Reducing CO2 Through the Integration of Renewable Energy and Hydrogen Into the German Steel Industry

Total Page:16

File Type:pdf, Size:1020Kb

Reducing CO2 Through the Integration of Renewable Energy and Hydrogen Into the German Steel Industry energies Article Power-to-Steel: Reducing CO2 through the Integration of Renewable Energy and Hydrogen into the German Steel Industry Alexander Otto 1,2, Martin Robinius 1,2,*, Thomas Grube 1,2, Sebastian Schiebahn 1,2, Aaron Praktiknjo 3,4 and Detlef Stolten 1,2,5 1 JARA-ENERGY, 52425 Jülich, Germany; [email protected] (A.O.); [email protected] (T.G.); [email protected] (S.S.); [email protected] (D.S.) 2 Institute of Energy and Climate Research: Electrochemical Process Engineering IEK-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany 3 JARA-ENERGY, 52074 Aachen, Germany; [email protected] 4 Institute for Future Energy Consumer Needs and Behavior (FCN), RWTH Aachen University, Mathieustr. 10, D-52074 Aachen, Germany 5 Chair of Fuel Cells, RWTH Aachen University, c/o Institute of Electrochemical Process Engineering (IEK-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., D-52428 Jülich, Germany * Correspondence: [email protected]; Tel.: +49-2461-61-3077 Academic Editor: Bin Chen Received: 13 February 2017; Accepted: 17 March 2017; Published: 1 April 2017 Abstract: This paper analyses some possible means by which renewable power could be integrated into the steel manufacturing process, with techniques such as blast furnace gas recirculation (BF-GR), furnaces that utilize carbon capture, a higher share of electrical arc furnaces (EAFs) and the use of direct reduced iron with hydrogen as reduction agent (H-DR). It is demonstrated that these processes could lead to less dependence on—and ultimately complete independence from—coal. This opens the possibility of providing the steel industry with power and heat by coupling to renewable power generation (sector coupling). In this context, it is shown using the example of Germany that with these technologies, reductions of 47–95% of CO2 emissions against 1990 levels and 27–95% of primary energy demand against 2008 can be achieved through the integration of 12–274 TWh of renewable electrical power into the steel industry. Thereby, a substantial contribution to reducing CO2 emissions and fuel demand could be made (although it would fall short of realizing the German government’s target of a 50% reduction in power consumption by 2050). Keywords: power-to-steel; CO2 reduction in steel industry; sector coupling; renewable energy for steelmaking; alternative steelmaking processes 1. Introduction The growth of the global economy and population is strongly associated with a continuous increase in primary energy demand. In 2012, 81% of energy was generated by fossil fuels, which emitted around 30.2 billion tons of CO2 [1]. In its World Energy Outlook 2012 [1], the International Energy Agency (IEA) outlines in the “450 Scenario” that the average increase of global temperature ◦ could be limited to 2 C if CO2 emissions could be reduced to 22 billion tons a year by 2035. This would mean that annual global CO2 emissions must be reduced by approximately 30% from the year 2012 until 2035. As a worldwide leader in climate protection-focused policy, the targets of the German government are more ambitious. In its energy concept 2010/2011, it set out the goal of reducing greenhouse gas emissions in Germany by 80–95% by 2050 against 1990 levels, with a simultaneous reduction of electrical power demand by 25% and primary energy demand by 50% by 2050 against Energies 2017, 10, 451; doi:10.3390/en10040451 www.mdpi.com/journal/energies Energies 2017, 10, 451 2 of 21 2008Energies levels. 2017 The, 10, primary 451 means foreseen for achieving this is the expansion of renewable2 energies,of 21 which are intended to provide 60% of final energy consumption and 80% of power production by 20502008 [2]. Therefore,levels. The theprimary German means landscape foreseen for has achiev seening a continuous this is the expansion expansion of of renewable wind turbines energies, during 2003which to 2015 are from intended 14 to to 45 provide GW and 60% photovoltaic of final energy installations consumption in theand same 80% of time power from production 0.5 to 39 GWby for 2050 [2]. Therefore, the German landscape has seen a continuous expansion of wind turbines during power production [3]. 2003 to 2015 from 14 to 45 GW and photovoltaic installations in the same time from 0.5 to 39 GW for However, both technologies are characterized by fluctuating electrical power provision due to the power production [3]. volatile natureHowever, of wind both andtechnologies solar radiation, are characterized so that thereby fluctuating are times electrical when supply power ofprovision electricity due isto scare and timesthe volatile when nature it is abundant. of wind and To integratesolar radiation, a high so proportion that there are of windtimes andwhen solar supply power of electricity into the energyis system,scare a large-scaleand times when storage it is abundant. solution is To required integrate to a high compensate proportion for of the wind temporal and solar imbalances power into betweenthe productionenergy system, and demand. a large-scale For thisstorage task, solution power-to-gas is required technologies to compensate that for convertthe temporal surplus imbalances power into otherbetween forms of production final energy and such demand. as thermal For this or task, chemical power-to-gas energy (e.g.,technologies hydrogen that or convert synthetic surplus methane) are suitable,power into even other though forms of electrical final energy power such has as ther themal highest or chemical degree energy in energy (e.g., hydrogen [4–6]. The or production synthetic of gasesmethane) using excess are suitable, electrical even power though at electrical times when power more has electricitythe highest than degree needed in energy is produced [4–6]. The offers production of gases using excess electrical power at times when more electricity than needed is different opportunities. On the one hand, the gas can be reconverted into electrical power with gas produced offers different opportunities. On the one hand, the gas can be reconverted into electrical turbinespower or with fuel gas cells turbines during or periodsfuel cells whenduring demandperiods when for electricaldemand for power electrical is higherpower is than higher production. than On theproduction. other hand, On conventionalthe other hand, gas co powernventional plants gas can power be usedplants for can backup be used power for backup to compensate power to gaps in electricitycompensate production, gaps in electricity with the production, gases produced with the beinggases produced used in otherbeing applications,used in other applications, such as fuel for transportationsuch as fuel or for for transportation heating in several or for heating sectors in [ 5several,7,8]. The sectors direct [5,7,8]. or indirectThe direct use or ofindirect electrical use of power fromelectrical renewable power energies from renewable to provide energies heat, cold to provi andde operating heat, cold power and operating across allpower sectors across is alsoall sectors known as sectoris couplingalso known [9], as which sector is coupling shown in[9], simplified which is shown form inin Figuresimplified1. Furthermore, form in Figure synthetic 1. Furthermore, methane or hydrogensynthetic can methane be used directlyor hydrogen as a can feedstock be used in directly the chemical as a feedstock industry in the [10 ].chemical The integration industry [10]. of renewable The integration of renewable energies into different shapes, applications and sectors can lead to a energies into different shapes, applications and sectors can lead to a reduction in CO2 emissions beyond reduction in CO2 emissions beyond the power sector [6,11,12]. Although the step of converting the power sector [6,11,12]. Although the step of converting hydrogen to methane incurs additional hydrogen to methane incurs additional energy (η = 80%) [4,5], an advantage of synthetic methane is η energythat ( it= can 80%) be fed [4,5 directly], an advantage into the natural of synthetic gas grid methane so that existing is that infrastructure it can be fed and directly technologies into the for natural gas gridheat so generation that existing can be infrastructure used. and technologies for heat generation can be used. Figure 1. Principle of sector coupling, description from [9]. Figure 1. Principle of sector coupling, description from [9]. However, renewable power is not always directly convertible, especially in certain industrial However,processes. This renewable is exemplified power by is the not steel always industry, directly which convertible, is mainly dependent especially on incoal certain or coke, industrial not processes.only as This an energy is exemplified source but by also the for steel necessary industry, process which engineering is mainly dependent[13]. In a conventional on coal or blast coke, not onlyfurnace, as an energy coal or sourcecoke serves but as also a reducing for necessary agent, heat process provider engineering and ensures [13 the]. Inmechanical a conventional stability blast furnace,of the coal different or coke layers serves of ascoke a reducingand iron ore agent, inside heat the provider furnace (see and also ensures Section the 4.1). mechanical For the need stability to of reduce CO2 emissions is particularly acute in steelmaking, as it constitutes one of the most energy- the different layers of coke and iron ore inside the furnace (see also Section 4.1). For the need to reduce and carbon dioxide-intensive industrial processes worldwide; Germany, serving as a case study in CO2 emissions is particularly acute in steelmaking, as it constitutes one of the most energy- and carbon dioxide-intensive industrial processes worldwide; Germany, serving as a case study in this paper, is no Energies 2017, 10, 451 3 of 21 exception (see Section3)[ 14]. The literature contains many studies that deal with the overall potential of CO2 reduction in the steel industry in terms of increasing efficiency [15–18]. Fujii and Managi (2015) [19] for example proposed and measured optimal production resource reallocation using data envelopment analysis.
Recommended publications
  • On a Mathematical Model for Case Hardening of Steel
    On a mathematical model for case hardening of steel vorgelegt von Dott.ssa Lucia Panizzi Von der Fakultät II ‚ Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften Dr. rer. nat. sowie der Classe di Scienze der Scuola Normale Superiore di Pisa als Diploma di Perfezionamento in Matematica per la Tecnologia e l’Industria genehmigte Dissertation Promotionsausschuss: Berichter/Gutachter: Prof. A. Fasano (Univerisità di Firenze) Berichter/Gutachter: Prof. D. Hömberg (Technische Universität Berlin) Gutachter: Prof. L. Formaggia (Politecnico di Milano) Gutachter: Prof. M. Primicerio (Università di Firenze) Gutachter: Prof. F. Tröltzsch (Technische Universität Berlin) Gutachter: Prof. P. Wittbold (Technische Universität Berlin) Tag der wissenschaftlichen Aussprache: 05.03.2010 Berlin 2010 D83 i Eidesstattliche Versicherung Hiermit erkläre ich, dass die vorliegende Dissertation: On a mathematical model for case hardening of steel selbständig verfasst wurde. Die benutzten Hilfsmittel und Quellen wurden von mir angegeben, weitere wurden nicht verwendet. ii Erklärung Hiermit erkläre ich, dass die Anmeldung meiner Promotionsabsicht früher nicht bei einer anderen Hochschule oder einer anderen Fakultät beantragt wurde. Teile meiner Dissertation sind darüber hinaus schon veröffentlich worden, welche im Folgenden aufgelistet sind: • D. Hömberg, A. Fasano, L. Panizzi A mathematical model for case hardening of steel. angenommen zur Veröffentlichung in "Mathematical Models and Methods in Applied Sciences" (M3AS), 2009. • P. Krejčí, L. Panizzi. Regularity and uniqueness in quasilinear parabolic systems. angenommen zur Veröffentlichung in "Applications of Mathematics", 2009. iii Compendio Nonostante la disponibilità di numerosi nuovi materiali, l’acciaio rimane il ma- teriale di base della moderna società industriale. L’uso dell’ acciaio con peculiari caratteristiche (durezza, resistenza all’uso, malleabilità etc.) è perciò assai diffuso in molti settori della tecnica.
    [Show full text]
  • UNDERSTANDING and MEASURING DECARBURIZATION Understanding the Forces Behind Decarburization Is the First Step Toward Minimizing Its Detrimental Effects
    22 UNDERSTANDING AND MEASURING DECARBURIZATION Understanding the forces behind decarburization is the first step toward minimizing its detrimental effects. George F. Vander Voort, FASM*, Struers Inc. (Consultant), Cleveland ecarburization is detrimental to crostructure of carbon contents close to the maximum depth of decarburization the wear life and fatigue life of the core may be difficult to discern. The is established. Because the carbon dif- steel heat-treated components. MAD determined by hardness traverse fusion rate increases with temperature ADVANCED MATERIALS & PROCESSES | FEBRUARY 2015 2015 FEBRUARY | & PROCESSES MATERIALS ADVANCED D This article explores some factors that may be slightly shallower than that de- when the structure is fully austenitic, cause decarburization while concentrat- termined by quantitative carbon analysis MAD also increases as temperature rises ing on its measurement. In most produc- with the electron microprobe. This is es- above the Ac3. For temperatures in the tion tests, light microscopes are used to pecially true when the bulk carbon con- two-phase region, between the Ac1 and scan the surface of a polished and etched tent exceeds about 0.45 wt%, as the rela- Ac3, the process is more complex. Carbon cross-section to find what appears to be tionship between carbon in the austenite diffusion rates in ferrite and austenite the greatest depth of total carbon loss before quenching to form martensite and are different, and are influenced by both (free-ferrite depth, or FFD) and the great- the as-quenched hardness loses its linear temperature and composition. est depth of combined FFD and partial nature above this carbon level. Decarburization is a serious prob- loss of carbon to determine the maxi- lem because surface properties are infe- mum affected depth (MAD).
    [Show full text]
  • An Introduction to Nitriding
    01_Nitriding.qxd 9/30/03 9:58 AM Page 1 © 2003 ASM International. All Rights Reserved. www.asminternational.org Practical Nitriding and Ferritic Nitrocarburizing (#06950G) CHAPTER 1 An Introduction to Nitriding THE NITRIDING PROCESS, first developed in the early 1900s, con- tinues to play an important role in many industrial applications. Along with the derivative nitrocarburizing process, nitriding often is used in the manufacture of aircraft, bearings, automotive components, textile machin- ery, and turbine generation systems. Though wrapped in a bit of “alchemi- cal mystery,” it remains the simplest of the case hardening techniques. The secret of the nitriding process is that it does not require a phase change from ferrite to austenite, nor does it require a further change from austenite to martensite. In other words, the steel remains in the ferrite phase (or cementite, depending on alloy composition) during the complete proce- dure. This means that the molecular structure of the ferrite (body-centered cubic, or bcc, lattice) does not change its configuration or grow into the face-centered cubic (fcc) lattice characteristic of austenite, as occurs in more conventional methods such as carburizing. Furthermore, because only free cooling takes place, rather than rapid cooling or quenching, no subsequent transformation from austenite to martensite occurs. Again, there is no molecular size change and, more importantly, no dimensional change, only slight growth due to the volumetric change of the steel sur- face caused by the nitrogen diffusion. What can (and does) produce distor- tion are the induced surface stresses being released by the heat of the process, causing movement in the form of twisting and bending.
    [Show full text]
  • Investigation of Waste Biogas Flame Stability Under Oxygen Or Hydrogen-Enriched Conditions
    energies Article Investigation of Waste Biogas Flame Stability Under Oxygen or Hydrogen-Enriched Conditions Nerijus Striugas,¯ Rolandas Paulauskas *, Raminta Skvorˇcinskiene˙ and Aurimas Lisauskas Laboratory of Combustion Processes, Lithuanian Energy Institute, Breslaujos str. 3, LT-44403 Kaunas, Lithuania; [email protected] (N.S.); [email protected] (R.S.); [email protected] (A.L.) * Correspondence: [email protected]; Tel.: +370-37-401830 Received: 18 August 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: Increasing production rates of the biomethane lead to increased generation of waste biogases. These gases should be utilized on-site to avoid pollutant emissions to the atmosphere. This study presents a flexible swirl burner (~100 kW) with an adiabatic chamber capable of burning unstable composition waste biogases. The main combustion parameters and chemiluminescence emission spectrums were examined by burning waste biogases containing from 5 to 30 vol% of CH4 in CO2 under air, O2-enriched atmosphere, or with the addition of hydrogen. The tested burner ensured stable combustion of waste biogases with CH4 content not less than 20 vol%. The addition of up to 5 vol% of H2 expanded flammability limits, and stable combustion of the mixtures with CH4 content of 15 vol% was achieved. The burner flexibility to work under O2-enriched air conditions showed more promising results, and the flammability limit was expanded up to 5 vol% of CH4 in CO2. However, the combustion under O2-enriched conditions led to increased NOx emissions (up to 1100 ppm). Besides, based on chemiluminescence emission spectrums, a linear correlation between the spectral intensity ratio of OH* and CH* (IOH*/ICH*) and CH4 content in CO2 was presented, which predicts blow-off limits burning waste biogases under different H2 or O2 enrichments.
    [Show full text]
  • 20. Iron and Steel Part II Copy
    USES FOR TYPES OF STEELS • Low carbon steel (0.08 - 0.35 % carbon) is ductile with low brittleness. It is is used for ANCIENT IRON auto body parts, home appliances, tin cans, I beams for construction. AND STEEL • Medium carbon steel (0.35 - 0.5 % carbon) (Part II) is used as crankshaft, gears, railroad axels. (Part II) They are difficult to weld. • High carbon steel (> 0.5 % carbon) is used for railroad wheels and rails, wrenches, steel cable, tools, dies, piano wire etc. BLAST FURNACE CAST IRON (PIG IRON) • Contains 1.5 - 5 % carbon. • Its melting point is 1130 oC. • The metal will shatter with a hard blow. • Carbon in the form of graphite exists as flakes • Graphite serves as a lubricant (excellent bearing material). 1 Cast Grey Iron Blast furnace at Cast Grey Iron Karabük Iron works Cast Gray Iron Graphite flakes THE FINERY CAST IRON OBJECTS THE FINERY Cast cannon 15th. Cent. 2 INDIRECT METHOD OF STEEL BESSEMER PROCESS PRODUCTION (THE BESSEMER PROCESS) Crude cast iron from the blast furnace is remelted in a hearth (the finary) and subjected to a forced draught of air. The excess carbon is oxidized to carbon dioxide. The refined pig iron which is called malleable iron is now ready for final forging. BESSEMER PROCESS FORMS OF IRON CAST IRON Decarburization From Blast Furnace M.P. 1130oC 1,5-4.5 % C Bessemer STEEL Process M.P. 1400o C 0.1-0.9 % C WROUGHT IRON From Bloomery Cementation M.P 1535o C 0.06 % C Carburization 3 DIFFERENCES BETWEEN BLOOMERY ALLOY STEELS AND BLAST FURNACE • Increase in temperature (1300 - 1400oC) • Alloy steel describes steel that contain one or more alloying elements in addition to carbon.
    [Show full text]
  • AISI | Electric Arc Furnace Steelmaking
    http://www.steel.org/AM/Template.cfm?Section=Articles3&TEMPLATE=/CM/HTMLDisplay.cfm&CONTENTID=12308 Home Steelworks Home Electric Arc Furnace Steelmaking By Jeremy A. T. Jones, Nupro Corporation SIGN UP to receive AISI's FREE e-news! Read the latest. Email: Name: Join Courtesy of Mannesmann Demag Corp. FURNACE OPERATIONS The electric arc furnace operates as a batch melting process producing batches of molten steel known "heats". The electric arc furnace operating cycle is called the tap-to-tap cycle and is made up of the following operations: Furnace charging Melting Refining De-slagging Tapping Furnace turn-around Modern operations aim for a tap-to-tap time of less than 60 minutes. Some twin shell furnace operations are achieving tap-to-tap times of 35 to 40 minutes. 10/3/2008 9:36 AM http://www.steel.org/AM/Template.cfm?Section=Articles3&TEMPLATE=/CM/HTMLDisplay.cfm&CONTENTID=12308 Furnace Charging The first step in the production of any heat is to select the grade of steel to be made. Usually a schedule is developed prior to each production shift. Thus the melter will know in advance the schedule for his shift. The scrap yard operator will prepare buckets of scrap according to the needs of the melter. Preparation of the charge bucket is an important operation, not only to ensure proper melt-in chemistry but also to ensure good melting conditions. The scrap must be layered in the bucket according to size and density to promote the rapid formation of a liquid pool of steel in the hearth while providing protection for the sidewalls and roof from electric arc radiation.
    [Show full text]
  • Prima PRO Process Mass Spectrometer No
    APPLICATION NOTE Prima PRO process mass spectrometer No. ?????? Accurate multi-component blast furnace gas analysis maximizes iron production and minimizes coke consumption Author: Graham Lewis, Thermo Fisher Scientific, Winsford, Cheshire, United Kingdom Key words • Top gas analysis • Below burden probe • Gas efficiency • Coke rate • Mass balance • Calorific value • Heat balance • Magnetic sector • Above burden probe Introduction Over a billion tonnes of iron a year are produced in These reduction zones are shown in Figure 1. blast furnaces, representing around 94% of global iron production1. The blast furnace consists of a large steel stack, lined with refractory brick. Iron ore, coke and limestone are dropped into the top of the furnace and preheated air blown into the bottom through nozzles called ‘Tuyeres’. Iron oxides are reduced in the melting zone, or ‘Bosh’, forming liquid iron (called ‘hot metal’) and liquid slag. These liquid products are drained from the furnace at regular intervals, and the blast furnace will run continuously for several years, until the refractory lining needs replacing. A wide variety of chemical reactions take place in the blast furnace. At the elevated temperatures towards the bottom Figure 1 of the furnace, a series of direct reduction reactions take Reduction place; these can be simplified to: profile in the blast furnace FeO + C = Fe + CO At lower temperatures higher up in the furnace, a series of indirect reduction reactions take place, simplified to: FeO + CO = Fe + CO2 Analysis of carbon monoxide (CO) and carbon dioxide Process control requirements (CO2) give vital information on the efficiency of the reduction The advantages of process MS over conventional analysis processes.
    [Show full text]
  • Potential Impacts on the Energy System at the Integrated Steelwork by Changing Injection Coal Types to the Blast
    A publication of CHEMICAL ENGINEERING TRANSACTIONS The Italian Association VOL. 35, 2013 of Chemical Engineering www.aidic.it/cet Guest Editors: Petar Varbanov, Jiří Klemeš, Panos Seferlis, Athanasios I. Papadopoulos, Spyros Voutetakis Copyright © 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-26-6; ISSN 1974-9791 DOI: 10.3303/CET1335162 Potential Impacts on the Energy System at the Integrated Steelwork by Changing Injection Coal Types to the Blast Furnace Joel Orre*,a, Chuan Wanga, Johannes Larssonb, Erik Olssonb a 97512, Luleå, Sweden Swerea Mefos, Box 812, SE- b SSAB EMEA Oxelösund, SSAB SE-613 80, Oxelösund, Sweden [email protected] Pulverized coal is often injected into the blast furnaces (BFs) at the integrated steelworks as reducing agent for the hot metal production. The BF process will behave different depending on the injection coal used. The objective of this study is to investigate how different types of coal will influence the BF, and the total energy system at an integrated steel plant. The major process units covered in the model are coking plant, BF, reheating furnace at the rolling mill and a power plant. They are all linked to each other via the main products as well as process gases (i.e. blast furnace gas (BFG) and coke oven gas (COG)) and oxygen network. At the studied plant, the mixed gas of BFG and COG is used within the coking batteries at the coking plant and hot stoves at the BF. The fuel used at the reheating furnace is COG and oil with high heating values. In total, 13 different types of coal and one biomass charcoal are included in the study.
    [Show full text]
  • CONTROL of DECARBURIZATION of STEEL Paul Shefsiek
    CONTROL OF DECARBURIZATION OF STEEL Paul Shefsiek Introduction Historically, heating steel for forming, forging or rolling, was done in electrical resistance or natural gas heated furnaces. It was inevitable that these furnaces contained Oxygen and Decarburization of the steel surface occurred. This decarburization was either ignored or minimized by coating the steel with “ stopoff “. Also, this decarburization was minimized through the use nitrogen atmosphere furnaces. But, decarburization could not be reduced to acceptable limits until the Chemical Potential of the Carbon in the furnace atmosphere matched the dissolved Carbon in the steel. The Furnace Industry that provides Equipment for the processing of steel, because of the temperature ranges involved, divided itself into two categories, namely, Reheat and Heat Treating. Each has its own special Technology. But, because of this division, quite often one division does not know the Technology of the other. In some cases this has been unfortunate. If the Reheat side of the Industry had the Carburizing Technology of the Heat Treating side, this Technology could have been applied to applications where preventing Decarburizing was a requirement. Therefore, the purpose of the following discussion is to separate out that part of Carburizing Technology that is applicable to preventing Decarburization in Reheat applications. Fundamentals Control of the Decarburization of Steel has been standardized to the monitoring of - The Metal Temperature (Furnace Temperature) - The Atmosphere Concentration of Carbon Monoxide (CO) - The Atmosphere Concentration of Carbon Dioxide (CO2). Knowing the values of these three (3) parameters and the knowledge of - Saturated Austenite in Iron - The Alloy Content of the Steel - The Equilibrium Constant for the Controllable Chemical Reaction between the Steel and the Gas Atmosphere it can be determined if the Atmosphere will prevent Decarburization of the Steel.
    [Show full text]
  • 1.1%Mn--0.05%C Steel Sheets by Silicon Dioxide and Development Of
    Materials Transactions, Vol. 44, No. 6 (2003) pp. 1096 to 1105 #2003 The Japan Institute of Metals Decarburization of 3%Si–1.1%Mn–0.05%C Steel Sheets by Silicon Dioxide and Development of {100}h012i Texture* Toshiro Tomida Corporate Research & Development Laboratories, Sumitomo Metal Industries, Ltd., Amagasaki 660-0891, Japan Decarburization of silicon steel sheets by annealing with oxide separators has been found to cause a high degree of {100}-texture development. Cold-rolled Fe–3%Si–1.1%Mn–0.05%C sheets of 0.35 mm thickness were laminated with separators containing SiO2. They were then annealed under a reduced pressure at about 1300 K in a ferrite and austenite two phase region. It has been observed that carbon concentration notably decreases down to 0.001% during the lamination annealing. Thus an almost complete decarburization of sheet steels was possible, whereas no oxidation of silicon as well as manganese and iron occurred. Associated with decarburization, columnar ferrite grains grew inward from sheet surfaces due to the phase transformation from austenite to ferrite. A {100}h012i texture dramatically developed in the columnar grains. Fully decarburized materials consisted of grains of 0.6 mm diameter, more than 90% of which were closely aligned with {100}h012i orientation. Another aspect of great interest in the grain structure after decarburization was that there existed convoluted domains of a few mm in width, in which dozens of grains were oriented in a single variant of the texture, (100)[012] or (100)[021]. The decarburization is considered to be caused by the thermo-chemical reaction, 2C+SiO2!Si+2CO.
    [Show full text]
  • Combustion of Coal Combustion Is a Rapid Chemical Reaction Between Fuel and Oxygen
    Combustion of Coal Combustion is a rapid chemical reaction between fuel and oxygen. When combustible elements of fuel combine with O2, heat energy comes out. During combustion combustible elements like Carbon, Sulfur, Hydrogen etc combine with oxygen and produce respective oxides. The source of oxygen in fuel combustion is air. By volume there is 21% of Oxygen presents in air and by weight it is 23.2%. Although there is 79% (by volume) nitrogen in air but it plays no role in combustion. Actually Nitrogen carries heat produced during combustion to steam boiler stack. As per combustion theory the quantity of air required for combustion is that which provides sufficient O2 to completely oxidize combustible elements of fuel. This quantity of air is normally known as STOICHIOMETRIC AIR requirement. Different types of coal combustion techniques Combustion of Coal Combustion may be defined as the rapid high temperature complicated chemical reaction of oxygen with carbon, hydrogen and sulphur of coal. These reactions follow mainly four steps 1. Formation of coal-oxygen complexes with evolution of heat. 2. Decomposition of these complexes with the generation of CO2 and H2O molecules and formation of carboxyl (COOH), carbonyl (C=O) and phenolic -OH groups along with more heat generation. 3. Decomposition of these groups to produce CO, CO2, H2, H2O and hydrocarbons such as ethane, ethylene, propylene etc. 4. Decomposition of aliphatic structure (relating to or denoting organic compounds in which carbon atoms form open chains (as in the alkanes), not aromatic rings.) with the formation of CO, CO2 and H2O. In low temperatures, the first step is developed faster than others.
    [Show full text]
  • 7313200007 DEC Permit Conditions FINAL Page 1 PERMIT Under The
    Facility DEC ID: 7313200007 PERMIT Under the Environmental Conservation Law (ECL) IDENTIFICATION INFORMATION Permit Type: Air Title V Facility Permit ID: 7-3132-00007/00028 Effective Date: 06/07/2016 Expiration Date: 06/06/2021 Permit Issued To:CRUCIBLE INDUSTRIES LLC 575 STATE FAIR BLVD SYRACUSE, NY 13209 Contact: James Vreeland Crucible Industries LLC 575 State Fair Blvd Solvay, NY 13209 (315) 470-9234 Facility: CRUCIBLE INDUSTRIES 575 STATE FAIR BLVD GEDDES, NY 13209 Contact: James Vreeland Crucible Industries LLC 575 State Fair Blvd Solvay, NY 13209 (315) 470-9234 Description: Promulgation of 40 CFR 63, YYYYY requires all sources to obtain a Title V facility operating permit. Therefore, a Title V permit must be issued for this source; otherwise the source is a synthetic minor. By acceptance of this permit, the permittee agrees that the permit is contingent upon strict compliance with the ECL, all applicable regulations, the General Conditions specified and any Special Conditions included as part of this permit. Permit Administrator: ELIZABETH A TRACY 615 ERIE BLVD WEST SYRACUSE, NY 13204-2400 Authorized Signature: _________________________________ Date: ___ / ___ / _____ DEC Permit Conditions FINAL Page 1 Facility DEC ID: 7313200007 Notification of Other State Permittee Obligations Item A: Permittee Accepts Legal Responsibility and Agrees to Indemnification The permittee expressly agrees to indemnify and hold harmless the Department of Environmental Conservation of the State of New York, its representatives, employees and agents ("DEC") for all claims, suits, actions, and damages, to the extent attributable to the permittee's acts or omissions in connection with the compliance permittee's undertaking of activities in connection with, or operation and maintenance of, the facility or facilities authorized by the permit whether in compliance or not in any compliance with the terms and conditions of the permit.
    [Show full text]