First Australian Pliocene Molossid Bat: Mormopterus (Micronomus) Sp

Total Page:16

File Type:pdf, Size:1020Kb

First Australian Pliocene Molossid Bat: Mormopterus (Micronomus) Sp Records of the Western Allstralzall Mllsellm Supplement No. 57: 291-298 (1999). First Australian Pliocene molossid bat: Mormopterus (Micronomus) sp. from the Chinchilla Local Fauna, southeastern Queensland l 2 Suzanne J. Hand!, Brian S. Mackness , Cecil E. Wilkinson and Doris M. Wilkinson2 1 School of Biological Science, University of New South Wales, NSW 2052; email: [email protected] 29 Birkett Street, Chinchilla, Qld 4413 Abstract - An isolated upper canine from the Pliocene Chinchilla Local Fauna of southeastern Queensland is identified as representing the Australian molossid genus Mormopterus, subgenus Microllomlls. It is the first Australian Pliocene representative of the cosmopolitan family Molossidae and the first Tertiary representative of the Microl1omlls lineage. Approximately six Microl1omlls species are today widely distributed across the Australian mainland, Papua New Guinea and Ambon, and are found in most habitat types from desert to rainforest. The discovery of an indeterminate species of Microl1omlls in the Chinchilla Local Fauna does not contradict the palaeoenvironmental interpretation of the area as woodland savannah. INTRODUCTION Superfamily Vespertilionoidea Gray, 1821 A variety of taxa has been recovered from the early (Weber, 1928) to middle Pliocene freshwater fluviatile Chinchilla Family Molossidae Gray, 1821 Sand northwest of Chinchilla, southeastern Queensland (Archer 1977, 1982; Archer and Dawson Monnopterns (Micronomus) sp. 1982; Bartholomai 1962, 1963, 1966, 1967, 1971, 1973, 1975, 1976; Bartholomai and Woods 1976; Dawson Material Examined 1982; Flannery and Archer 1983; Gaffney 1981; QM F30575, a left upper canine (Figure 1). Gaffney and Bartholomai 1979; Godthelp 1990; Measurements: Length 1.17 mm, width 0.98 mm, Hutchinson and Mackness submitted; Kemp and height 1.93 mm. Molnar 1981; Mackness and Scanlon in press; Olson 1975, 1977; Patterson and Rich 1987; Woods 1956, Locality and Age 1960, 1962; Wroe and Mackness 1998). Collectively North bank of the Condamine River, this assemblage is known as the Chinchilla Local Chinchilla Rifle Range (26°48'S., 1500 41'E.). The Fauna (Archer and Bartholomai 1978; Woodbume et Chinchilla Sand was named by Woods (1960) for al. 1985; Rich et al. 1991). a sequence of weakly consolidated grey to This paper describes an isolated canine recovered yellowish and light brown sands, ferruginized from the Chinchilla Sand which represents the first heterogeneous conglomerates, grits, sandy clay Australian Pliocene representative of the and clays. These outcrops range from shallow cosmopolitan family Molossidae, and the first beds to sections several metres deep. Tertiary representative of the modern Australian Wilkinson's Quarry has been continuously molossid lineage Micrononws. Two older molossids, worked by two of us (C.E.W., D.M.W.) for over described from Miocene deposits at Riversleigh in ten years. The specimen described comes from a northwestern Queensland, are members of extinct fossil-bearing unit within the quarry that lies molossid lineages (Hand 1990; Hand et aL 1997). unconformably on top of an indurated layer of Taxonomy and dental terminology follow fine sand. The sediments are primarily fluviatile Legendre Hand (1990) and Strahan (1995). in nature and represent a number of depositional The prefix QM 12 indicates specimens registered in events. Most fossils in these units occur as the fossil collection of the Queensland Museum, isolated pieces. Brisbane. Tedford et aL (1992) concluded that the Chinchilla Local Fauna biocorrelates with the Kanunka Local Fauna of the Tirari Desert, South Australia. On the SYSTEMATIC PALAEONTOLOGY basis of magnetostratigraphy, they concluded that the latter is approximately 3.4 million years old, or Suborder Microchiroptera Dobson, 1875 late early Pliocene in age. 292 S.J. Hand, B.S. Mackness, C.E. Wilkinson, D.M. Wilkinson B Figure 1 Mormopterus (Micronomus) sp., from the Pliocene Chinchilla Local Fauna, southeastern Queensland. QM F30575, left upper canine. A, posterior view; B, lingual view; C-C', stereopair, antero-occlusal view. Scale bar = 1 mm. Description such that the anterolingual blade is convex and the QM F30575 is massively-rooted with a tall, posterolingual crest concave. There is no slender, dominant main cusp (Figure 1). There is a development of a secondary cusp on either blade. narrow cingulum around the whole tooth and a The crown is flattened on the lingual side, and the small but distinct posterolingual cingular cusp. lingual margin is very straight (i.e., in occlusal view There are no other cingular cusps. The basal outline it is neither concave nor convex). The anterobuccal of the crown is subtriangular. The antero- and face is marked by a broad groove which is posterolingual corners of the main cusp (paracone) attenuated towards the apex of the cusp. This are defined by vertical crests; the posterobuccal groove results in a distinct concavity in the surface is convex. The shaft is recurved posteriorly anterobuccal margin of the crown and contributes Pliocene rnolossid from Chinchilla 293 to the tooth's triangular (rather than semi-circular) anterior cingular cusp. It differs from nycteridids in occlusal outline. In occlusal view, there is also a its flattened (rather than concave) lingual face and broad and marked indentation in the posterobuccal lack of anterior cingular cusp, and from margin, perhaps for the following tooth (but see rhinolophids in its complete and conspicuous Remarks below). The massive root is oval in cross­ cingulum. section with a deep groove longitudinally bisecting The Chinchilla canine differs from those of most its flattened lingual face. noctilionoids (phyllostomids, mormoopids and noctilionids) in having a distinctive anterior groove. Remarks However, some phyllostomines (e.g., P!zyllostomus and Trac!zops species) do possess a broad groove on Comparisons Made the anterior face of the shaft as well as a less Its small size, complete cingulum, flattened developed one on the anterobuccal face. But these lingual face and lack of posterior heel suggest that are large species with much larger canines, which QM F30575 is the upper canine of a usually also differ in having a rather bilobed lingual microchiropteran bat. Megachiropteran canines are margin. Many stenodermatines differ in having a generally larger, lack a complete cingulum (absent dorsal expansion of the buccal face of the canine. In buccally, variably developed lingually and Vampyrum the shaft is flattened in front but, like the posteriorly) and are generally not subtriangular in Chinchilla tooth, it has a moderately developed cross-section. Many megachiropteran canines (e.g., cingulum and distinct posterolingual cingular cusp. Pteropus spp.) have very conspicuous ridges on the In most phyllostomines (e.g., Micronycteris), the shaft; in others a secondary cusp is formed by slight upper canine is simple with the anterior shaft elongation of the cingulum (e.g., Nyctimene spp.) or smoothly rounded and with a well-developed is developed on the posterior edge of the shaft (e.g., cingulum but no extra cusps. In desmodontine species of Pteralopex and Harpyionycteris; the latter phyllostomids, the canine is large, long and narrow, may have well-developed posterior and lingual with an acute point and very sharp cutting edge. cingula and/or posterolingual basal cusps). Like the In the other phyllostomid subfamilies (America's Chinchilla canine, species of Macroglossus, glossophagines, stenodermatines, phyllonycterines) Syconycteris, Notopteris and Eonycteris have a deep there is even more variation in the basic form of the longitudinal groove on the anterior face of the shaft upper canine, making generalizations difficult. (in Melonycteris the groove is bounded by sharp Miller (1907) has described the dentition of many ridges), but otherwise differ strikingly from the taxa in this speciose group, and the following fossil in their very weak and incomplete cingula comparisons with the Chinchilla canine can be and rounded or square basal outline. made. In glossophagines, the canine tends to be The Chinchilla canine has been compared with simple with a slightly developed cingulum and no representatives of all microchiropteran groups, secondary cusps, though in some species (e.g., except the monotypic Craseonycteridae and Leptonycteris) the cingulum is obsolete but Tomopeatinae. It differs strikingly from represented anteriorly and posteriorly by short, emballonurid and rhinopomatid canines in its well-developed cusps. In other species (e.g., subtriangular occlusal outline, anterior groove and Sturnira) the inner surface is strongly concave and lack of well-developed anterior and posterior cusps thus unlike the Chinchilla tooth. Stenodermatine and/or cingular cusps. In most emballonuroids canines appear to be quite unlike the Chinchilla (e.g., R!zinopoma, Emballonura and New World tooth. In many stenodermatines, the canine is nearly diclidurines), there is no distinct cingulum, lateral as long as tall, the cingulum is well developed and compression is marked, heel development common, there are no secondary cusps; in some species (e.g., and anterior and posterior cusps are developed at Ardops, P!zyllops and Ariteus) the canine is only just the base of the anterior and posterior cutting edges. taller than the large premolar. In other The upper canines of species of Taphozous and stenodermatines (e.g., Brac!zyp!zylla) the lingual Saccolaimus have very large heels and deep, well­ cingulum forms two low but very distinct cusps
Recommended publications
  • A New Species of Eumops (Chiroptera: Molossidae) from Southwestern Peru
    Zootaxa 3878 (1): 019–036 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3878.1.2 http://zoobank.org/urn:lsid:zoobank.org:pub:FDE7F7A4-7DCC-4155-8D96-A0539229DBFE A new species of Eumops (Chiroptera: Molossidae) from southwestern Peru CÉSAR E. MEDINA1, RENATO GREGORIN2, HORACIO ZEBALLOS1,3, HUGO T. ZAMORA1 & LIGIANE M. MORAS4 1Museo de Historia Natural de la Universidad Nacional San Agustín (MUSA). Av. Alcides Carrión s/n. Arequipa, Perú. E-mail: [email protected] 2Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, CEP 37200-000, Brazil. E-mail: [email protected] 3Instituto de Ciencias de la Naturaleza, Territorio y Energías Renovables, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, San Miguel, Lima 32, Perú. E-mail: [email protected] 4Departamento de Zoologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. E-mail: [email protected] Abstract The genus Eumops is the most diverse genera of molossid bats in the Neotropics. In Peru this genus is widely distributed and represented by nine species: E. auripendulus, E. delticus, E. hansae, E. maurus, E. nanus, E. patagonicus, E. perotis, E. trumbulli, and E. wilsoni. After several years of mammalian diversity surveys in the coastal desert and western slopes of southwestern Peru, a specimen of Eumops was collected whose unique set of traits allows us to assert that deserves to be described as a new species. Based on molecular and morphological evidence, the new species is related to medium- large sized species (i.e.
    [Show full text]
  • Genetic Diversity of the Chaerephon Leucogaster/Pumilus Complex From
    Genetic diversity of the Chaerephon leucogaster/pumilus complex from mainland Africa and the western Indian Ocean islands Theshnie Naidoo 202513500 Submitted in fulfillment of the academic Requirements for the degree of Doctor of Philosophy in the School of Life Sciences, Westville Campus, University of KwaZulu – Natal, Durban. NOVEMBER 2013 Supervisory Committee Prof. JM. Lamb Dr. MC. Schoeman Dr. PJ. Taylor Dr. SM. Goodman i ABSTRACT Chaerephon (Dobson, 1874), an Old World genus belonging to the family Molossidae, is part of the suborder Vespertilioniformes. Members of this genus are distributed across mainland Africa (sample sites; Tanzania, Yemen, Kenya, Botswana, South Africa and Swaziland), its offshore islands (Zanzibar, Pemba and Mozambique Island), Madagascar and the surrounding western Indian Ocean islands (Anjouan, Mayotte, Moheli, Grande Comore, Aldabra and La Reunion). A multifaceted approach was used to elucidate the phylogenetic and population genetic relationships at varying levels amongst these different taxa. Working at the subspecific level, I analysed the phylogenetics and phylogeography of Chaerephon leucogaster from Madagascar, based on mitochondrial cytochrome b and control region sequences. Cytochrome b genetic distances among C. leucogaster samples were low (maximum 0.35 %). Genetic distances between C. leucogaster and C. atsinanana ranged from 1.77 % to 2.62 %. Together, phylogenetic and distance analyses supported the classification of C. leucogaster as a separate species. D-loop data for C. leucogaster samples revealed significant but shallow phylogeographic structuring into three latitudinal groups (13º S, 15 - 17º S, 22 - 23º S) showing exclusive haplotypes which correlated with regions of suitable habitat defined by ecological niche modelling. Population genetic analysis of D-loop sequences indicated that populations from Madagascar have been expanding since 5 842 - 11 143 years BP.
    [Show full text]
  • African Bat Conservation News
    Volume 35 African Bat Conservation News August 2014 ISSN 1812-1268 © ECJ Seamark, 2009 (AfricanBats) Above: A male Cape Serotine Bat (Neoromicia capensis) caught in the Chitabi area, Okavango Delta, Botswana. Inside this issue: Research and Conservation Activities Presence of paramyxo and coronaviruses in Limpopo caves, South Africa 2 Observations, Discussions and Updates Recent changes in African Bat Taxonomy (2013-2014). Part II 3 Voucher specimen details for Bakwo Fils et al. (2014) 4 African Chiroptera Report 2014 4 Scientific contributions Documented record of Triaenops menamena (Family Hipposideridae) in the Central Highlands of 6 Madagascar Download and subscribe to African Bat Conservation News published by AfricanBats at: www.africanbats.org The views and opinions expressed in articles are no necessarily those of the editor or publisher. Articles and news items appearing in African Bat Conservation News may be reprinted, provided the author’s and newsletter refer- ence are given. African Bat Conservation News August 2014 vol. 35 2 ISSN 1812-1268 Inside this issue Continued: Recent Literature Conferences 7 Published Books / Reports 7 Papers 7 Notice Board Conferences 13 Call for Contributions 13 Research and Conservation Activities Presence of paramyxo- and coronaviruses in Limpopo caves, South Africa By Carmen Fensham Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, University of Pretoria, 0001, Republic of South Africa. Correspondence: Prof. Wanda Markotter: [email protected] Carmen Fensham is a honours excrement are excised and used to isolate any viral RNA that student in the research group of may be present. The identity of the RNA is then determined Prof.
    [Show full text]
  • Carpe Noctem: the Importance of Bats As Bioindicators
    Vol. 8: 93–115, 2009 ENDANGERED SPECIES RESEARCH Printed July 2009 doi: 10.3354/esr00182 Endang Species Res Published online April 8, 2009 Contribution to the Theme Section ‘Bats: status, threats and conservation successes’ OPENPEN REVIEW ACCESSCCESS Carpe noctem: the importance of bats as bioindicators Gareth Jones1,*, David S. Jacobs2, Thomas H. Kunz3, Michael R. Willig4, Paul A. Racey5 1School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK 2Zoology Department, University of Cape Town, Rondesbosch 7701, Cape Town, South Africa 3Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, Massachusetts 02215, USA 4Center for Environmental Sciences and Engineering and Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269-4210, USA 5School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TN, UK ABSTRACT: The earth is now subject to climate change and habitat deterioration on unprecedented scales. Monitoring climate change and habitat loss alone is insufficient if we are to understand the effects of these factors on complex biological communities. It is therefore important to identify bioindicator taxa that show measurable responses to climate change and habitat loss and that reflect wider-scale impacts on the biota of interest. We argue that bats have enormous potential as bioindi- cators: they show taxonomic stability, trends in their populations can be monitored, short- and long- term effects on populations can be measured and they are distributed widely around the globe. Because insectivorous bats occupy high trophic levels, they are sensitive to accumulations of pesti- cides and other toxins, and changes in their abundance may reflect changes in populations of arthro- pod prey species.
    [Show full text]
  • Tap Chi Sinh Hoc 2014, 36(4): 479-486 Taxonomic And
    TAP CHI SINH HOC 2014, 36(4): 479-486 DOI 10.15625/0866-7160/v36n4-5980 TAXONOMIC AND DISTRIBUTIONAL ASSESSMENTS OF Chaerephonpttcatus (Chiroptera: Molossidae) FROM VIETNAM Vu Dinh Thong Institute of Ecology and Biological Resources, VAST, [email protected] ABSTRACT: To date. Wrinkle-lipped Bai (Chaerephon plicatus) is the only species ofthe family Molossidae in Vietnam. It is found throu^out much of Asia but rarely recorded in the country. Every pubhshed record of this species from Vietnam was only resulted from a single individual with little data tm morphology. Particularly, the previous publications did not mclude any information about either colony size or roosting site ofthe species within Vietnam. Between 2001 and 2014, a series of field surve)« was conducted throughout the country with an intensive search for free-tailed bat species. The obtained results indicate that Wrinkle-lipped Bat is a widespread bat species but its known roosting sites in Vietnam are quite distjunct Its colony size is in both seasonal and geographical variations ranging from several hundreds to over three million individuals. The species inhabits seasonally and permanently in northem and southem regions, respectively. This paper provides taxonomic and ecological assessments with an emphasis on morphological measurements, colony size, roosting habitats and national distributional range of Wrinkle-lipped Bat within Vietnam. Keywords: Asia, behavior, free-tailed bat, habitat. Mammalia, seasonal variation. INTRODUCTION tnolossid bats frora Virtnam was included in Wrinkle-lipped Bat (Chaerephon plicatus) Total (1974) [17] with record of one specimen is a free-tailed species, which was originally identified as Tadarida plicata. Since then, records described as Vespertilio plicatus (Buchannan of Tadarida plicata from the country has been 1800).
    [Show full text]
  • Diversity, Host Specialization, and Geographic Structure of Filarial Nematodes Infecting Malagasy Bats
    RESEARCH ARTICLE Diversity, Host Specialization, and Geographic Structure of Filarial Nematodes Infecting Malagasy Bats Beza Ramasindrazana1,2,3*, Koussay Dellagi1,2, Erwan Lagadec1,2, Milijaona Randrianarivelojosia4, Steven M. Goodman3,5, Pablo Tortosa1,2 1 Centre de Recherche et de Veille sur les maladies émergentes dans l’Océan Indien, Plateforme de Recherche CYROI, Sainte Clotilde, La Réunion, France, 2 Université de La Réunion, UMR PIMIT "Processus Infectieux en Milieu Insulaire Tropical", INSERM U 1187, CNRS 9192, IRD 249. Plateforme de Recherche CYROI, 97490 Sainte Clotilde, Saint-Denis, La Réunion, France, 3 Association Vahatra, Antananarivo, Madagascar, 4 Institut Pasteur de Madagascar, Antananarivo, Madagascar, 5 The Field Museum of Natural History, Chicago, Illinois, United States of America * [email protected] OPEN ACCESS Abstract Citation: Ramasindrazana B, Dellagi K, Lagadec E, We investigated filarial infection in Malagasy bats to gain insights into the diversity of these Randrianarivelojosia M, Goodman SM, Tortosa P (2016) Diversity, Host Specialization, and Geographic parasites and explore the factors shaping their distribution. Samples were obtained from Structure of Filarial Nematodes Infecting Malagasy 947 individual bats collected from 52 sites on Madagascar and representing 31 of the 44 Bats. PLoS ONE 11(1): e0145709. doi:10.1371/ species currently recognized on the island. Samples were screened for the presence of journal.pone.0145709 micro- and macro-parasites through both molecular and morphological approaches. Phylo- Editor: Karen E. Samonds, Northern Illinois genetic analyses showed that filarial diversity in Malagasy bats formed three main groups, University, UNITED STATES the most common represented by Litomosa spp. infecting Miniopterus spp. (Miniopteridae); Received: April 30, 2015 a second group infecting Pipistrellus cf.
    [Show full text]
  • 17 Roberts Road, Eastern Creek
    17 ROBERTS ROAD, EASTERN CREEK SSD-10330 Proposed Data Centre Biodiversity Development Assessment Report Prepared for: Canberra Data Centres Pty Ltd PO Box 304 JERRABOMBERRA NSW 2619 SLR Ref: 610.18883-R05 Version No: -v2.0 November 2019 Canberra Data Centres Pty Ltd SLR Ref No: 610.18883-R05-v2.0-Eastern Creek BDAR-20191111.docx 17 Roberts Road, Eastern Creek November 2019 SSD-10330 Proposed Data Centre Biodiversity Development Assessment Report PREPARED BY SLR Consulting Australia Pty Ltd ABN 29 001 584 612 10 Kings Road New Lambton NSW 2305 Australia (PO Box 447 New Lambton NSW 2305 Australia) T: +61 2 4037 3200 E: [email protected] www.slrconsulting.com BASIS OF REPORT This report has been prepared by SLR Consulting Australia Pty Ltd (SLR) with all reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with Canberra Data Centres Pty Ltd (the Client). Information reported herein is based on the interpretation of data collected, which has been accepted in good faith as being accurate and valid. This report is for the exclusive use of the Client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR. SLR disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work. DOCUMENT CONTROL Reference Date Prepared Checked Authorised 610.18883-R05-v2.0 11 November 2019 Fiona Iolini and David Martin Jeremy
    [Show full text]
  • A New Species of Chaerephon (Molossidae) from Madagascar with Notes on Other Members of the Family
    A New Species of Chaerephon (Molossidae) from Madagascar with Notes on Other Members of the Family Authors: Goodman, Steven M., and Cardiff, Scott G. Source: Acta Chiropterologica, 6(2) : 227-248 Published By: Museum and Institute of Zoology, Polish Academy of Sciences URL: https://doi.org/10.3161/001.006.0204 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Acta-Chiropterologica on 13 Jul 2020 Terms of Use: https://bioone.org/terms-of-use Acta Chiropterologica, 6(2): 227–248, 2004 PL ISSN 1508-1109 © Museum and Institute of Zoology PAS A new species of Chaerephon (Molossidae) from Madagascar with notes on other members of the family STEVEN M.
    [Show full text]
  • Index of Handbook of the Mammals of the World. Vol. 9. Bats
    Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A.
    [Show full text]
  • Appendix a Fauna Survey Effort and Results
    APPENDIX A FAUNA SURVEY EFFORT AND RESULTS October 2016 Prepared by Anderson Environment and Planning The Fauna Survey Effort (FSE) for the Biobanking Assessment Report has been guided by the following: The predict threatened species from within the Biobanking Credit Calculator; The Threatened Species Survey and Assessment Guidelines for developments and activities (working draft), NSW Department of Environment and Conservation (2004); The NSW Threatened Species Profile Database; and Previous fauna survey results from the site. The following Ecosystem Credit species have been recorded on the site during past or current survey work: Eastern Bentwing-bat (Miniopterus schreibersii oceanensis); Eastern False Pipistrelle (Falsistrellus tasmaniensis); Eastern Freetail-bat (Mormopterus norfolkensis); Greater Broad-nosed Bat (Scoteanax rueppellii); Grey-headed Flying-fox (Pteropus poliocephalus); Little Bentwing-bat (Miniopterus australis); Little Lorikeet (Glossopsitta pusilla); Long-nosed Potoroo (Potorous tridactylus); Powerful Owl (Ninox strenua); Squirrel Glider (Petaurus norfolcensis); Varied Sittella (Daphoenositta chrysoptera); Yellow-bellied Glider (Petaurus australis); Yellow-bellied Sheathtail-bat (Saccolaimus flaviventris). The following Species Credit species have been recorded on the site or surrounds during past survey work: Koala (Phascolarctos cinereus); Wallum Froglet (Crinia tinnula). Prepared by Anderson Environment and Planning Contents 1.0 Introduction ..............................................................................................................................................
    [Show full text]
  • DOC Best Practice Manual of Conservation Techniques for Bats Version 1.0
    DOC best practice manual of conservation techniques for bats Version 1.0 This manual was prepared by Jane Sedgeley, Colin O’Donnell, John Lyall, Hannah Edmonds, Warren Simpson, Jo Carpenter, Jo Hoare and Kate McInnes (2012). Contents Introduction ................................................................................................................................................... 2 Introduction to New Zealand bats/pekapeka ............................................................................................... 5 Conservation management of New Zealand bats ..................................................................................... 21 Finding bats with bat detectors .................................................................................................................. 37 Species identification in the hand .............................................................................................................. 49 Inventory and monitoring methods for counting bats ................................................................................ 56 Catching bats ............................................................................................................................................. 58 Handling, examining, measuring and releasing bats ................................................................................ 85 Banding and marking ............................................................................................................................... 112 Attaching radio
    [Show full text]
  • The Role and Impact of Zootaxa in Mammalogy in Its First 20 Years
    Zootaxa 4979 (1): 070–094 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Review ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4979.1.10 http://zoobank.org/urn:lsid:zoobank.org:pub:15620BC4-B989-4A98-84D0-019707FF0197 The role and impact of Zootaxa in mammalogy in its first 20 years PEDRO CORDEIRO-ESTRELA¹, ANDERSON FEIJÓ², PHILIPPE GAUBERT³, MARCELO WEKSLER4, LIONEL HAUTIER5,6, PAÚL M. VELAZCO7,8, PABLO TETA9, PIERRE-HENRI FABRE5,6, GERALDINE 10 11 VERON & JANET K. BRAUN 1Laboratório de Mamíferos, Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Campus I, João Pessoa, PB, Brazil. [email protected]; https://orcid.org/0000-0003-3383-571X 2Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China. [email protected]; http://orcid.org/0000-0002-4643-2293 3Laboratoire Évolution & Diversité Biologique, Université Toulouse III Paul Sabatier, 118 route de Narbonne – Bât. 4R1, 31062 Toulouse cedex 9, France. [email protected]; https://orcid.org/0000-0002-1375-9935 4Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, 20940-040 Rio de Janeiro, RJ, Brazil. [email protected]; https://orcid.org/0000-0001-8111-4779 5Institut des Sciences de l’Evolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France. [email protected]; https://orcid.org/0000-0001-8701-5421 [email protected]; https://orcid.org/0000-0002-3414-5625 6Mammal Section, Department of Life Sciences, The Natural History Museum, SW7 5DB London, United Kingdom 7Department of Mammalogy, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA.
    [Show full text]