Evidence for an Earliest Late Carboniferous Divergence Time and the Early Larval Ecology and Diversification of Major Holometabola Lineages Author(S) :Conrad C

Total Page:16

File Type:pdf, Size:1020Kb

Evidence for an Earliest Late Carboniferous Divergence Time and the Early Larval Ecology and Diversification of Major Holometabola Lineages Author(S) :Conrad C Evidence for an Earliest Late Carboniferous Divergence Time and the Early Larval Ecology and Diversification of Major Holometabola Lineages Author(s) :Conrad C. Labandeira Source: Entomologica Americana, 117(1):9-21. 2011. Published By: The New York Entomological Society DOI: http://dx.doi.org/10.1664/10-RA-011.1 URL: http://www.bioone.org/doi/full/10.1664/10-RA-011.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Entomologica Americana 117(1/2):9–21, 2011 EVIDENCE FOR AN EARLIEST LATE CARBONIFEROUS DIVERGENCE TIME AND THE EARLY LARVAL ECOLOGY AND DIVERSIFICATION OF MAJOR HOLOMETABOLA LINEAGES 1,2,3 CONRAD C. LABANDEIRA 1Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA 2Department of Entomology and BEES Program, University of Maryland, College Park, MD 20742, USA Abstract.—Four fossil taxa of earliest Holometabola recently were identified based on a variety of determinative evidence and assigned to a stem-group or a basal lineage within a modern order. One consequence of these new discoveries is that the divergence date between the Holometabola and its sister clade has been set earlier than previously thought on the basis of fossils or molecular phylogenetic evidence. This new date provides a minimal calibration date pegged to the Early Carboniferous–Late Carboniferous boundary, and approximates an absolute date of 318 million years. The four taxa provide new insights into the life habits, particularly feeding habits, of early holometabolan larvae. Additionally, they require an explanation of why there is an 80 million year lag between the origin and the taxonomic dominance of this profound developmental innovation in early terrestrial ecosystems. An earlier lead time is likely present for these earliest holometabolan fossils, which can be extrapolated conservatively to the Late Mississippian, 328 to 318 million years ago. Consequently, a focused investigation on earlier, Late Mississippian strata to search for ancestral holometabolan insects is imperative. INTRODUCTION condition, from both an intrinsic, evolutionary developmental perspective that accounts for the Perhaps the most significant issue in the study origin of the larval and pupal stages, and from the of fossil insects has been the origin of the regional or global environmental conditions Holometabola. The Holometabola, also known during the late Paleozoic that would have selected as the Endopterygota, are characterized by for holometabolous traits (Lameere, 1908; Hin- complete metamorphosis in which a larva hatches from an egg, undergoes several discrete growth ton, 1963; Sehnal et al., 1996; Truman and increments, eventually becomes a pupa, typically Riddiford, 1999; Nel et al., 2007). These three the resting stage, and ends as an emergent adult. features circumscribe the principle issues defining Considerable attention has been devoted toward the early history of the Holometabola, and until understanding three features of the currently recently, there has been minimal progress on all highly speciose Holometabola. First has been the three fronts. However, recent concerted efforts timing of the origin of the Holometabola during have narrowed the compass of possibilities for the late Paleozoic (Hennig, 1969; Kukalova´-Peck, addressing these issues and, in some cases, have 1997; Gaunt and Miles, 2002; Nel et al., 2007; provided surprising results in determining when Wiegmann et al., 2009). Second, there have been the Holometabola initially diversified, the groups many attempts to identify taxa that comprised the or clades that constituted the earliest Holometa- earliest holometabolans, either from morpholog- bola, and the selective advantage of the endopter- ical or evolutionary developmental traits of the ygote condition over other insect developmental modern taxa or from phylogenetic inference based patterns under late Paleozoic and Triassic envi- on fossil occurrences (Hornschemeyer, 2002; ronmental conditions. Whiting, 2004; Nel et al., 2007; Be´thoux, 2008; The distinctive developmental trajectory that Wiegmann et al., 2009). Third, considerable effort defines the Holometabola is contrasted with the has been devoted toward understanding the hemimetabolous condition. Under hemimetabo- processes that resulted in the endopterygote lous development, an egg directly hatches into a series of discrete nymphal stages that largely resemble and give rise to the adult stage, which 3 Email address for correspondence: [email protected] also can be compared to the ametabolous 10 ENTOMOLOGICA AMERICANA Vol. 117(1/2) condition characterized by minimal developmen- more widely supported and accounts for larval tal change. Insects with holometabolous develop- structures such as abdominal prologs as subse- ment currently are the most diverse clade of quently derived structures (Sehnal et al., 1996), the multicellular organisms, consisting of approxi- nymphal replacement hypothesis better explains mately 766,100 described living species (Davis et origin of complete metamorphosis as a modifica- al., 2010), although the total number is probably a tion of embryonic stages (Truman and Riddiford, several-fold multiple of that figure (Kristensen, 1999). The consequence of these profound, 1999). The Holometabola presently constitute developmental changes was that holometaboly about 82.7 percent of all insects, and probably immediately provided larval-feeding and adult- have been the dominant clade of insects since the reproductive adult instars access to very different mid Triassic. When considered as a group, the habitats that often were deployed in a seasonal or Holometabola has invaded every terrestrial and other spatiotemporally exclusive manner—thus freshwater habitat and have made considerable allowing survival of both during mutually unfa- inroads along marginal marine–land and marine– vorable conditions. air interfaces (Wheeler, 1990; Mayhew, 2007). The principal goal of this contribution is to Collectively, they have an amazingly broad provide divergence times from recent evidence dietary repertoire, and include taxa that range that document the presence of holometabolous from detritivores and other decomposers, micro- taxa during the Late Carboniferous Period, herein vores, fungivores to especially herbivores, but also equivalent to the Pennsylvanian Subperiod (Ogg are consumers of animals as predators, parasit- et al., 2008). Four recent reports indicate that oids and parasites and inhabit unusual habitats structurally varied larval and adult Holometa- such as oil seeps, playa lake brines, and hot bola, representing four distinctive taxa, were springs (Wheeler, 1990; Kristensen, 1999; Laban- present during Pennsylvanian times. A related deira, 1999, 2002). objective is to place these taxa in a relevant One of the key features of the holometabolous temporal context and to indicate the early larval condition is the developmental and ecological ecology of the Holometabola. Last, a discussion separation of their life cycle into a feeding stage, ensues regarding the selection pressures affecting the larva, which typically bear working mouth- these earliest known taxa during an interval of parts for the bulk processing food but lack major environmental change. capabilities for mating and flight, versus the reproductive stage, the adult, which is endowed METHODS with locomotory organs of functional wings and Several reports have mentioned Pennsylvanian legs, and genitalia that efficiently complete repro- age Holometabola. Four taxa from these reports duction. The distinctive larva undoubtedly origi- are accepted (Fig. 1) and are positioned on a nated from a hemimetabolous mode of develop- recent, well-supported cladogram (Wiegmann et ment once in the history of insects, albeit in one of al., 2009) as proximal as possible to their inferred two ways (Truman and Riddiford, 1999). The insect order or stem-group (Fig. 2), based on nymphal replacement hypothesis (Berlese, 1913; characters and taxonomic assignments from the Imms, 1937) proposes that the new larval instar respective descriptions. Accordingly, the earliest emerging from the insect egg essentially became a occurrences of many holometabolous clades had feeding embryo and progressively overtook the to be moved downward, earlier in time, to feeding responsibilities of successive nymphal accommodate not only long-known Early Perm- instars, such that nymphal instars were reduced ian fossils, but also the four earlier holometabo- to a single instar that became the pupa in lous occurrences mentioned herein (also see Davis holometabolous development. Alternatively, the et al.,
Recommended publications
  • THE ORIGIN and EVOLUTION of HYMENOPTEROUS INSECTS [P
    THE ORIGIN AND EVOLUTION OF HYMENOPTEROUS INSECTS [p. 24] Chapter 3 EVOLUTION OF THE INFRACLASS SCARABAEONES A. P. Rasnitzyn* Dragonflies [order Odonata] and mayflies [order Ephemeroptera], which have retained a primitive thorax structure (absence of a cryptosternum) but are specialized in other respects, occupy the most isolated position in the infraclass. They are similar to each other in a number of characters, but the nature of the latter does not allow drawing a conclusion about any close relationship of the two orders. Indeed, the primitiveness of the structure of the thorax common to both of them, like any symplesiomorphy, is not evidence of a common origin. The adaptations of the larvae of mayflies and dragonflies to an aquatic way of life are different, and they show, rather, an independent transition to development in water. The loss of the ability to fold the wings as well is connected with different processes in them: in mayflies, with the ephemerality of the imago, the function of which is essentially limited to nuptial flight and oviposition; and in dragonflies, with the metamorphosis of the adult insect to an active aerial predator. It is highly probable that mayflies and dragonflies are independent evolutionary branches. The belonging of dragonflies and mayflies to a common trunk of Scarabaeones, that is, the isolation of them from Protoptera as part of a single trunk with the remaining members of the infraclass (except Protoptera), is confirmed by the metamorphosis of the style of the ninth segment in mayfly males into part of the copulatory organ [endophallus], and in dragonfly females into a sheath of the ovipositor.
    [Show full text]
  • Evolution of the Insects David Grimaldi and Michael S
    Cambridge University Press 0521821495 - Evolution of the Insects David Grimaldi and Michael S. Engel Frontmatter More information EVOLUTION OF THE INSECTS Insects are the most diverse group of organisms to appear in the 3-billion-year history of life on Earth, and the most ecologically dominant animals on land. This book chronicles, for the first time, the complete evolutionary history of insects: their living diversity, relationships, and 400 million years of fossils. Whereas other volumes have focused on either living species or fossils, this is the first comprehensive synthesis of all aspects of insect evolution. Current estimates of phylogeny are used to interpret the 400-million-year fossil record of insects, their extinctions, and radiations. Introductory sections include the living species, diversity of insects, methods of reconstructing evolutionary relationships, basic insect structure, and the diverse modes of insect fossilization and major fossil deposits. Major sections cover the relationships and evolution of each order of hexapod. The book also chronicles major episodes in the evolutionary history of insects: their modest beginnings in the Devonian, the origin of wings hundreds of millions of years before pterosaurs and birds, the impact that mass extinctions and the explosive radiation of angiosperms had on insects, and how insects evolved the most complex societies in nature. Evolution of the Insects is beautifully illustrated with more than 900 photo- and electron micrographs, drawings, diagrams, and field photographs, many in full color and virtually all original. The book will appeal to anyone engaged with insect diversity: professional ento- mologists and students, insect and fossil collectors, and naturalists. David Grimaldi has traveled in 40 countries on 6 continents collecting and studying recent species of insects and conducting fossil excavations.
    [Show full text]
  • Changes to the Fossil Record of Insects Through Fifteen Years of Discovery
    This is a repository copy of Changes to the Fossil Record of Insects through Fifteen Years of Discovery. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/88391/ Version: Published Version Article: Nicholson, David Blair, Mayhew, Peter John orcid.org/0000-0002-7346-6560 and Ross, Andrew J (2015) Changes to the Fossil Record of Insects through Fifteen Years of Discovery. PLosOne. e0128554. https://doi.org/10.1371/journal.pone.0128554 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ RESEARCH ARTICLE Changes to the Fossil Record of Insects through Fifteen Years of Discovery David B. Nicholson1,2¤*, Peter J. Mayhew1, Andrew J. Ross2 1 Department of Biology, University of York, York, United Kingdom, 2 Department of Natural Sciences, National Museum of Scotland, Edinburgh, United Kingdom ¤ Current address: Department of Earth Sciences, The Natural History Museum, London, United Kingdom * [email protected] Abstract The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009.
    [Show full text]
  • S Tefanomioptera Guthorl
    ) THE STRUCTURE AND RELATIONSHIPS OF S TEFANOMIOP TERA GUTHORL 1 ( MIOMOPTERA-PALAEOMANTEIDAE By F. M. Carpenter Harvard University During the past 80 years the Upper Carboniferous strata of the Saar Basin in Germany have yielded many interesting and important insects. Most of these have been described by Dr. Paul Guthdrl of Bildstock (Saar) over a period of nearly thirty years, from 1934 until his death in 1963. Among the last of the fossils which he described were two species belonging to the order Miomoptera — an extinct group which seems to have been related to the Protorthoptera and possibly to the Psocoptera. The order is known mainly from Permian deposits (Kukalova, 1963) but three species described by Guthorl have been found in the Upper Carboniferous beds of the Saar Basin. 2 One of these, Archaemioptera carbonaria Guthdrl, which was placed in a separate family ( Archaemiopteridae) is distinguished , by the oval shape of the hind wing and minor venational features. The other two species, Stefanomioptera hangardi (type-species of the genus) and S. ostertali, were described as having certain vena- tional structures (such as the origin of the media from the radial sector) which are not characteristic of the order and which would actually eliminate the insects from that taxon. Further study of the fossils seemed to me to be necessary, especially in view of their geological age. Both specimens were originally part of Dr. Guthdrl’s personal collection but were eventually located by Dr. Dora Wolan- sky in the Geologisches Institut der Universitat des Saarlandes. I am grateful to Dr. Wolansky and to Professor Dr.
    [Show full text]
  • Evolution of the Insects David Grimaldi and Michael S
    Cambridge University Press 0521821495 - Evolution of the Insects David Grimaldi and Michael S. Engel Index More information INDEX 12S rDNA, 32, 228, 269 Aenetus, 557 91; general, 57; inclusions, 57; menageries 16S rDNA, 32, 60, 237, 249, 269 Aenigmatiinae, 536 in, 56; Mexican, 55; parasitism in, 57; 18S rDNA, 32, 60, 61, 158, 228, 274, 275, 285, Aenne, 489 preservation in, 58; resinite, 55; sub-fossil 304, 307, 335, 360, 366, 369, 395, 399, 402, Aeolothripidae, 284, 285, 286 resin, 57; symbioses in, 303; taphonomy, 468, 475 Aeshnoidea, 187 57 28S rDNA, 32, 158, 278, 402, 468, 475, 522, 526 African rock crawlers (see Ambermantis wozniaki, 259 Mantophasmatodea) Amblycera, 274, 278 A Afroclinocera, 630 Amblyoponini, 446, 490 aardvark, 638 Agaonidae, 573, 616: fossil, 423 Amblypygida, 99, 104, 105: in amber, 104 abdomen: function, 131; structure, 131–136 Agaoninae, 423 Amborella trichopoda, 613, 620 Abies, 410 Agassiz, Alexander, 26 Ameghinoia, 450, 632 Abrocomophagidae, 274 Agathiphaga, 560 Ameletopsidae, 628 Acacia, 283 Agathiphagidae, 561, 562, 567, 630 American Museum of Natural History, 26, 87, acalyptrate Diptera: ecological diversity, 540; Agathis, 76 91 taxonomy, 540 Agelaia, 439 Amesiginae, 630 Acanthocnemidae, 391 ages, using fossils, 37–39; using DNA, 38–40 ametaboly, 331 Acari, 99, 105–107: diversity, 101, fossils, 53, Ageniellini, 435 amino acids: racemization, 61 105–107; in-Cretaceous amber, 105, 106 Aglaspidida, 99 ammonites, 63, 642 Aceraceae, 413 Aglia, 582 Amorphoscelidae, 254, 257 Acerentomoidea, 113 Agrias, 600 Amphientomidae,
    [Show full text]
  • Entomology I
    MZO-08 Vardhman Mahaveer Open University, Kota Entomology I MZO-08 Vardhman Mahaveer Open University, Kota Entomology I Course Development Committee Chair Person Prof. Ashok Sharma Prof. L.R.Gurjar Vice-Chancellor Director (Academic) Vardhman Mahaveer Open University, Kota Vardhman Mahaveer Open University, Kota Coordinator and Members Convener SANDEEP HOODA Assistant Professor of Zoology School of Science & Technology Vardhman Mahaveer Open University, Kota Members Prof . (Rtd.) Dr. D.P. Jaroli Prof. (Rtd.) Dr. Reena Mathur Professor Emeritus Former Head Department of Zoology Department of Zoology University of Rajasthan, Jaipur University of Rajasthan, Jaipur Prof. (Rtd.) Dr. S.C. Joshi Prof. (Rtd.) Dr. Maheep Bhatnagar Department of Zoology Mohan Lal Sukhadiya University University of Rajasthan, Jaipur Udaipur Prof. (Rtd.) Dr. K.K. Sharma Prof. M.M. Ranga Mahrishi Dayanand Saraswati University, Ajmer Ajmer Dr. Anuradha Singh Dr. Prahlad Dubey Rtd. Lecturer Government College Head Department of Zoology Kota Government College , Kota Dr. Subrat Sharma Dr. Anuradha Dubey Lecturer Deputy Director Government College , Kota School of Science and Technology Vardhman Mahaveer Open University, Kota Dr. Subhash Chandra Director (Regional Center) VMOU, Kota Editing and Course Writing Editors Dr. Subhash Chandra SANDEEP HOODA Director ,Regional Center Assistant Professor of Zoology Vardhman Mahaveer Open University ,Kota Vardhman Mahaveer Open University ,Kota Writers: Writer Name Unit No. Writer Name Unit No Ms. Asha Kumari Verma 3,5,8 Dr. Abhishek Rajpurohit 11,13 UGC-NET JRF Department of Assistant Professor Zoology, JNVU, Lachoo Memorial College Jodhpur of Science & Technology,Jodhpur Dr. Neetu Kachhawaha 1,2,4,6,7,12 Dr. Subhash Chandra 14,15 Assistant Professor, Director ,Regional Center Department of Zoology, Vardhman Mahaveer University of Rajasthan ,Jaipur.
    [Show full text]
  • Fossil Perspectives on the Evolution of Insect Diversity
    FOSSIL PERSPECTIVES ON THE EVOLUTION OF INSECT DIVERSITY Thesis submitted by David B Nicholson For examination for the degree of PhD University of York Department of Biology November 2012 1 Abstract A key contribution of palaeontology has been the elucidation of macroevolutionary patterns and processes through deep time, with fossils providing the only direct temporal evidence of how life has responded to a variety of forces. Thus, palaeontology may provide important information on the extinction crisis facing the biosphere today, and its likely consequences. Hexapods (insects and close relatives) comprise over 50% of described species. Explaining why this group dominates terrestrial biodiversity is a major challenge. In this thesis, I present a new dataset of hexapod fossil family ranges compiled from published literature up to the end of 2009. Between four and five hundred families have been added to the hexapod fossil record since previous compilations were published in the early 1990s. Despite this, the broad pattern of described richness through time depicted remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter term patterns. Corrections for rock record and sampling effort change some of the patterns seen. The time series produced identify several features of the fossil record of insects as likely artefacts, such as high Carboniferous richness, a Cretaceous plateau, and a late Eocene jump in richness. Other features seem more robust, such as a Permian rise and peak, high turnover at the end of the Permian, and a late-Jurassic rise.
    [Show full text]
  • Silurian to Triassic Plant and Hexapod Clades and Their Associations: New Data, a Review, and Interpretations
    Arthropod Systematics & Phylogeny 53 64 (1) 53–94 © Museum für Tierkunde Dresden, ISSN 1863-7221, 30.10.2006 Silurian to Triassic Plant and Hexapod Clades and their Associations: New Data, a Review, and Interpretations CONRAD LABANDEIRA 1, 2 1 Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20213-7012, USA [[email protected]] 2 Department of Entomology, University of Maryland, College Park, MD 20742 USA Received 16.iv.2006, accepted 20.viii.2006. Available online at www.arthropod-systematics.de > Abstract A preliminary evaluation of hexapod herbivore damage from selected compression and permineralized biotas from the 220 million-year Late Silurian to Late Triassic interval has revealed many previously unknown patterns of hexapod herbivore use of vascular plants as well as detritivore and predator associations. Data was collected from 48 distinctive hexapod herbivore damage types (DTs) from 21 mostly compression biotas, but with special emphasis on the Rhynie Chert (Early Devonian, ~ 408 Ma), Calhoun Coal (Late Pennsylvanian, ~ 303 Ma) and Molteno Formation (Late Triassic, ~ 226 Ma). These data indicate a two-phase herbivore colonization of land; later expansion of hexapod functional feeding groups (FFGs) initially in the Late Pennsylvanian wetland environments of equatorial Euramerica, and subsequently in Early Permian fl uvial systems in the rest of Euramerica, Gondwana, and Cathaysia; the devastating end-Permian extinction; and subsequent rebound of those same FFGs during the ensuing Triassic. Modern-aspect herbivore, detritivore, and predator FFGs are present in Late Pennsylvanian canopied forests, and the full spectrum of all terrestrial FFGs are in place during the Late Triassic. Freshwater FFGs are delayed when compared to the terrestrial record, originating during the Permian, experiencing expansion during the Triassic, and reaching modern levels of all major trophic types during the Late Jurassic.
    [Show full text]
  • The Ecology of Paleozoic Terrestrial Arthropods: the Fossil Evidence
    The ecology of Paleozoic terrestrial arthropods: the fossil evidence WILLIAMA. SHEAR Department of Biology, Hampden-Sydney College, Hampden-Sydney , VA 23943 U.S.A. and Department of Entomology, The American Museum of Natural History, New York, NY 10024, U.S.A. AND JARMILAKUKALOVA-PECK Department of Earth Sciences, Carleton UniversiQ, Ottawa, Ont., Canada K1S 5B6 Received June 15, 1989 SHEAR,W. A., and KUKALOVA-PECK,J. 1990. The ecology of Paleozoic terrestrial arthropods:the fossil evidence. Can. J. Zool. 68: 1807- 1834. The available fossil evidence for the ecology of terrestrial arthropods in the Paleozoic is reviewed and reinterpreted. Some original data are provided, derived mainly from the detailed morphology of mouthparts, genitalia, cuticular vestiture, and body form. Paleozoic chelicerates were more diverse than their modem descendants and were probably dominant ground-level and arboreal predators. Web-building spiders and highly diversified mites appear to have been absent. Paleozoic myriapods include possibly the earliest land animals, and as abundant detritivores, provided a major conduit for primary productivity into higher trophic levels. Paleozoic insects present many difficulties of interpretation, but appear to have been extraordinarily diverse and may have played quite different ecological roles from today's insects, viewed as a whole. It is postulated that herbivory, defined as predation on living plants, may have been rare in early Paleozoic terrestrial ecosystems, and that most primary productivity was funneled through detritivores and decomposers. In the late Paleozoic, the evidence for herbivory by insects, except for feeding on fructifications, is rare. Insects seem to have played a major part as a selective force on plant fructifications.
    [Show full text]
  • 9 the Holometabola
    CY501-C09[331-356].qxd 2/15/05 11:14 AM Page 331 quark11 27B:CY501:Chapters:Chapter-09: 9 TheThe Holometabola Holometabola Holometabola are those insects with so-called complete The holometabolous lineages account for the stunning metamorphosis, versus insects that are hemimetabolous diversity of insects, since Holometabola comprise nearly 85% (incomplete metamorphosis), or (as in the case of aptery- of all insects, and in this regard the feature is usually considered gotes) insects that display virtually no changes from imma- one of the two most important innovations of insects along ture stages to adult (ametabolous). Metamorphosis itself with wings. There is no doubt that Holometabola is a mono- refers to a dramatic change in an organism from one devel- phyletic lineage (e.g., Kristensen, 1975, 1999a; Hennig, 1981; opmental stage to another, which occurs in some amphib- Whiting et al., 1997; Whiting, 2002), though a similar “pupal” ians and various invertebrates, including many marine and stage has evolved independently in whiteflies (Aleyrodoidea: terrestrial arthropods. In hemimetabolous insects, which Sternorrhyncha) and thrips (Thysanoptera), wherein late instar include the paleopterans, polyneopterans, and paraneopter- nymphs are reduced, nonfeeding, and quiescent. These are ans, which are groups we have already discussed in detail, the entirely convergent with holometabolan pupae, though, based wing buds increase in size with each nymphal instar (e.g., on relationships and the fact that these paraneopterans do not Figure 9.1). Holometabolous insects have a soft-bodied, wing- have a larval stage. The most recent and comprehensive pres- less, morphologically reduced larval stage and a mostly qui- entation of insect development is the comprehensive treat- escent pupal stage.
    [Show full text]
  • Contents More Information
    Cambridge University Press 0521821495 - Evolution of the Insects David Grimaldi and Michael S. Engel Table of Contents More information CONTENTS Preface page xi Commonly Used Abbreviations xv 1. Diversity and Evolution 1 Introduction 1 SPECIES: THEIR NATURE AND NUMBER 6 Drosophila 7 Apis 9 How Many Species of Insects? 11 RECONSTRUCTING EVOLUTIONARY HISTORY 15 Systematics and Evolution 15 Taxonomy, Nomenclature, and Classification 33 Paleontology 36 2. Fossil Insects 42 INSECT FOSSILIZATION 42 Types of Preservation 43 DATING AND AGES 62 MAJOR FOSSIL INSECT DEPOSITS 65 Paleozoic 65 Mesozoic 70 Cenozoic 84 3. Arthropods and the Origin of Insects 93 ONYCHOPHORA: THE VELVET WORMS 94 TARDIGRADA: THE WATER BEARS 96 ARTHROPODA: THE JOINTED ANIMALS 97 Marellomorpha: The Lace Crabs 98 Arachnomorpha: Trilobites, Arachnids, and Relatives 98 Crustaceomorpha 107 Mandibulata 107 The Invasion of Land 109 HEXAPODA: THE SIX-LEGGED ARTHROPODS 111 Entognatha: Protura, Collembola, and Diplura 111 vii © Cambridge University Press www.cambridge.org Cambridge University Press 0521821495 - Evolution of the Insects David Grimaldi and Michael S. Engel Table of Contents More information viii CONTENTS 4. The Insects 119 MORPHOLOGY OF INSECTS 119 General Structure 119 The Head 121 The Thorax 125 The Abdomen 131 DEFINING FEATURES OF THE INSECTS 137 RELATIONSHIPS AMONG THE INSECT ORDERS 137 A Brief History of Work 137 A Roadmap to the Phylogeny of Insects 144 5. Earliest Insects 148 ARCHAEOGNATHA: THE BRISTLETAILS 148 DICONDYLIA 150 ZYGENTOMA: THE SILVERFISH 150 RHYNIOGNATHA 152 6. Insects Take to the Skies 155 PTERYGOTA, WINGS, AND FLIGHT 155 Insect Wings 156 EPHEMEROPTERA: THE MAYFLIES 160 METAPTERYGOTA 166 PALAEODICTYOPTERIDA: EXTINCT BEAKED INSECTS 168 Palaeodictyoptera 170 Dicliptera 170 Megasecoptera 171 Diaphanopterodea 172 Paleozoic Herbivory 173 ODONATOPTERA: DRAGONFLIES AND EARLY RELATIVES 173 Geroptera 174 Holodonata: Protodonata and Odonata 174 Protodonata: The Griffenflies 175 Order Odonata: The Dragonflies and Damselflies 178 7.
    [Show full text]
  • Number 76: 1-5 ISSN 1026-051X August 1999 to the KNOWLEDGE of the FOSSIL FAMILY PERMOSIALIDAE (INSECTA: MIOMOPTERA) S. Y
    Number 76: 1-5 ISSN 1026-051X August 1999 TO THE KNOWLEDGE OF THE FOSSIL FAMILY PERMOSIALIDAE (INSECTA: MIOMOPTERA) S. Yu. Storozhenko1) and V. G. Novokshonov2) 1) Institute of Biology and Pedology, Vladivostok, 690022, Russia 2) Perm State University, Perm, 614600, Russia The composition of the fossil family Permosialidae (Miomoptera) is discussed. New synonymies are established: Permosialidae Martynov, 1928 = Epimastacidae Martynov, 1928, syn. n., = Permonkidae Rasnitsyn, 1977, syn. n., = Perloblattidae Storozhenko, 1992, syn. n., = Tologopteridae Storozhenko, 1992, syn. n.; Permonka Riek, 1973 = Perloblatta Storozhenko, 1992, syn. n.; Permonka trias- sica Rasnitsyn, 1977 = Perloblatta ordinata Storozhenko, 1992, syn. n. The genus Sarbalopterodes Storozhenko, 1991 is transferred from Miomoptera incertae sedis to the Permosialidae. KEY WORDS. Insects, Palaeozoic, Mesozoic, synonymy. С. Ю. Стороженко1), В. Г. Новокшонов2). К познанию ископаемого семейства Permosialidae (Insecta: Miomoptera) // Дальневосточный энто- молог. 1999. N 76. С. 1-5. Обсуждается состав ископаемого семейства Permosialidae (Miomoptera). Установлена новая синонимия: Permosialidae Martynov, 1928 = Epimastacidae Martynov, 1928, syn. n., = Permonkidae Rasnitsyn, 1977, syn. n., = Perloblattidae Storozhenko, 1992, syn. n., = Tologopteridae Storozhenko, 1992, syn. n.; 1 Permonka Riek, 1973 = Perloblatta Storozhenko, 1992, syn. n.; Permonka trias- sica Rasnitsyn, 1977 = Perloblatta ordinata Storozhenko, 1992, syn. n. Род Sar- balopterodes Storozhenko, 1991 перенесен из
    [Show full text]