Sea-Buckthorn
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Native Nebraska Woody Plants
THE NEBRASKA STATEWIDE ARBORETUM PRESENTS NATIVE NEBRASKA WOODY PLANTS Trees (Genus/Species – Common Name) 62. Atriplex canescens - four-wing saltbrush 1. Acer glabrum - Rocky Mountain maple 63. Atriplex nuttallii - moundscale 2. Acer negundo - boxelder maple 64. Ceanothus americanus - New Jersey tea 3. Acer saccharinum - silver maple 65. Ceanothus herbaceous - inland ceanothus 4. Aesculus glabra - Ohio buckeye 66. Cephalanthus occidentalis - buttonbush 5. Asimina triloba - pawpaw 67. Cercocarpus montanus - mountain mahogany 6. Betula occidentalis - water birch 68. Chrysothamnus nauseosus - rabbitbrush 7. Betula papyrifera - paper birch 69. Chrysothamnus parryi - parry rabbitbrush 8. Carya cordiformis - bitternut hickory 70. Cornus amomum - silky (pale) dogwood 9. Carya ovata - shagbark hickory 71. Cornus drummondii - roughleaf dogwood 10. Celtis occidentalis - hackberry 72. Cornus racemosa - gray dogwood 11. Cercis canadensis - eastern redbud 73. Cornus sericea - red-stem (redosier) dogwood 12. Crataegus mollis - downy hawthorn 74. Corylus americana - American hazelnut 13. Crataegus succulenta - succulent hawthorn 75. Euonymus atropurpureus - eastern wahoo 14. Fraxinus americana - white ash 76. Juniperus communis - common juniper 15. Fraxinus pennsylvanica - green ash 77. Juniperus horizontalis - creeping juniper 16. Gleditsia triacanthos - honeylocust 78. Mahonia repens - creeping mahonia 17. Gymnocladus dioicus - Kentucky coffeetree 79. Physocarpus opulifolius - ninebark 18. Juglans nigra - black walnut 80. Prunus besseyi - western sandcherry 19. Juniperus scopulorum - Rocky Mountain juniper 81. Rhamnus lanceolata - lanceleaf buckthorn 20. Juniperus virginiana - eastern redcedar 82. Rhus aromatica - fragrant sumac 21. Malus ioensis - wild crabapple 83. Rhus copallina - flameleaf (shining) sumac 22. Morus rubra - red mulberry 84. Rhus glabra - smooth sumac 23. Ostrya virginiana - hophornbeam (ironwood) 85. Rhus trilobata - skunkbush sumac 24. Pinus flexilis - limber pine 86. Ribes americanum - wild black currant 25. -
Thehortreport
THE HORT REPORT NEWSLETTER OF THE HORTICULTURAL SOCIETY OF MARYLAND, INC. | MAY 2017 CAPITAL GARDENS: Dedicated Gardeners & Creative Spaces in Annapolis ive splendid gardens of Annapolis—ranging from cottage gardens to a Zen retreat—will be on display FSunday, June 4, on the Horticultural Society of Maryland’s annual tour. The tour, from 10 a.m. to 4 p.m., will happen rain or shine. HSM members are admitted free with a current membership card. Non-member tickets cost $35 if purchased by June 3, either online (www.mdhorticulture.org) or at these locations: Kingsdene Nurseries, Monkton, The Perennial Farm, Glen Arm, Green Fields Nursery, Baltimore, Clark’s Ace Hardware, Ellicott City, and Graul’s Markets in Annapolis, Cape St. Claire, Ruxton, Mays Chapel and Hereford. On the day of the tour, non-member tickets will cost $40 and will be available at the first garden, 356 Broadview Lane, Annapolis 21401. Detailed descriptions of the gardens are available in the tour booklet that accompanies this newsletter. photos: Ann Betten Coming hSm Events HSM Honor Roll TomaTo LecTure/Hands-on WorksHop We thank the following volunteers (members as well as non-members) SATURDAY, MAY 6, 2017 who have supported the Society’s programs in recent months. 1:30 p.m. to 4 p.m. Cylburn Arboretum Greenhouse Classroom For the PPA/HSM Winter Seminar: Janet Draper, Mary Jo Sherrod, Craig LeHoullier, author of Epic Tomatoes. coordinators; Sally Barker, Helene Clapperton, Catherine Cook, Jennifer Members $25, Non-members $35. Forrence, Crystal Patterson and Paula Simon For the Plant Forum: Nancy Blois, Paula Campos, Helene Clapperton, annuaL Garden Tour Catherine Cook, Jennifer Forrence, Michael O’Rourke, Nancy Raskin, Mary SUNDAY, JUNE 4, 2017 Jo Sherrod, Lenel Srochi-Meyerhoff, Donna Watts and Bill Yonkers; and 10 a.m. -
Diversity of Wisconsin Rosids
Diversity of Wisconsin Rosids . mustards, mallows, maples . **Brassicaceae - mustard family Large, complex family of mustard oil producing species (broccoli, brussel sprouts, cauliflower, kale, cabbage) **Brassicaceae - mustard family CA 4 CO 4 A 4+2 G (2) • Flowers “cross-like” with 4 petals - “Cruciferae” or “cross-bearing” •Common name is “cress” • 6 stamens with 2 outer ones shorter Cardamine concatenata - cut leaf toothwort Wisconsin has 28 native or introduced genera - many are spring flowering Herbs with alternate, often dissected leaves Cardamine pratensis - cuckoo flower **Brassicaceae - mustard family CA 4 CO 4 A 4+2 G (2) • 2 fused carpels separated by thin membrane – septum • Capsule that peels off the two outer carpel walls exposing the septum attached to the persistent replum **Brassicaceae - mustard family CA 4 CO 4 A 4+2 G (2) siliques silicles Fruits are called siliques or silicles based on how the fruit is flattened relative to the septum **Brassicaceae - mustard family Cardamine concatenata - cut leaf toothwort Common spring flowering woodland herbs Cardamine douglasii - purple spring cress **Brassicaceae - mustard family Arabidopsis lyrata - rock or sand cress (old Arabis) Common spring flowering woodland herbs Boechera laevigata - smooth rock cress (old Arabis) **Brassicaceae - mustard family Nasturtium officinale - water cress edible aquatic native with a mustard zing **Brassicaceae - mustard family Introduced or spreading Hesperis matronalis - Dame’s Barbarea vulgaris - yellow rocket rocket, winter cress **Brassicaceae -
Poison Ivy, Poison Oak and Similar Plant Identification October 2020
Oklahoma Cooperative Extension Service HLA-6459 Poison Ivy, Poison Oak and Similar Plant Identification October 2020 Brooklyn Evans Extension Horticulture Intern Oklahoma Cooperative Extension Fact Sheets are also available on our website at: Pam Sharp extension.okstate.edu Extension Horticulture Assistant Shelley Mitchell Associate Extension Specialist, Youth and Horticulture Justin Quetone Moss Department Head, Horticulture and Landscape Architecture “Leaves of three let it be”. From that rhyme, you would think identifying poison ivy would be simple, but that isn’t necessarily the case. Knowing how to recognize poison ivy, oak and sumac can save you from a miserable red itchy rash. All three of these closely related plants contain an irritating, oily sap called urushiol. Urushiol causes many people to break out in a rash when it comes in contact with their skin. Being able to identify these plants is beneficial considering there are many plants that look similar, but are harmless. This Fact Sheet is to help inform and educate the general public on how to identify poison ivy, poison oak and poison sumac so they can be avoided. Poison ivy (Toxicodendron radicans) is located through- out the lower 48 states and grows in a variety of conditions, although it is most abundant along forest edges and in open forests with moderate sunlight. In Oklahoma, poison ivy is distributed across most of the state but is less abundant in the southwest and panhandle areas of the state. Poison oak (Toxicodendron toxicarium) is mostly in coastal states in the east and west and not as common in the central region. -
Phylogeny Within the Anacardiaceae Predicts Host Range of Potential Biological Control Agents of Brazilian Peppertree ⇑ G.S
Biological Control 108 (2017) 22–29 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Phylogeny within the Anacardiaceae predicts host range of potential biological control agents of Brazilian peppertree ⇑ G.S. Wheeler , P.T. Madeira Invasive Plant Research Laboratory, USDA-ARS, 3225 College Avenue, Ft. Lauderdale, FL 33314, USA highlights graphical abstract Phylogenetic signal of plant species may predict host range of biocontrol agents. We calculated phylogenetic distances between species with combined ITS1 and trnL-F. Host range of recommended agents decreased steeply with phylogenetic distance. Phylogenetic distance had greater influence on recommended than rejected species. Phylogenetic distance can predict of host range and can assist in test plant lists. article info abstract Article history: Predicting the host range of a biological control agent prior to release is one of the most important steps Received 30 November 2016 in the development of new agents. Knowing which species are most at risk of this non-target damage Revised 23 January 2017 improves the predictability of these tests. To predict safety, the potential agent is exposed to a subset Accepted 31 January 2017 of the entire flora that represents valued native, agricultural and ornamental plant species. The list of Available online 2 February 2017 plants includes those species that are the closest relatives to the target weed. To identify these species, molecular phylogenies can be useful tools that potentially identify the most vulnerable plant species. Keywords: While conducting biological control research of the invasive weed Brazilian peppertree, Schinus tere- Phylogenetic distance binthifolia, we conducted nuclear ITS1 and chloroplast trnL-F analysis of agricultural, commercial and Schinus terebinthifolia Anacardiaceae native plants that are related to the weed. -
Illustration Sources
APPENDIX ONE ILLUSTRATION SOURCES REF. CODE ABR Abrams, L. 1923–1960. Illustrated flora of the Pacific states. Stanford University Press, Stanford, CA. ADD Addisonia. 1916–1964. New York Botanical Garden, New York. Reprinted with permission from Addisonia, vol. 18, plate 579, Copyright © 1933, The New York Botanical Garden. ANDAnderson, E. and Woodson, R.E. 1935. The species of Tradescantia indigenous to the United States. Arnold Arboretum of Harvard University, Cambridge, MA. Reprinted with permission of the Arnold Arboretum of Harvard University. ANN Hollingworth A. 2005. Original illustrations. Published herein by the Botanical Research Institute of Texas, Fort Worth. Artist: Anne Hollingworth. ANO Anonymous. 1821. Medical botany. E. Cox and Sons, London. ARM Annual Rep. Missouri Bot. Gard. 1889–1912. Missouri Botanical Garden, St. Louis. BA1 Bailey, L.H. 1914–1917. The standard cyclopedia of horticulture. The Macmillan Company, New York. BA2 Bailey, L.H. and Bailey, E.Z. 1976. Hortus third: A concise dictionary of plants cultivated in the United States and Canada. Revised and expanded by the staff of the Liberty Hyde Bailey Hortorium. Cornell University. Macmillan Publishing Company, New York. Reprinted with permission from William Crepet and the L.H. Bailey Hortorium. Cornell University. BA3 Bailey, L.H. 1900–1902. Cyclopedia of American horticulture. Macmillan Publishing Company, New York. BB2 Britton, N.L. and Brown, A. 1913. An illustrated flora of the northern United States, Canada and the British posses- sions. Charles Scribner’s Sons, New York. BEA Beal, E.O. and Thieret, J.W. 1986. Aquatic and wetland plants of Kentucky. Kentucky Nature Preserves Commission, Frankfort. Reprinted with permission of Kentucky State Nature Preserves Commission. -
Journal of the Oklahoma Native Plant Society, Volume 9, December 2009
4 Oklahoma Native Plant Record Volume 9, December 2009 VASCULAR PLANTS OF SOUTHEASTERN OKLAHOMA FROM THE SANS BOIS TO THE KIAMICHI MOUNTAINS Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy May 1969 Francis Hobart Means, Jr. Midwest City, Oklahoma Current Email Address: [email protected] The author grew up in the prairie region of Kay County where he learned to appreciate proper management of the soil and the native grass flora. After graduation from college, he moved to Eastern Oklahoma State College where he took a position as Instructor in Botany and Agronomy. In the course of conducting botany field trips and working with local residents on their plant problems, the author became increasingly interested in the flora of that area and of the State of Oklahoma. This led to an extensive study of the northern portion of the Oauchita Highlands with collections currently numbering approximately 4,200. The specimens have been processed according to standard herbarium procedures. The first set has been placed in the Herbarium of Oklahoma State University with the second set going to Eastern Oklahoma State College at Wilburton. Editor’s note: The original species list included habitat characteristics and collection notes. These are omitted here but are available in the dissertation housed at the Edmon-Low Library at OSU or in digital form by request to the editor. [SS] PHYSICAL FEATURES Winding Stair Mountain ranges. A second large valley lies across the southern part of Location and Area Latimer and LeFlore counties between the The area studied is located primarily in Winding Stair and Kiamichi mountain the Ouachita Highlands of eastern ranges. -
Checklist of the Vascular Plants of San Diego County 5Th Edition
cHeckliSt of tHe vaScUlaR PlaNtS of SaN DieGo coUNty 5th edition Pinus torreyana subsp. torreyana Downingia concolor var. brevior Thermopsis californica var. semota Pogogyne abramsii Hulsea californica Cylindropuntia fosbergii Dudleya brevifolia Chorizanthe orcuttiana Astragalus deanei by Jon P. Rebman and Michael G. Simpson San Diego Natural History Museum and San Diego State University examples of checklist taxa: SPecieS SPecieS iNfRaSPecieS iNfRaSPecieS NaMe aUtHoR RaNk & NaMe aUtHoR Eriodictyon trichocalyx A. Heller var. lanatum (Brand) Jepson {SD 135251} [E. t. subsp. l. (Brand) Munz] Hairy yerba Santa SyNoNyM SyMBol foR NoN-NATIVE, NATURaliZeD PlaNt *Erodium cicutarium (L.) Aiton {SD 122398} red-Stem Filaree/StorkSbill HeRBaRiUM SPeciMeN coMMoN DocUMeNTATION NaMe SyMBol foR PlaNt Not liSteD iN THE JEPSON MANUAL †Rhus aromatica Aiton var. simplicifolia (Greene) Conquist {SD 118139} Single-leaF SkunkbruSH SyMBol foR StRict eNDeMic TO SaN DieGo coUNty §§Dudleya brevifolia (Moran) Moran {SD 130030} SHort-leaF dudleya [D. blochmaniae (Eastw.) Moran subsp. brevifolia Moran] 1B.1 S1.1 G2t1 ce SyMBol foR NeaR eNDeMic TO SaN DieGo coUNty §Nolina interrata Gentry {SD 79876} deHeSa nolina 1B.1 S2 G2 ce eNviRoNMeNTAL liStiNG SyMBol foR MiSiDeNtifieD PlaNt, Not occURRiNG iN coUNty (Note: this symbol used in appendix 1 only.) ?Cirsium brevistylum Cronq. indian tHiStle i checklist of the vascular plants of san Diego county 5th edition by Jon p. rebman and Michael g. simpson san Diego natural history Museum and san Diego state university publication of: san Diego natural history Museum san Diego, california ii Copyright © 2014 by Jon P. Rebman and Michael G. Simpson Fifth edition 2014. isBn 0-918969-08-5 Copyright © 2006 by Jon P. -
Rhus Trilobata Nutt. Oakleaf Sumac ANACARDIACEAE Synonyms
Rhus trilobata Nutt. oakleaf sumac ANACARDIACEAE Synonyms: Rhus aromatica Ait. var. trilobata (Nutt.) Gray Toxicodendron trilobatum Kuntze Schmaltzia oxyacanthoides Greene Schmaltzia pubescens Osterh. Range.—Oakleaf sumac is a widespread and highly variable taxon, ranging from Alberta to Iowa and south to California, Mexico, and Texas (Harrington 1964). It grows at elevations from 1,050 to 2,400 m on sites that receive 250 to 500 mm of precipitation (Hitchcock and others 1961, USDA Forest Service 1937, Wasser 1982). Ecology.—In the Intermountain Region, oakleaf sumac is common in mountain brush and pinyon- juniper communities (Hitchcock and others 1961, Welch and others 1987) and also grows in openings in communities of oakbrush, ponderosa pine, and other conifers (Vories 1981). At lower elevations it may be found in the blackbrush, basin big sagebrush, or Wyoming big sagebrush zones. In these areas it occurs on streambanks and Illustration credit: E.G. Hurd terraces, floodplains, seep, and spring margins, mesic slopes, talus slopes, swales, drainageways, General Description.—Also known as skunkbush and on other sites receiving extra moisture (Welsh sumac or lemonade sumac, oakleaf sumac is a and others 1987). It is frequently associated with morphologically variable deciduous species with a riparian communities, growing intermixed with spreading, mound-like, or erect growth form. It other shrubs or as scattered thickets in frequently forms clumps or thickets 0.6 to 2.1 m in communities dominated by herbaceous species. height (Hitchcock and others 1961, Thornburg Adapted to a wide range of soil conditions, oakleaf 1982, Welch and others 1987). Young branches sumac grows on basic to acidic soils with textures are brownish and puberulent, turning gray with ranging from clayey to sandy. -
Rhus Ovata S. Watson NRCS CODE: Family: Anacardiaceae (RHOV) Order: Sapindales Subclass: Rosidae Class: Magnoliopsida
I. SPECIES Rhus ovata S. Watson NRCS CODE: Family: Anacardiaceae (RHOV) Order: Sapindales Subclass: Rosidae Class: Magnoliopsida photos: A. Montalvo A. Subspecific taxa None. B. Synonyms R. ovata var. traskiae F. A. Barkley (USDA PLANTS 2016) C. Common name sugarbush; sugar bush, occasionally sugar sumac (McMinn 1939) D. Taxonomic relationships There are over 20 species of Rhus in North America, Europe, and Asia. The most recent phylogentic analysis using a combination of molecular, morphological, and anatomical traits places R. ovata in section Styphonia with R. integrifolia (Nutt.) Rothr. as its closest relative (Andrés-Hernández et al. 2014). E. Related taxa in region Two species of Rhus co-occur with sugarbush in California. Rhus integrifolia is the most similar in structure and appearance to sugarbush. It differs in having green sepals and flat, bicolored leaf blades with toothed margins and rounded apex. Rhus aromatica Aiton (=R. trilobata Torrey & Gray) is a low growing shrub with flexible arching branches and compound leaves. F. Taxonomic issues In areas where R. ovata and R. integrifolia co-occur and hybridize, morphological intermediates may be found making identification difficult (see VI. H. Hybridization potential), but generally the species are easy to tell apart (Lens & Dourley 1981). R. ovata may have some teeth on leaves of mature plants. G. Other The specific epithet, ovata, refers to the egg-shaped leaves. Plants produce a resin. II. ECOLOGICAL & EVOLUTIONARY CONSIDERATIONS FOR RESTORATION A. Attribute summary list -
Poison-Ivy and Its Kin
Poison-ivy and Its Kin Nearly everyone has an acquaintance with poison-ivy, chiefly from the rash that it causes rather than from its nature as a plant. Most of what I shall write here, however, concerns this very interesting plant and its distribution in the world. Hope- fully I can dispel myths - old wives’ tales - that persist in our folklore despite scientific findings to disprove them. Benign Relatives Poison-ivy is a member of the sumac family (Anacardiaceae) to which a number of other familiar plants belong. One of them is the common staghorn sumac ( Rhus typhina ) (See Fig. 1 ). Actually this plant has several relatives in the United States, all with the upright cone of red fruits in the late summer and fall, which differ very little from one another and which, in fact, occasionally hybridize. These are the smooth sumac (Rhus glabra) and the dwarf sumac (Rhus copallina), which has a winged petiole or rachis. Some other related species are found in local areas of the Southeastern United States. Another member of the benign sumacs is the aromatic sumac (Rhus aromatica) (See Fig. 2). It is found in diverse places - generally in regions of well-drained sands with pine forest cover in the eastern half of this country. A cognate species, Rhus tri- lobata, exists in the western part of the United States. Perhaps it might be assumed that there is one species complex with dis- tinguishable forms at geographical extremities of east and west. This matter needs to be examined much more carefully. Additional relatives of the sumacs are found in North Ameri- ca. -
USDA Final Calophya and P. Ichini
United States Department of Field Release of the Insects Agriculture Calophya latiforceps Marketing and Regulatory (Hemiptera: Calophyidae) and Programs Pseudophilothrips ichini Animal and Plant Health Inspection (Thysanoptera: Service Phlaeothripidae) for Classical Biological Control of Brazilian Peppertree in the Contiguous United States Environmental Assessment, May 2019 Field Release of the Insects Calophya latiforceps (Hemiptera: Calophyidae) and Pseudophilothrips ichini (Thysanoptera: Phlaeothripidae) for Classical Biological Control of Brazilian Peppertree in the Contiguous United States Environmental Assessment, May 2019 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found online at http://www.ascr.usda.gov/complaint_filing_file.html.