BIOL 317 LECTURE NOTES – WEEK 3 SUMMARY BASAL ANGIOSPERMS, BASAL EUDICOTS, FAGALES; PLANT BREEDING SYSTEMS Dichotomous

Total Page:16

File Type:pdf, Size:1020Kb

BIOL 317 LECTURE NOTES – WEEK 3 SUMMARY BASAL ANGIOSPERMS, BASAL EUDICOTS, FAGALES; PLANT BREEDING SYSTEMS Dichotomous BIOL 317 LECTURE NOTES – WEEK 3 SUMMARY BASAL ANGIOSPERMS, BASAL EUDICOTS, FAGALES; PLANT BREEDING SYSTEMS Dichotomous Key - a progressive series of paired alternative statements that lead to the identification of an organism. Keys don’t need to be dichotomous, but usually are - written keys start with a certain bit of information and progress towards an end; interactive computer keys (becoming more widespread) can start with any information. Usually most useful keys are artificial, in the sense that if you draw a dichotomous tree reflecting the branches in the key, the branches would not be monophyletic groups (a key that discriminates between monophyletic groups is called a synoptical key). Leads may pair “this” vs. “that”, or may pair “this” vs. “not this” - read carefully! If more than one character is described in a lead, the most important or consistent difference is usually listed first. The most “primitive” flowering plants may be either herbaceous or woody. These all have monocolpate pollen and two cotyledons. Near the base of the angiosperm tree are three groups of plants that are shrubs or herbs, including Amborella (one sp. from New Caledonia), Nymphaeales (water lilies), and a few odd genera from around the world grouped together in Austrobaileyales (the “ANITA grade”, or A-N-A grade). Also near the base is one lineage (Chloranthaceae) that is mostly herbaceous (along with the water lilies and monocots, these were sometimes called the “paleoherbs” – a polyphyletic group). Finally, there is a lineage called the Magnoliids (incl. Magnoliales and Laurales). Together with the members of the ANITA grade and the Chloranthaceae, these are often referred to as the “basal angiosperms”. The remaining species (more than 90%) of flowering plants belong to two sister clades: the monocots, and the eudicots (or tricolpates). Monocots are monophyletic and derived from dicots - some shared derived characters include: single cotyledon, scattered vascular bundles, parallel leaf venation (with exceptions in a few species). However, they do have pollen with a single aperture. Eudicots are monophyletic and include most of the species of flowering plants. Eudicots share the derived character of pollen grains with three apertures (tricolpate pollen). However, they do have two cotyledons. Within the eudicots; there are three large monophyletic groups and several small groups at the base: “Basal eudicots” refers to the paraphyletic grade of lineages near the base of the eudicot tree (incl. Ranunculales). Caryophyllids - this group is pretty well characterized by some distinctive features, including pigments known as betalains and seed nutritive tissue called perisperm. Flowers are polypetalous. Recent evidence places this group sister to the asterids, but historically the relationships between the caryophyllids and other groups have not been well understood. Rosids in the broad sense - contains most other polypetalous families. This group is difficult to characterize morphologically; defined mostly by the absence of traits found in other groups. Asterids in the broad sense - contains most of the gamopetalous families; characterized best by embryonic and chemical characters. Magnoliids and “basal eudicots” share some traits that are interpreted as “primitive” in angiosperms: gynoecium usually composed of unfused carpels (simple pistils); superior ovary; sepals and petals often not differentiated (tepals). The textbook has more information on each family; see “readings” on the class website for list of suggested reading assignments. Magnoliales - Magnoliaceae (2 gen/220 spp) – Magnolia family. (1) Woody trees or shrubs; may be evergreen or deciduous. (2) Ethereal (aromatic) oils – ‘primitive’ smell when leaves are crushed. (3) simple leaves with pinnate venation and entire margin. (4) large showy flowers, actinomorphic - always bisexual - many parts, spirally arranged; borne on elongate receptacle - sepals and petals poorly differentiated (tepals) - laminar stamens anther and filament poorly differentiated - ovary superior - fruit usually a follicle (often many aggregated together - Magnolia) or samara (Liriodendron). Laurales - Lauraceae - most well-known family of Laurales (very diverse in tropics; 50 gen/2500 spp) – Laurel family. Known for ethereal oils, includes: Laurus nobilis - bay; Cinnamomum zeylandica - cinnamon; C. camphora - camphor; Persea americana – avocado. (1) Trees or shrubs (occasionally vines); may be evergreen or deciduous. (2) Ethereal (aromatic) oils – ‘primitive’ smell when leaves are crushed. (3) Leaves simple (occasionally lobed), alternate and spiral, entire, pinnate veination. (4) Flowers bisexual or unisexual (then dioecious), actinomorphic, usually small - tepals usually 6 - stamens 3-12 (in whorls of 3) - anthers opening by 2-4 flaps (valvate anthers) - one carpel with single ovule - ovary superior - fruit a drupe, or occasionally a one-seeded berry. “Basal eudicots” have tricolpate pollen, thereby placing them firmly with the other ‘higher’ dicots we call eudicots (or tricolpates). Ranunculales - Ranunculaceae (47 gen/2000 spp) – Buttercup family. This family is difficult to characterize, because of tremendous variation, but it can be recognized by a combination of characters. (1) Usually herbs; sometimes vines or shrubs. (2) Leaves simple to deeply lobed, or compound. (3) Flowers highly variable - usually hermaphroditic (with bisexual flowers), some dioecious (with unisexual flowers) - can be radially or bilaterally symmetrical - parts spirally arranged or in whorls of 5 - petals and sepals both showy, or petals reduced/missing; petals often with nectary - ovary always superior - stamens numerous, spirally arranged - carpels usually numerous and separate, occasionally only one - fruit a follicle, achene, or berry. Ranunculales - Berberidaceae (15 gen/650 spp) – Barberry family. (1) Perennial herbs or shrubs (woody derived from herbaceous), evergreen or deciduous. (2) Leaves simple or compound (simple derived from compound). (3) Fl. parts in whorls of 3, or occasionally in 4 - sepals and petals usually 6 each and similar - stamens usually 6 (but may be 4 or many) with valvate anthers with 2 valves - single carpel; stigma often with 3 lobes (sometimes interpreted as a 3 fused carpels) - fruit usually a berry; sometimes a follicle. Rosidae sensu lato – this large group includes a great amount of variety, including two prominent families of north-temperate wind-pollinated trees belonging to the order Fagales. Wind-Pollination Syndrome: a suite of traits that wind pollinated plants often share in common. Results from convergent evolution. Flowers appear before leaves are out; flowers often in catkins (dangling inflorescence of unisexual flowers) or spikelets; plants often with separate staminate and pistillate flowers (plants monoecious or dioecious) – this permits a greater investment in male function than would be possible in hermaphroditic flowers; large number of flowers (especially males); big stamens produce lots of pollen; stigmas large and plumose or roughened (papillate) to catch pollen; ratio of pollen to ovules VERY HIGH (up to 6,000 to 1); individual flowers small and inconspicuous - without parts for attraction; flowers without scents or rewards for pollinators. Fagales - Fagaceae (9 gen/900 spp) – Oak family. (1) Trees or shrubs - mostly northern hemisphere, temperate to subtropical. (2) Leaves simple, alternate. (3) Flowers unisexual; plants monoecious - tepals usually 6; always very reduced - male flowers in catkins; 4-40 stamens per flower - female flowers solitary, or clustered in leaf axils, or at base of catkin - carpels typically 3, connate; surrounded by an involucre of many overlapping bracts; this structure is often described as a “cupule” - ovary inferior - of 3 fused carpels, each with 2 ovules; in fruit, all but one ovule aborts - fruit: nut (animal dispersed). Fagales - Betulaceae (6 gen/157 spp) – Birch family. (1) Trees or shrubs - mostly north temperate. (2) Leaves simple, alternate, usually with doubly serrate margins. (3) Flowers unisexual; plants monoecious - flowers subtended by bracts (1 main bract subtends the inflorescence with typically 2 bracteoles subtending each flower) - flowers of both sexes usually in catkins (sometimes female flowers solitary e.g., Corylus - hazel) - tepals 1-4, sometimes lacking and always very reduced - stamens 1-4 - ovary inferior; carpels 2 fused - fruit: nut (animal dispersed), samara (wind dispersed), or achene. Plant Breeding Systems Plants are incapable of reproductive “behavior” in the sense that animals behave to find and select mates. However, they have evolved a much greater array of reproductive systems because: (1) most flowering plants are bisexual (2) sexual expression can vary over time and space (3) plants rely on intermediary agents to transfer pollen (containing the sperm) (4) plants have less rigidly controlled developmental systems and can reproduce vegetatively from many parts. Asexual reproduction - reproduction of genetically identical individuals from a single parent plant. Rare in vertebrates; although it is quite common in insects (e.g., aphids), where it still involves the reproductive system (parthenogenesis). Asexual reproduction offers a competitive advantage to individuals particularly well-adapted to the local environment, because all offspring will be genetically identical to their parent. Asexual reproduction can be divided into two basic mechanisms: (1) vegetative reproduction - starting new plants from vegetative
Recommended publications
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Full of Beans: a Study on the Alignment of Two Flowering Plants Classification Systems
    Full of beans: a study on the alignment of two flowering plants classification systems Yi-Yun Cheng and Bertram Ludäscher School of Information Sciences, University of Illinois at Urbana-Champaign, USA {yiyunyc2,ludaesch}@illinois.edu Abstract. Advancements in technologies such as DNA analysis have given rise to new ways in organizing organisms in biodiversity classification systems. In this paper, we examine the feasibility of aligning two classification systems for flowering plants using a logic-based, Region Connection Calculus (RCC-5) ap- proach. The older “Cronquist system” (1981) classifies plants using their mor- phological features, while the more recent Angiosperm Phylogeny Group IV (APG IV) (2016) system classifies based on many new methods including ge- nome-level analysis. In our approach, we align pairwise concepts X and Y from two taxonomies using five basic set relations: congruence (X=Y), inclusion (X>Y), inverse inclusion (X<Y), overlap (X><Y), and disjointness (X!Y). With some of the RCC-5 relationships among the Fabaceae family (beans family) and the Sapindaceae family (maple family) uncertain, we anticipate that the merging of the two classification systems will lead to numerous merged solutions, so- called possible worlds. Our research demonstrates how logic-based alignment with ambiguities can lead to multiple merged solutions, which would not have been feasible when aligning taxonomies, classifications, or other knowledge or- ganization systems (KOS) manually. We believe that this work can introduce a novel approach for aligning KOS, where merged possible worlds can serve as a minimum viable product for engaging domain experts in the loop. Keywords: taxonomy alignment, KOS alignment, interoperability 1 Introduction With the advent of large-scale technologies and datasets, it has become increasingly difficult to organize information using a stable unitary classification scheme over time.
    [Show full text]
  • Patterns of Flammability Across the Vascular Plant Phylogeny, with Special Emphasis on the Genus Dracophyllum
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy at Lincoln University by Xinglei Cui Lincoln University 2020 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy. Abstract Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum by Xinglei Cui Fire has been part of the environment for the entire history of terrestrial plants and is a common disturbance agent in many ecosystems across the world. Fire has a significant role in influencing the structure, pattern and function of many ecosystems. Plant flammability, which is the ability of a plant to burn and sustain a flame, is an important driver of fire in terrestrial ecosystems and thus has a fundamental role in ecosystem dynamics and species evolution. However, the factors that have influenced the evolution of flammability remain unclear.
    [Show full text]
  • Phylogeny of Rosids! ! Rosids! !
    Phylogeny of Rosids! Rosids! ! ! ! ! Eurosids I Eurosids II Vitaceae Saxifragales Eurosids I:! Eurosids II:! Zygophyllales! Brassicales! Celastrales! Malvales! Malpighiales! Sapindales! Oxalidales! Myrtales! Fabales! Geraniales! Rosales! Cucurbitales! Fagales! After Jansen et al., 2007, Proc. Natl. Acad. Sci. USA 104: 19369-19374! Phylogeny of Rosids! Rosids! ! ! ! ! Eurosids I Eurosids II Vitaceae Saxifragales Eurosids I:! Eurosids II:! Zygophyllales! Brassicales! Celastrales! Malvales! Malpighiales! Sapindales! Oxalidales! Myrtales! Fabales! Geraniales! Rosales! Cucurbitales! Fagales! After Jansen et al., 2007, Proc. Natl. Acad. Sci. USA 104: 19369-19374! Alnus - alders A. rubra A. rhombifolia A. incana ssp. tenuifolia Alnus - alders Nitrogen fixation - symbiotic with the nitrogen fixing bacteria Frankia Alnus rubra - red alder Alnus rhombifolia - white alder Alnus incana ssp. tenuifolia - thinleaf alder Corylus cornuta - beaked hazel Carpinus caroliniana - American hornbeam Ostrya virginiana - eastern hophornbeam Phylogeny of Rosids! Rosids! ! ! ! ! Eurosids I Eurosids II Vitaceae Saxifragales Eurosids I:! Eurosids II:! Zygophyllales! Brassicales! Celastrales! Malvales! Malpighiales! Sapindales! Oxalidales! Myrtales! Fabales! Geraniales! Rosales! Cucurbitales! Fagales! After Jansen et al., 2007, Proc. Natl. Acad. Sci. USA 104: 19369-19374! Fagaceae (Beech or Oak family) ! Fagaceae - 9 genera/900 species.! Trees or shrubs, mostly northern hemisphere, temperate region ! Leaves simple, alternate; often lobed, entire or serrate, deciduous
    [Show full text]
  • ABSTRACTS 117 Systematics Section, BSA / ASPT / IOPB
    Systematics Section, BSA / ASPT / IOPB 466 HARDY, CHRISTOPHER R.1,2*, JERROLD I DAVIS1, breeding system. This effectively reproductively isolates the species. ROBERT B. FADEN3, AND DENNIS W. STEVENSON1,2 Previous studies have provided extensive genetic, phylogenetic and 1Bailey Hortorium, Cornell University, Ithaca, NY 14853; 2New York natural selection data which allow for a rare opportunity to now Botanical Garden, Bronx, NY 10458; 3Dept. of Botany, National study and interpret ontogenetic changes as sources of evolutionary Museum of Natural History, Smithsonian Institution, Washington, novelties in floral form. Three populations of M. cardinalis and four DC 20560 populations of M. lewisii (representing both described races) were studied from initiation of floral apex to anthesis using SEM and light Phylogenetics of Cochliostema, Geogenanthus, and microscopy. Allometric analyses were conducted on data derived an undescribed genus (Commelinaceae) using from floral organs. Sympatric populations of the species from morphology and DNA sequence data from 26S, 5S- Yosemite National Park were compared. Calyces of M. lewisii initi- NTS, rbcL, and trnL-F loci ate later than those of M. cardinalis relative to the inner whorls, and sepals are taller and more acute. Relative times of initiation of phylogenetic study was conducted on a group of three small petals, sepals and pistil are similar in both species. Petal shapes dif- genera of neotropical Commelinaceae that exhibit a variety fer between species throughout development. Corolla aperture of unusual floral morphologies and habits. Morphological A shape becomes dorso-ventrally narrow during development of M. characters and DNA sequence data from plastid (rbcL, trnL-F) and lewisii, and laterally narrow in M.
    [Show full text]
  • Molecular Basis of Development in Petaloid Monocot Flowers
    Molecular basis of development in petaloid monocot flowers Johansen, Bo; Frederiksen, Signe; Skipper, Martin Published in: Aliso Publication date: 2006 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Johansen, B., Frederiksen, S., & Skipper, M. (2006). Molecular basis of development in petaloid monocot flowers. Aliso, (22), 151-158. Download date: 26. Sep. 2021 Aliso 22, pp. 151–158 ᭧ 2006, Rancho Santa Ana Botanic Garden MOLECULAR BASIS OF DEVELOPMENT IN PETALOID MONOCOT FLOWERS BO JOHANSEN,1 SIGNE FREDERIKSEN, AND MARTIN SKIPPER Biological Institute, University of Copenhagen, Gothersgade 140, DK-1123 Copenhagen K, Denmark 1Corresponding author ([email protected]) ABSTRACT The molecular background of flower development has been intensively studied within core eudicots, and several studies have confirmed the extended ABC model as the molecular background of flower development in this plant group. The core eudicots are characterized as having one copy of each of the B-class genes and at least two copies of A-class genes: one is expressed in floral meristems, the other in inflorescence meristems. In monocots and non-core eudicots the validity of the ABC model is under discussion. Generally, more than one functional copy is found of at least one of the B-class genes. The A-class genes apparently are expressed in meristems of both flower and inflorescence. Morphologically petaloid stamens and styles are well known within the petaloid monocots, whereas the phenomenon is rare in core eudicots. A simple model based on the extra copies of B-class genes can explain the molecular background of petaloid stamens in the monocots; the only requirement is that two copies of the same gene have different expression patterns and are responsible for develop- ment of petals and stamens, respectively.
    [Show full text]
  • Eudicots Monocots Stems Embryos Roots Leaf Venation Pollen Flowers
    Monocots Eudicots Embryos One cotyledon Two cotyledons Leaf venation Veins Veins usually parallel usually netlike Stems Vascular tissue Vascular tissue scattered usually arranged in ring Roots Root system usually Taproot (main root) fibrous (no main root) usually present Pollen Pollen grain with Pollen grain with one opening three openings Flowers Floral organs usually Floral organs usually in in multiples of three multiples of four or five © 2014 Pearson Education, Inc. 1 Reproductive shoot (flower) Apical bud Node Internode Apical bud Shoot Vegetative shoot system Blade Leaf Petiole Axillary bud Stem Taproot Lateral Root (branch) system roots © 2014 Pearson Education, Inc. 2 © 2014 Pearson Education, Inc. 3 Storage roots Pneumatophores “Strangling” aerial roots © 2014 Pearson Education, Inc. 4 Stolon Rhizome Root Rhizomes Stolons Tubers © 2014 Pearson Education, Inc. 5 Spines Tendrils Storage leaves Stem Reproductive leaves Storage leaves © 2014 Pearson Education, Inc. 6 Dermal tissue Ground tissue Vascular tissue © 2014 Pearson Education, Inc. 7 Parenchyma cells with chloroplasts (in Elodea leaf) 60 µm (LM) © 2014 Pearson Education, Inc. 8 Collenchyma cells (in Helianthus stem) (LM) 5 µm © 2014 Pearson Education, Inc. 9 5 µm Sclereid cells (in pear) (LM) 25 µm Cell wall Fiber cells (cross section from ash tree) (LM) © 2014 Pearson Education, Inc. 10 Vessel Tracheids 100 µm Pits Tracheids and vessels (colorized SEM) Perforation plate Vessel element Vessel elements, with perforated end walls Tracheids © 2014 Pearson Education, Inc. 11 Sieve-tube elements: 3 µm longitudinal view (LM) Sieve plate Sieve-tube element (left) and companion cell: Companion cross section (TEM) cells Sieve-tube elements Plasmodesma Sieve plate 30 µm Nucleus of companion cell 15 µm Sieve-tube elements: longitudinal view Sieve plate with pores (LM) © 2014 Pearson Education, Inc.
    [Show full text]
  • BM CC EB What Can We Learn from a Tree?
    Introduction to Comparative Methods BM CC EB What can we learn from a tree? Net diversification (r) Relative extinction (ε) Peridiscaceae Peridiscaceae yllaceae yllaceae h h atop atop Proteaceae Proteaceae r r Ce Ce Tr oc T ho r M M o de c y y H H C C h r r e e a D D a o o nd o e e G G a a m m t t a a d r P r P h h e e u u c c p A p A r e a a e e a a a c a c n n a i B i B h h n d m d l m a l a m m e a e a e e t t n n c u u n n i i d i i e e e e o n o n p n p n a e a S e e S e e n n x x i i r c c a a n o n o p p h g e h g ae e l r a l r a a a a a a i i a a a e a e i b i b h y d c h d c i y i c a a c x c x c c G I a G I a n c n c c c y l y l t a a t a a e e e e e i l c i l c m l m l e c e c f a e a a f a e a a l r r l c c a i i r l e t e t a a r l a a e e u u u u o a o a a a c a c a a l a l e e e b b a a a a e e c e e c a a s c s c c e l c e l e e g e g e a a a a e e n n s e e s e e e e a a a P a P e e N N u u u S u S a e a e a a e e c c l n a l n e e a e e a e a e a e a e r a r a c c C i C i R R a e a e a e a e r c r c A A a d a a d a e i e i phanopetalaceae s r e ph s r e a a s e c s e c e e u u b a a b a e e P P r r l l e n e a a a a m m entho e e e Ha a H o a c r e c r e nt B B e p e e e c e e c a c c h e a p a a p a lo lo l l a a e s o t e s i a r a i a r r r r r a n e a n e a b a l b t a t gaceae e g e ceae a c a s c s a z e z M i a e M i a c a d e a d e ae e ae r e r a e a e a a a c c ce r e r L L i i ac a Vitaceae Vi r r C C e e ta v e v e a a c a a e ea p e ap c a c a e a P P e e l l e Ge G e e ae a t t e e p p r r ce c an u an
    [Show full text]
  • Supplementary Information
    Supporting Information for Cornwell et al. 2014. Functional distinctiveness of major 1 plant lineages. doi: 10.1111/1365-2745.12208. SUPPORTING INFORMATION Summary In this Supporting Information, we report additional methods details with respect to the trait data, the climate data, and the analysis. In addition, to more fully explain the method, we include several additional figures. We show the top-five lineages, including the population of lineages from which they were selected, for five important traits (Figure S1 on five separate pages); the bivariate distribution of three selected clades with respect to SLA and leaf N, components of the leaf economic spectrum (Figure S2), the geographic distribution of the clades where this proved useful for interpretation (Figure S3); the procedure for selecting the top six nodes in the leaf N trait, to illustrate the internal behavior of our new comparative method, especially the relative contribution of components of extremeness and the sample size weighting to the results (Figure S4). Finally, we provide references for data used in analyses. SUPPORTING METHODS TRAITS DATABASE We compiled a database for five plant functional traits. Each of these traits is the result of a separate research initiative in which data were gathered directly from researchers leading those efforts and/or the literature; in most, but not all cases, these data have been published elsewhere. Detailed methods for data collection and assembly for each trait are available in the original publications; further data were added for some traits from the primary literature (for references see description of individual traits and Supporting References below). For our compilation, all data were brought to common units for a given trait and thoroughly error checked.
    [Show full text]
  • Field Identification of the 50 Most Common Plant Families in Temperate Regions
    Field identification of the 50 most common plant families in temperate regions (including agricultural, horticultural, and wild species) by Lena Struwe [email protected] © 2016, All rights reserved. Note: Listed characteristics are the most common characteristics; there might be exceptions in rare or tropical species. This compendium is available for free download without cost for non- commercial uses at http://www.rci.rutgers.edu/~struwe/. The author welcomes updates and corrections. 1 Overall phylogeny – living land plants Bryophytes Mosses, liverworts, hornworts Lycophytes Clubmosses, etc. Ferns and Fern Allies Ferns, horsetails, moonworts, etc. Gymnosperms Conifers, pines, cycads and cedars, etc. Magnoliids Monocots Fabids Ranunculales Rosids Malvids Caryophyllales Ericales Lamiids The treatment for flowering plants follows the APG IV (2016) Campanulids classification. Not all branches are shown. © Lena Struwe 2016, All rights reserved. 2 Included families (alphabetical list): Amaranthaceae Geraniaceae Amaryllidaceae Iridaceae Anacardiaceae Juglandaceae Apiaceae Juncaceae Apocynaceae Lamiaceae Araceae Lauraceae Araliaceae Liliaceae Asphodelaceae Magnoliaceae Asteraceae Malvaceae Betulaceae Moraceae Boraginaceae Myrtaceae Brassicaceae Oleaceae Bromeliaceae Orchidaceae Cactaceae Orobanchaceae Campanulaceae Pinaceae Caprifoliaceae Plantaginaceae Caryophyllaceae Poaceae Convolvulaceae Polygonaceae Cucurbitaceae Ranunculaceae Cupressaceae Rosaceae Cyperaceae Rubiaceae Equisetaceae Rutaceae Ericaceae Salicaceae Euphorbiaceae Scrophulariaceae
    [Show full text]
  • Basal Eudicots
    9/12/2019 Basal Eudicots Dicots in transition between Basal Grade (Dicot) Angiosperms & Core Eudicots • Many stamens and, usu, carpels • Perianth reduced in number, though still poorly differentiated • Parts generally free (some with fusion in G) • Triaperturate pollen. Tricolpate pollen from the Lamiales (USDA Pollen Lab) Ranunculaceae (buttercup family) Herbs to vines or woody vines Lvs simple, compound, to dissected, all with sheathing bases & membranous margins. Perianth whorls poorly differentiated Ca4-5-many Co4-5-many Amany Gseveral-many on convex receptacle 1 9/12/2019 Ranunculaceae (buttercup family) Ranunculus (UMass Extension) (PM Dziuk, 2006) (UMass Extension) Ranunculaceae (buttercup family) Ranunculus 2 9/12/2019 Ranunculaceae (buttercup family) USDA Plants Database Clematis Papaveraceae (poppy family) Herbs (shrubs) often with milky or colored latex. Lvs simple to pinnate to pinnately much dissected with or without sheathing base with membranous margins. Perianth whorls well differentiated between 2 caducous sepals and 4‐8 showy petals. Ca2,caducous Co4-8 Amany or 6 G[2-many],short to absent style 3 9/12/2019 Papaveraceae (poppy family) Papaver orientale Papaveraceae (poppy family) Papaver somniferum 4 9/12/2019 Papaveraceae (poppy family) Papaver somniferum Papaveraceae (poppy family) Chelidonium (celandine‐poppy) 5 9/12/2019 Papaveraceae (poppy family) Sanguinaria http://alivestructures.blogspot.com/ Dicentra 6 9/12/2019 Dicentra Papaveraceae (poppy family) Lamprocapnos http://alivestructures.blogspot.com/ 7 9/12/2019
    [Show full text]
  • An All-Taxa Biodiversity Inventory of the Huron Mountain Club
    AN ALL-TAXA BIODIVERSITY INVENTORY OF THE HURON MOUNTAIN CLUB Version: August 2016 Cite as: Woods, K.D. (Compiler). 2016. An all-taxa biodiversity inventory of the Huron Mountain Club. Version August 2016. Occasional papers of the Huron Mountain Wildlife Foundation, No. 5. [http://www.hmwf.org/species_list.php] Introduction and general compilation by: Kerry D. Woods Natural Sciences Bennington College Bennington VT 05201 Kingdom Fungi compiled by: Dana L. Richter School of Forest Resources and Environmental Science Michigan Technological University Houghton, MI 49931 DEDICATION This project is dedicated to Dr. William R. Manierre, who is responsible, directly and indirectly, for documenting a large proportion of the taxa listed here. Table of Contents INTRODUCTION 5 SOURCES 7 DOMAIN BACTERIA 11 KINGDOM MONERA 11 DOMAIN EUCARYA 13 KINGDOM EUGLENOZOA 13 KINGDOM RHODOPHYTA 13 KINGDOM DINOFLAGELLATA 14 KINGDOM XANTHOPHYTA 15 KINGDOM CHRYSOPHYTA 15 KINGDOM CHROMISTA 16 KINGDOM VIRIDAEPLANTAE 17 Phylum CHLOROPHYTA 18 Phylum BRYOPHYTA 20 Phylum MARCHANTIOPHYTA 27 Phylum ANTHOCEROTOPHYTA 29 Phylum LYCOPODIOPHYTA 30 Phylum EQUISETOPHYTA 31 Phylum POLYPODIOPHYTA 31 Phylum PINOPHYTA 32 Phylum MAGNOLIOPHYTA 32 Class Magnoliopsida 32 Class Liliopsida 44 KINGDOM FUNGI 50 Phylum DEUTEROMYCOTA 50 Phylum CHYTRIDIOMYCOTA 51 Phylum ZYGOMYCOTA 52 Phylum ASCOMYCOTA 52 Phylum BASIDIOMYCOTA 53 LICHENS 68 KINGDOM ANIMALIA 75 Phylum ANNELIDA 76 Phylum MOLLUSCA 77 Phylum ARTHROPODA 79 Class Insecta 80 Order Ephemeroptera 81 Order Odonata 83 Order Orthoptera 85 Order Coleoptera 88 Order Hymenoptera 96 Class Arachnida 110 Phylum CHORDATA 111 Class Actinopterygii 112 Class Amphibia 114 Class Reptilia 115 Class Aves 115 Class Mammalia 121 INTRODUCTION No complete species inventory exists for any area.
    [Show full text]