_337.619-0.077 9.4 13.8 0.073 -120.9 97 337.594 11.4 73 1.5 10.6 3.6 189 389 1.3 2.7 24.1 1.0 66MCO_337.635-0.102 1.0 12 124 -113.6 337.619 -0.410 20.6 12.1 76 12.1 30 12 97MCO_337.652+0.131 1.2 84 24 149 0.9 7.0 14 337.635 -0.077 1.5 1.3 1.5 37 1.7 -42.7MCO_337.669-0.194 337.652 21 31.3 93 83 1.2 30 -0.102 3.6 10.7 13 11.1 2.5 71 68 13.5 -51.0 1.2 152 MCO_337.669+0.281 2.4 93 37 0.131 337.669 12.1 225 197 12.2 22 4.5 32 63 -58.4 156 62 2.5 12.8 1.1 26.9 337.669MCO_337.677+0.140 28.2 -0.194 119 18 3.6 1.1 122 59 -74.9 11.2 158 14.7 1.0 103MCO_337.685-0.027 337.677 4.5 34.2 250 13 99 128 30.8 0.281 12.1 46 4.2 188 -53.8MCO_337.685+0.490 11.2 30 98 54 1.0 70.4 76 0.140 33 337.685 1.0 1.3 173 236 11.5 224 -42.7 59 63 0.9MCO_337.694-0.077 337.685 3.1 54 49 5.8 -0.027 82 129 0.9 18 18 383 -49.2 4.3 1.3 772 7.4MCO_337.719+0.056 2.4 1.1 423 13 0.490 337.694 1.2 1471 65 181 9.9 11.4 63 -54.7 50 5.3 11.8 2.0 113 337.719MCO_337.735+0.023 0.9 92 14.0 -0.077 1.9 -83.2 10.4 8.0 113MCO_337.794-0.085 337.735 4.2 108 22 13 98 20.4 0.9 0.056 1.2 41 1.6 1.1 6.2 127 33 -49.2MCO_337.835-0.394 11.5 8.9 181 93 0.023 7.8 13.4 0.9 41 337.794 7 -47.3 127 143 1.1 2.9 12 7.0 1.3 11.2MCO_337.860-0.035 337.835 -0.085 147 20.1 1.2 17 27 114 -77.7 7.8 53 149 49 15.0 1.1 13MCO_337.869+0.031 4.4 81 9.4 8.8 337.860 -0.394 1.2 178 128 75 -51.0 49 3.5 68 8 337.869 4.0 2.2 20 1.1 39.1 93 7.1 -0.035 153 4.3 9 19.1 176 -41.8 180 12.2 0.9 131 4.4 11.7 13.7 32 0.031 100 146 4.5 155 27 12.7 -92.4 471 134 1.7 46 218 11.4 31 5.1 1.0 54 1.1 1047 1.6 33.5 1.1 152 -59.3 241 332 10.3 32 10 3.5 10.6 11 129 1.1 3.4 6.8 1.2 73 1.9 12.2 83 31 87 35 61 4.1 17.6 106 2.0 56 0.9 52 1.6 21.3 42 11.6 12.4 51 3.9 7.5 95 145 267 1.0 35 50 4.2 0.5 17.1 11.8 67 1.1 5.5 50.1 298 12.8 1.0 18 67 11.5 1.2 64 0.9 10.2 34.1 279 3.9 50 8.4 1.0 61 71 1.4 93 3.8 1.0 11.8 8.3 29 5 1.0 58 18.8 16.2 76 1.7 11.9 5.3 491 521 66 27 17.9 1.7 1.2 11.1 10.5 1.3 392 4.0 62 3.5 23.8 26 1.1 22.1 14 11.7 2.6 31 12.2 22.9 8.0 1.0 46 112 11 48.4 1.7 35.8 364 1.1 1.1 5.9 19.6 20 25 1.3 20.5 91.4 92 86 10.7 1.8 4.4 2.3 9.9 183 61.1 33 175 699 18.1 11.3 10.1 23.9 1603 1.0 116 68 43.5 1.0 34.3 46 1.3 669 152 85 1.3 181 7.1 1862 730 7.5 11.6 12.5 29 9 82 57 52 Braiding et al. F 18

M M 2 N 18 10 M 2 2 H − d N cm 21 2 H N 18 MB d T 18 MB T F D kpc K 10 N D 2 fwhm arcsec 3 RAA V ∆ b ∆ l ∆ LSR deg. km/s arcsec km/s arcsec 10 b deg. l Continued from previous page. Table 3. Clump IDMCO_337.877-0.027MCO_337.902-0.494 337.877MCO_337.902-0.060 337.902 -0.027MCO_337.919-0.144 337.902 -0.494 -57.4MCO_337.944-0.219 Coordinates 337.919 -0.060 -41.8MCO_337.944-0.077 64 337.944 -0.144 -51.9 203MCO_337.969+0.048 V -0.219 337.944 75 -87.8 172 187MCO_337.977+0.040 337.969 -0.077 -42.7 120 121MCO_337.985+0.048 337.977 0.048 1.5 2.4 100 133 -91.5MCO_337.994-0.119 337.985 0.040 2.1 -40.9MCO_338.002-0.094 75 86 0.048 337.994 157 1.8 -76.8 108 61MCO_338.002+0.098 -124.6 -0.119 338.002 61 194 93 77MCO_338.027+0.023 338.002 1.4 50 12 -0.094 88 -87.8 99MCO_338.027-0.052 338.027 0.098 27 1.6 3.9 54 100 -52.8 119MCO_338.044+0.065 78 0.023 78 31 338.027 15 -74.0 165MCO_338.060-0.002 338.044 3.5 1.5 -0.052 136 1.4 57 -47.3 19 63 267 66 4.3MCO_338.102+0.156 65 12.2 0.065 338.060 181 -56.5 50 11.4 59MCO_338.110-0.085 338.102 4.1 126 13 -0.002 2.0 3.6 48 -72.2 143 1.1 90MCO_338.119-0.169 5.7 11.7 60 24 0.156 0.9 338.110 -40.9 1.6MCO_338.202-0.510 10.1 84 110 2.2 25 66 338.119 -0.085 3.6 2.5 7 0.9 128 16 -34.4 63 193 1.0MCO_338.285-0.485 15.6 338.202 -0.169 12.2 3.5 70 1.0 107 258 -74.0 5.9 51MCO_338.294+0.106 1.0 1.2 13 74 7.1 338.285 -0.510 102 12.3 40.6 112 28 -89.6 1.0 338.294MCO_338.377-0.419 1.4 64 9.9 1.6 -0.485 9 9.0 3.9 17 12.0 -38.1 32 7.8 139MCO_338.377-0.002 1.0 91 0.106 65 63 338.377 1.6 2.2 9.5 5.2 87 14 1.0 -38.1 172 18.7MCO_338.385+0.165 4.1 7.8 338.377 -0.419 10.0 228 1.5 10.5 55 72 -37.2 793 13 204 7 5.7 21.5MCO_338.444+0.006 338.385 26 11.6 73 81 1.1 -0.002 1.0 163 18 18.5 306 -40.0 10.1 1.2 97 21.4MCO_338.460+0.015 338.444 0.9 16 110 0.165 5.1 1.8 3.8 42 1.9 48 148 0.9 9.3 -40.0 340 145 MCO_338.544-0.019 338.460 43.7 21 30 0.006 10.7 1.0 1.9 11.9 157 11 1.2 -34.4 70 109 130 MCO_338.552-0.194 1.7 13.8 83 1.3 0.015 338.544 4.3 12.9 4.0 123 18 57 11.6 -28.9 3.5 58 0.9 1.2 123 MCO_338.577+0.040 1.0 71 15 -0.019 338.552 11.5 1.3 52 8.4 -41.8 115 38 5.0 12.3 18 25.6 48MCO_338.602-0.010 338.577 718 17.1 123 11 9.3 76 -0.194 1.0 164 1.3 125 135 10.7 -97.0 3.1 0.9MCO_338.635-0.460 17.5 0.040 1.3 338.602 -120.0 1.9 87 159 17 50 103 10 18.9 18 120 9.4 85 12.7 1.1 111MCO_338.660+0.148 9.9 0.9 338.635 -0.010 1.0 2.8 16 -21.6 32 115 76 3.1 5.1 79 338.660MCO_338.677-0.335 3.3 17.5 87 -0.460 17 21.6 0.9 4.5 41 58 -24.3 119 1.2 5.8 10.7 31.6 142 7.0MCO_338.744-0.360 68 257 12.5 25 63 0.148 338.677 106 1.7 -40.9 126 10.0 10.5 123.6 18 116 1.2MCO_338.769+0.465 21 3.3 11 52 12.3 0.9 338.744 -0.335 3.3 121 67 1.7 13 -48.2 0.9 130 127 35MCO_338.785-0.469 338.769 11.7 12.5 271 3.4 19.3 0.9 -0.360 12.5 201 147 80 -33.5 46 1.2 81MCO_338.802+0.048 3428 12.4 91 1.4 0.465 1.4 338.785 7 29.1 2.1 1.0 14 -47.3 141 1.0 19 0.9 83 338.802 80 27 49 8.4 21 -0.469 7.9 -65.7 1.0 230 3.4 1.0 14 1.5 89 51 0.048 41 3.1 7.7 22 1.1 2.7 104 61 158 86 13.2 -41.8 174 12.4 1.3 18.7 16.1 1.6 12.7 246 3.5 13.1 -34.4 12.9 123 43 8.0 34 0.1 12 84 0.9 78 15 12.3 39.1 1.2 9.4 100 18 29 0.9 6.1 1.0 58 86 12.3 12 156 19 1.1 2.3 7.3 1.1 20.1 259 63 64 81 50 1.1 9.7 133 14 1.4 23 10.5 0.8 37 7 8.5 2.1 1.6 2.4 13.5 941 2.2 38 21 7.5 116 1.0 56 37 19.6 13.4 25.2 13.7 1.1 35.3 37 500 99 13.1 42 72 3.5 113 1.2 126 64.2 1.0 39 0.9 3.9 6 12.3 1.7 15 16 41 8.8 3.9 4 11.9 3.0 11.9 1.4 64 42 1.1 0.9 356 12.0 76 14.0 12.8 12.6 1.0 4.8 24.1 767 67 22 8.8 49 1.1 1.0 11.1 1.0 30 30.9 1.4 3.6 3.1 60 13.9 7.1 1.3 12.3 1.2 1.2 12.7 11 76 8.0 12.2 82 8.0 2 6.2 1.0 2.0 1.0 343 14.0 20.0 14.6 7 1.1 1.6 84 7.8 13 44.2 12.3 29 6.8 90 117 5 27.0 85 281 11.8 455 21 92 6 356 73 Mopra CO Data Release 3 53 F 18

M M 2 N 18 10 M 2 2 H − d N cm 21 2 H N 18 MB d T 18 MB T F D kpc K 10 N D 2 fwhm arcsec 3 RAA V ∆ b ∆ l ∆ LSR deg. km/s arcsec km/s arcsec 10 b deg. l Continued from previous page. Table 3. Clump IDMCO_338.827+0.431MCO_338.835-0.344 338.827MCO_338.844+0.398 0.431 338.835MCO_338.852-0.485 338.844 -0.344 -60.2MCO_338.894+0.348 Coordinates 0.398 338.852 -122.8 338.894MCO_338.910+0.373 90 -0.485 150 -59.3MCO_338.910+0.490 338.910 0.348 V 159 82 -38.1MCO_338.919-0.510 338.910 90 0.373 -57.4 198MCO_338.919-0.435 2.3 0.490 1.1 338.919 97 103 -27.1 122MCO_338.969+0.240 338.919 -0.510 112 -65.7 149 338.969MCO_338.977-0.219 120 1.8 -0.435 1.2 74 156 -38.1MCO_338.994+0.406 93 0.240 338.977 1.1 45 -40.0MCO_339.052-0.277 338.994 17 62 96 -0.219 110 93 -57.4 317 2.6MCO_339.052+0.123 0.406 339.052 -118.2 82 124 100 76 2.1 38 75MCO_339.085-0.160 339.052 27 -0.277 235 23 -59.3 113MCO_339.102+0.123 66 7.5 18 0.123 339.085 144 1.5 2.0 303 4.5 -44.6 339.102MCO_339.110-0.227 83 41 -0.160 76 27 8.4 -82.3 308 11.3 251 0.4MCO_339.119-0.285 1.1 0.123 -120.0 339.110 117 3.3 22 36 4.5 81 280MCO_339.169-0.410 75 1.0 1.1 103 339.119 -0.227 4.2 12.5 -81.4 44 11.4 4.4 43MCO_339.210-0.044 112 124 21 78 339.169 -0.285 1.5 1.4 84 -32.6 1.7 11.5 2.6MCO_339.227-0.010 71 1.0 30 1.3 339.210 -0.410 187 49 13.3 19 -97.0 13.3 13.2 1.8 100MCO_339.235-0.435 75 4.8 339.227 -0.044 1.0 110 77 170 1.8 25 1.2 -40.0 127 2.4MCO_339.277+0.340 29.3 3.5 100 22.1 11.1 339.235 -0.010 1.1 106 -20.6 3.3 19.9 91 1.3MCO_339.460+0.040 339.277 6.4 26 12.4 85 56 85 147 1.6 -0.435 -108.0 293 7.1 12.5 1.0 20 74 1.6MCO_339.485-0.510 339.460 1.5 89 46.0 0.340 4.4 103 8.2 11.0 57 4.5 23 1.0 183 -40.9 222MCO_339.535-0.510 20.4 0.9 8.8 0.040 128 11.5 1.2 17 339.485 1.3 73 11.4 70 -33.5 468 90 15.2 47MCO_339.544-0.152 12 3.7 1.4 74 339.535 -0.510 13.0 46.5 1.3 -19.7 1.0 164 1.2 2.0MCO_339.560+0.073 15 67 26 12.1 1.0 305 68 339.544 -0.510 1.7 12 165 1.7 7.7 17 -40.0 27 26.4 15.7 339.560MCO_339.777-0.044 25 89 138 1.4 5.5 -0.152 1.7 2.0 1.0 1.7 63 14 -93.3 222MCO_339.852-0.427 7.2 19.1 0.073 85 10.4 39.5 339.777 28 638 98 17 8.4 10.1 70 -37.2 7.9 1.4 91MCO_339.910-0.102 13 55 69 24 1.5 -111.7 339.852 -0.044 8.7 229 5.5 17 295 1.0 151 16MCO_339.910+0.065 19.8 25.8 15 23 16.0 378 2.3 26 339.910 -0.427 3.0 166 48 9.6 10.4 143 -25.2 0.9MCO_339.952-0.177 339.910 1.7 224 86 109 -0.102 1.4 224 6.1 12.9 15 90 -39.0 187 98 13MCO_339.969-0.444 22.2 1.0 0.065 339.952 12.5 2.4 1.0 241 1.4 20 72 23 -53.8 163 29 3.5 9.8 0.9MCO_339.985-0.135 2.1 138 69 633 -124.6 86 -0.177 339.969 86 53 3.5 146 145 1.2 2.1 12.4 26.7 7.0MCO_339.985+0.090 6.6 16 101 1.0 339.985 -0.444 1.1 188 12.4 51 23 -53.8 109 13.8 11.1MCO_339.994-0.327 339.985 1.5 144 29 564 11.7 1.0 -0.135 9.3 37 111 1.3 99 125 -90.6 1.3 7.9 20.3 0.090 1.1 3.1 0.9 339.994 65 27 2.0 8 142 -54.7 104 1.4 133 1.1 27 48 12.8 7.0 14.1 94 -0.327 2.2 142 132 -26.2 2.1 1.8 1.2 22 10.0 85 97 3.5 130 1.4 127 1.6 13.8 3.3 13.9 28 -38.1 39 1.0 12.4 10.6 63 45 265 14.4 5 12.4 8 14.9 6.7 81 12.6 74 50 1.1 192 41 0.9 28.6 19.4 1.4 16 104 6.0 25.9 1.0 3.6 9.2 41 99 17 1.1 74 7 10.1 113 93 10.0 1.1 1.3 34 42 94 50 3 2.5 1.5 1376 74 3.5 1.0 1.7 11.5 21.3 100 1.0 86 13.4 2.8 4.3 12.5 31 28 135 12.6 6.5 149 1.6 23.4 81 32 56 10 11.7 1.6 7.4 0.9 1.1 11.6 25.4 11.9 4.3 21 12.3 53 170 1.3 32 4 8.5 1.2 11.7 34.1 1.8 71 68 28.4 8 5.9 9 2.4 11.6 156 149 1.0 7.8 4.3 1.2 27 971 10.1 19.7 16 102 11.6 25.7 280 2.6 17.8 1.2 1.9 1.3 12 55.2 13.4 1.1 44 11.0 39 9.3 3.4 6 2.2 80 1.0 1.7 22.5 501 12.5 19.7 14.6 172 13.4 597 1.5 30 1.1 38 29.1 29.5 9.3 226 2.0 61 51 35 16.3 12.7 183 252 21.4 6 152 6 79