Success and Failure of Cyzenis Albicans in Controlling

Total Page:16

File Type:pdf, Size:1020Kb

Success and Failure of Cyzenis Albicans in Controlling SUCCESS AND FAILURE OF CYZENIS ALBICANS IN CONTROLLING ITS HOST THE WINTER MOTH by JENS ROLAND B.Sc. (Hons), University of Alberta, Edmonton, 1976 M.Sc, University of British Columbia, Vancouver, 1981 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Zoology and Institute of Animal Resource Ecology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA July 1986 (c) Jens Roland, 1986 HJTV In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of Io^0^ The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date Jul* 14' 1986- ii ABSTRACT Situations in which the parasitic fly Cyzenis albicans appears to control numbers of its host the winter moth, were compared with situations where it does not. Comparisons were made by field observation and experimentation during the first four years of winter moth decline following introduction of C. albicans and Agirypon f laveolatum in Victoria, British Columbia, Canada. Successful control of winter moth on oaks was compared with failure on apple trees. Phenology of winter moth development differs on the two tree species, giving rise to potential asynchrony between host and parasite on apple trees. Difference in the degree of asynchrony on the two tree species does not, however, result in a difference in level of parasitism of winter moth. Aggregative attack by Cyzenis, in response to host density, occurs when winter moth are on oaks, but is absent when winter moth are on apple. Difference in pattern of attack did not result in difference in mortality from parasitism at high density but did so at low density. The manipulation of predatory beetle abundance by as much as 100-fold did not affect the magnitude of mortality of winter moth, and affected mortality of the parasitoid only slightly. Large, density-dependent mortality of Cyzenis in the soil did not preclude their increase to high density, and hence would not affect the impact of Cyzenis on winter moth densities. The magnitude and degree of density-dependence of winter moth pupal mortality in the soil (regardless of beetle abundance) suggests that mortality of this stage, rather than parasitism of larvae iii by introduced parasites, has caused population decline in both British Columbia and Nova Scotia. The factor causing most mortality in the soil in British Columbia appears to be pathogens. Suggested mechanism for the increase in soil mortality during the four years of study are: (1) introduction of and/or increased pathogen transmission via Cyzeni s or (2) activation of latent infection by density-induced stress of the host. This study implicates factors other than parasitism by introduced parasitoids in the suppression of winter moth numbers. Correlation between degree of aggregation in response to host density and degree of successful control, however, supports the claim that parasitoids can stabilize host populations at low density. iv TABLE OF CONTENTS ABSTRACT . i i LIST OF TABLES/. '....viii LIST OF FIGURES .. .......... x ACKNOWLEDGEMENTS .• -xi ii CHAPTER ONE: GENERAL INTRODUCTION . ...1 CHAPTER TWO: PLANT PHENOLOGY AND HOST-PARASITOID SYNCHRONY 8 Introduction ........8 Methods .12 Study sites ...12 Time scale .' 15 Population phenology ...18 Parasitism •• 2 0 Control of phenology ....2 1 Effect of plant species on winter moth development ...21 Effect of plant species on winter moth survival 22 Results . 23 Population phenology . .. ... 2 3 Pa ra s i t i sm 23 Timing of attack ..23 Levels of parasitism .27 Control of spring emergence 34 Effect of plant species on winter moth development ...34 Effect of plant species on winter moth survival ......42 Close vs Spartan apple varieties 46 Discussion ... .46 CHAPTER THREE: EFFECT OF HOST PLANT SPECIES ON LEVEL AND PATTERN OF CYZENIS OVIPOSITION ...52. I nt roduct ion 52 Methods .54 Cage experiments 54 Field studies ...55 Host abundance 55 Parasitoid abundance ...56 Oviposition and parasitism 57 Oak-leaf extract on apple trees 59 Results 60 Cage experiments 60 Oviposition in the field 60 Egg numbers ..60 Oviposition in response to defoliation 62 Oviposition in response to host density 67 Statistical aggregation of Cyzenis eggs 72 Aggregation on foliage 72 Aggregation of attacks among hosts .75. Host mortality from parasitism 78 Percent parasitism vs defoliation. ....78- Percent parasitism vs host density 78 Oak-leaf extract on apple trees ...86 Di scussion . ".. 89 Parasitoid behaviour 89 Host mortality ...92 CHAPTER FOUR: MANIPULATION OF MORTALITY IN THE SOIL .....100 Introduction . ... 100 vi Methods 103 Manipulation and measurement of beetle abundance ....102 Experimental design 1983-84 ......102 Experimental design 1984-8.5 103 Beetle trapping in the oakwood ...106 Host and parasitoid abundance and survival ..........109 Effect of diazinon 111 Fate of pupae ........114 Forced pupation 114 Presence/absence of beetles 115 Predation cage experiments 116 Results .1 1 7 Beetle abundance 117 Total numbers 117 Functional response 121 Host and parasitoid mortality 126 Effect of diazinon 126 Effect of beetles 127 Effect of prey type 134 Effect of habitat type 134 Production of Cyzenis relative to its host 141 Fates of pupae 141 Fate in the presence/absence of beetles ...141 Effect of density 148 Interaction of predation and parasitism ...150 Predation over time ...150 Predation cage experiments 153 Discussion 1 53 vii CHAPTER FIVE: EFFECT OF FLY EXCLUSION ON SOIL MORTALITY AND GENERATION MORTALITY 1 70 Introduct ion . 1 70 Methods . ... 171 Fly exclusion ..171 Density and survival estimates ....172 Results . 173 Apple orchard, 1984 ..... ..........173 Apple orchard, 1985 .176 Oakwood, 1985 ........176 Discussion •„..... 1 78 CHAPTER SIX: EFFECT OF PARASITISM IN POPULATION MODELS ..181 I n t r oduc t i on 1 8 1 Methods .... 182 Model I 182 Model II . 190 Results ... 191 Model I ......191 Model II .....194 Discussion .1 94 CHAPTER SEVEN: GENERAL CONCLUSIONS .198" LITERATURE CITED 20 1 APPENDICES 209 v i i i LIST OF TABLES Table I. Difference in winter moth phenology on apple and oak 26 Table II. Effect of phenology on percent parasitism in Victoria 26 Table III. Effect of phenology on parasitism at five sites on Saanich Peninsula ...28 Table IV. Density of Cyzenis in the apple orchard and oak wood 28 Table V. Winter moth pupal weights and density of first-instar larvae on apple and oak .41 Table VI. Winter moth mortality from hatch to pupation on apple and oak .. 4 5 Table VII. Mortality from parasitism in years of good and poor host-parasitoid synchrony at Wytham Wood, England 49 Table VIII. Number of Cyzenis eggs oviposited on apple and oak foliage in cage experiments ...61 Table IX. Number of Cyzenis eggs oviposited on apple and oak in 1984 as a function of level of def ol iat ion . '... 65 Table X. Number of Cyzenis eggs oviposited on apple and oak in 1985 as a function of level of defoliation ..66 Table XI. Number of Cyzenis eggs oviposited on apple and oak in 1984 as a function of host density ..68 Table XII. Number of Cyzenis eggs oviposited on apple and oak in 1985 as a function of host density ..69 Table XIII. Distribution of Cyzenis attacks among winter moth larvae from oak and apple trees 76 Table XIV. Aggregation of Cyzenis eggs in apple and oak foliage, and levels of parasitism at five sites on Saanich Peninsula .....77 Table XV. Regression statistics for percent parasitism as a function of defoliation and host density 81 Table XVI. Percent parasitism of winter moth on apple and oak in Victoria ....85 ix Table XVII. Population estimates of predatory beetles ....120 Table XVIII. Anova table for the effect of beetle manipulation on winter moth mortality (k5) ..128 Table XIX. Anova table for the effect of beetle manipulation on Cyzenis mortality 129 Table XX. Anova table for the effect of prey type (host vs parasitoid) on mortality in the soil, in the orchard (k5a vs kcyz) 135 Table XXI. Anova table for the effect of prey type (host v_s parasitoid) on mortality in the soil, in the orchard (k5 vs kcyz) ....136 Table XXII. Anova table for the effect of prey type (host vs parasitoid) on mortality in the soil in the oakwood 137 Table XXIII. Anova table for the effect of habitat type (orchard vs oakwood) on winter moth mortality in the soil ....140 Table XXIV. Anova table for the effect of habitat type (orchard y_s oakwood) on Cyzenis mortality in the soi 1 142 Table XXV. Fate of pupae in the soil in response to manipulation of density 147 Table XXVI. Interaction between parasitism and predation on winter moth pupae in the field .149 Table XXVII. Fate of pupae in beetle removal and control plots 149 Table XXVIII. Predation on parasitized and unparasitized. pupae in cage experiments 154 Table XXIX. Predation on infected and uninfected pupae in cage experiments 155 Table XXX. Mortality of winter moth on: fly-exclusion trees, bird-exclusion trees, and control trees ...177 LIST OF FIGURES Figure 1. Winter moth population density, 1983-85 4 Figure 2. Schematic pattern of phenology of host pupation and parasitoid oviposition 10 Figure 3. Map of Saanich Peninsula with study sites 13 Figure 4. Winter moth development rate as a function of temperature ....16 Figure 5.
Recommended publications
  • No Slide Title
    Tachinidae: The “other” parasitoids Diego Inclán University of Padova Outline • Briefly (re-) introduce parasitoids & the parasitoid lifestyle • Quick survey of dipteran parasitoids • Introduce you to tachinid flies • major groups • oviposition strategies • host associations • host range… • Discuss role of tachinids in biological control Parasite vs. parasitoid Parasite Life cycle of a parasitoid Alien (1979) Life cycle of a parasitoid Parasite vs. parasitoid Parasite Parasitoid does not kill the host kill its host Insects life cycles Life cycle of a parasitoid Some facts about parasitoids • Parasitoids are diverse (15-25% of all insect species) • Hosts of parasitoids = virtually all terrestrial insects • Parasitoids are among the dominant natural enemies of phytophagous insects (e.g., crop pests) • Offer model systems for understanding community structure, coevolution & evolutionary diversification Distribution/frequency of parasitoids among insect orders Primary groups of parasitoids Diptera (flies) ca. 20% of parasitoids Hymenoptera (wasps) ca. 70% of parasitoids Described Family Primary hosts Diptera parasitoid sp Sciomyzidae 200? Gastropods: (snails/slugs) Nemestrinidae 300 Orth.: Acrididae Bombyliidae 5000 primarily Hym., Col., Dip. Pipunculidae 1000 Hom.:Auchenorrycha Conopidae 800 Hym:Aculeata Lep., Orth., Hom., Col., Sarcophagidae 1250? Gastropoda + others Lep., Hym., Col., Hem., Tachinidae > 8500 Dip., + many others Pyrgotidae 350 Col:Scarabaeidae Acroceridae 500 Arach.:Aranea Hym., Dip., Col., Lep., Phoridae 400?? Isop.,Diplopoda
    [Show full text]
  • Lateinischer Tiernamen. Anonymus
    A Index lateinischer Tiernamen Die AutorennameaSubgenus- und Subspeziesbezeichnungen sind dem Textteil zu entnehmen! Abdera 71 Alburnus alburnus 54, 56 Aporia crataegi 102 Abramis brama 53 - bipunctatus 56 Aporophila lutulenta 108 Abraxas grossulariata 111 Alcedo atthis 44 Aquila chrysaetos 44 Acanthocinus griseus 84 Alcis jubata 112 - clanga 46 - reticulatus 84 Alectoris graeca 43 - heliaca 46 Acasis appensata 123 Allophyes oxyacanthae 109 - pomarina 46 - viretata 112 Aiosa aiosa 53 Araschnia levana 104 Accipiter gentilis 44 Alsophila quadripunctaria 112 Archanara geminipuncta 119 - nisus 44 Amata phegea 107 - neurica 108 Acipenser ruthenus 51, 53, 56 Amathes castanea 108 - sparganii 109 - güldenstädti51,53 - collina 110 Arctaphaenops nihilumalbi 77 Acmaeodera degener 86 Ampedus 68 - styriacus 63, 77 Acmaeoderella ftavofasciata 85 Amphibia 49-50 Arctinia caesarea 117 Acmaeops marginata 79 Amphipoea fucosa 109 Ardea cinerea 44 - pratensis 84 Amphipyra livida 109 - purpurea 43, 46 - septentrionis 84 - tetra 109 Ardeola ralloides 46 Acontia luctuosa 109 Anaesthetis testacea 82 Argante herbsti 86 Acrocephalus schoenobaenus 45 Anaitis efformata 111 Argiope bruenichi 16 Acroloxus lacustris 144 Anarta cordigera 110 Argna biplicata 141,145 Actia infantula 131 - myrtilli 108 Aricia artaxerxes 104 - pilipennis 131 Anas crecca 44 Arion alpinus 141 Actinotia hyperici 108 - querquedula 44 - lusitanicus 141 Actitis hypoleucos 44 Anax parthenope 60 - ruf us 141 Adelocera 68 Ancylus fluviatilis 139, 144 Aromia moschata 82 Admontia blanda 131 Anemadus
    [Show full text]
  • The Relationship Between the Winter Moth (Operophtera Brumata) and Its Host Plants in Coastal Maine Kaitlyn M
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Summer 8-2015 The Relationship Between the Winter Moth (Operophtera brumata) and Its Host Plants in Coastal Maine Kaitlyn M. O'Donnell University of Maine - Main, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Biology Commons, and the Other Forestry and Forest Sciences Commons Recommended Citation O'Donnell, Kaitlyn M., "The Relationship Between the Winter Moth (Operophtera brumata) and Its Host Plants in Coastal Maine" (2015). Electronic Theses and Dissertations. 2338. https://digitalcommons.library.umaine.edu/etd/2338 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. THE RELATIONSHIP BETWEEN THE WINTER MOTH (OPEROPTHERA BRUMATA) AND ITS HOST PLANTS IN COASTAL MAINE By Kaitlyn O’Donnell B.S. Saint Michael’s College, 2011 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Entomology) The Graduate School The University of Maine August 2015 Advisory Committee: Eleanor Groden, Professor of Entomology, School of Biology and Ecology, Advisor Francis Drummond, Professor of Insect Ecology and Wild Blueberry Pest Management Specialist, School of Biology and Ecology and the University of Maine Cooperative Extension Joseph Elkinton, Professor of Environmental Conservation, University of Massachusetts Charlene Donahue, Forest Entomologist, Maine Forest Service THESIS ACCEPTANCE STATEMENT On behalf of the Graduate Committee for Kaitlyn O’Donnell I affirm that this manuscript is the final and accepted thesis.
    [Show full text]
  • 2017 Winter Moth Caterpillar Update
    T O W N O F W E L L E S L E Y M A S S A C H U S E T T S DEPARTMENT OF PUBLIC WORKS PARK & TREE DIVISION 30 MUNICIPAL WAY WELLESLEY, MA 02481-4925 MICHAEL T. QUINN TELEPHONE (781) 235-7600 ASSISTANT SUPERINTENDENT EXT. 3331 DEPUTY TREE WARDEN FACSIMILE (781) 431-7569 WWW. WELLESLEYMA.GOV [email protected] 2017 Winter Moth Caterpillar Update In Wellesley and throughout eastern Massachusetts the winter moth caterpillar has been defoliating trees during the spring. Under the authority of the Natural Resources Commission and the guidelines of the Wellesley Integrated Pest Management Policy, the Department of Public Works will be deferring the ground spraying town trees to control winter moth caterpillars, unless an identified tree is determined in need of spraying in order to survive. These exceptions will be treated with Conserve #SC, a spinosad based product, E.P.A. Reg. #62719-291. Hours of spraying will occur between 5am thru 10 am. and will not occur after May 30th, 2016. All treated areas will be posted for 24 hours before and after applications. This is the same strategy we applied in 2014, 2015 AND 2016. During those years we found no trees in need of spraying. The reason for this strategy is due to a team of scientists led by Joseph Elkinton at the University of Massachusetts Amherst. This team released approximately 1,000 parasitic flies at Centennial Park in Wellesley on May 9th, 2008, to help biologically control this invasive caterpillar. In eastern Massachusetts this caterpillar has been stripping the foliage from many kinds of deciduous trees in towns that stretch from the North Shore to Cape Cod.
    [Show full text]
  • Winter Moth After Hatching, the Young Larvae Crawl up Tree Trunks and Produce Silken Threads That Can Carry Operophtera Brumata Them in the Wind
    Department of Conservation and Recreation pest P.O. Box 484, Amherst, MA 01004 Tel: 413-256-1601 alert www.mass.gov/dcr Winter Moth After hatching, the young larvae crawl up tree trunks and produce silken threads that can carry Operophtera brumata them in the wind. This dispersal method, called The winter moth was introduced to North America “ballooning,” is common among defoliators. Larvae from Europe and was first recorded in Nova Scotia are light green loopers (inchworms) that measure in the early 1930s. Infestations are now known to about one inch in length when fully grown. Young occur in New Brunswick, Prince Edward Island, larvae feed within buds and on expanding foliage, British Columbia, Washington, and Oregon, and while older larvae can consume entire leaves. the pest is now established in coastal Massachusetts Feeding is generally completed by mid-June when from Orleans on Cape Cod to Gloucester on larvae pupate in the soil. Cape Ann. There are also unconfirmed reports of spotty infestations along Route 495 south of the Control Massachusetts Turnpike. No natural controls are known to be present in Massachusetts, but researchers at the University of Massachusetts in Amherst are actively collecting and rearing a parasitic fly Cyzenis( albicans) that was very effective at controlling winter moth outbreaks in eastern Canada and the Pacific Northwest. Unfortunately, effective biological control is many years away. For recently defoliated trees, an application of a registered pesticide may be warranted. For more information on currently registered Female and male winter moth (USDA Forest Service photo) pesticides, please contact your local extension service office or visit the cooperative extension Winter Moths in Massachusetts website at: www.umassgreeninfo.org/fact_sheets.
    [Show full text]
  • The Phylogenetics of Tachinidae (Insecta: Diptera) with an Emphasis on Subfamily Structure
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2013 The Phylogenetics of Tachinidae (insecta: Diptera) with an Emphasis on Subfamily Structure Daniel J. Davis Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Biology Commons Repository Citation Davis, Daniel J., "The Phylogenetics of Tachinidae (insecta: Diptera) with an Emphasis on Subfamily Structure" (2013). Browse all Theses and Dissertations. 650. https://corescholar.libraries.wright.edu/etd_all/650 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. THE PHYLOGENETIC RELATIONSHIPS OF TACHINIDAE (INSECTA: DIPTERA) WITH A FOCUS ON SUBFAMILY STRUCTURE A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By DANIEL J DAVIS B.S., Wright State University, 2010 2012 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL December 13, 2012 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Daniel J Davis ENTITLED The phylogenetic relationships of Tachinidae (Insecta: Diptera) with a focus on subfamily structure BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science _____________________________ John O. Stireman III, Ph.D. Thesis Director _____________________________ David Goldstein, Ph.D., Chair Department of Biological Sciences College of Science and Mathematics Committee on Final Examination ____________________________ John O. Stireman III, Ph.D. ____________________________ Jeffrey L. Peters, Ph.D.
    [Show full text]
  • Proceedings of the 5Th International Symposium on Biological Control of Arthropods (Eds
    112 7.1 Friend or Foe: The Role of Native, Natural Enemies in the Biological Control of Winter Moth H.J. Broadley1, J.S. Elkinton2 and G.H. Boettner3 1Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA, [email protected], 2Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA, [email protected], 3Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA, [email protected] Natural enemies that cross over from related native species to invasive species mediate invasions in complex ways (Strauss et al., 2012; Dearborn et al., 2016; Faillace et al., 2017). They have the potential to slow down invasions and aid in biological control efforts (Kenis et al., 2008; Vindstad et al., 2013; Dearborn et al., 2016). In the northeastern United States, the European winter moth, Operophtera brumata L. (Lepidoptera: Geometridae) is an invasive, forest pest causing widespread defoliation in rural and urban settings (Elkinton et al., 2014). Following successful biological control of winter moth in Nova Scotia and British Columbia using the tachinid fly, Cyzenis albicans (Fallén) (Diptera: Tachinidae) (Embree 1966; Murdoch et al., 1985; Roland and Embree, 1995), similar efforts are underway in the northeastern United States (Elkinton et al., 2015). While biocontrol shows promising results, success likely depends on additional mortality from native natural enemies. In the northeast U.S., the closest relative to winter moth is Bruce spanworm, O. bruceata (Hulst) (Lepidoptera: Geometridae). The two are congeners and can hybridize (Gwiazdowski et al., 2013; Havill et al., 2017), thus it is likely that natural enemies from Bruce spanworm as well as other generalists could cross over to cause mortality to the winter moth population.
    [Show full text]
  • Annotated Host Catalogue for the Tachinidae (Diptera) of Italy
    Stuttgarter Beiträge zur Naturkunde A, Neue Serie 3: 305–340; Stuttgart, 30.IV.2010. 305 Annotated host catalogue for the Tachinidae (Diptera) of Italy PIERFILIPPO CERRETTI & HANS-PETER TSCHORSNIG Abstract An annotated host catalogue is given for the Tachinidae of Italy. It comprises 180 tachinid species reared from 310 arthropod hosts belonging to seven insect orders and one chilopod order. The paper includes data from litera- ture as well as hitherto unpublished records. K e y w o r d s : Tachinidae, parasitoids, host catalogue, Italy. Zusammenfassung Für die italienischen Tachinidae wird ein kritischer Wirtekatalog gegeben. Er umfasst 180 Tachiniden-Arten und 310 Arthropoden-Wirtsarten aus sieben Insektenordnungen und einer Ordnung der Hundertfüßer. Die Arbeit enthält sowohl Daten aus der Literatur als auch bisher unveröffentlichte Wirtsangaben. Contents 1 Introduction .........................................................................................................................................................305 2 Explanation of the format ....................................................................................................................................306 3 Annotated parasitoid-host list .............................................................................................................................306 4 Host-parasitoid list ..............................................................................................................................................325 5 References ...........................................................................................................................................................330
    [Show full text]
  • 4 Economic Value of Arthropod Biological Control
    ©CAB International – for Steven Naranjo 4 Economic Value of Arthropod Biological Control STEVEN E. NARANJO1*, GEORGE B. FRISVOLD2 AND PETER C. ELLSWORTH3 1USDA-ARS, Arid-Land Agricultural Research Center, Maricopa, AZ, USA; 2Department of Agricultural and Resource Economics, University of Arizona, Tucson, AZ, USA; 3Department of Entomology, University of Arizona, Maricopa Agricultural Center, Maricopa, AZ, USA Integrated pest management (IPM) is the strategic control are very low, successful programmes have integration of multiple control tactics resulting in the resulted in essentially permanent pest control with amelioration of pest damage that takes into consid- very favourable economic outcomes (Cock et al., eration environmental safety, and the reduction of 2015; Naranjo et al., 2015). risk and favourable economic outcomes for growers A second approach – augmentative biological and society at large. For thousands of years, natural control – involves the initial (inoculation) or enemies of pests have been harnessed for crop pro- repeated (inundation) introduction of native or tection (Simmonds et al., 1976). Maximizing this exotic natural enemies to suppress pest populations. source of natural control is a foundational element Augmentative biological control has been widely in IPM for suppressing the growth of incipient pest and successfully deployed in many parts of the populations (Stern et al., 1959). Biological control world. It is perhaps most well known in protected has been defined as the purposeful use of natural agricultural production, particularly in Europe and enemies, such as predators, parasitoids and patho- in developing regions such as China, India and gens, to regulate another organism’s populations to Latin America (van Lenteren et al., 2017).
    [Show full text]
  • COMMUNITY FOREST MANAGEMENT PLAN Town of Greenburgh, New York
    October 2020 STANDARD INVENTORY ANALYSIS AND COMMUNITY FOREST MANAGEMENT PLAN Town of Greenburgh, New York Prepared for: Prepared by: Town of Greenburgh Davey Resource Group, Inc. Town Hall 295 S. Water Street, Suite 300 117 Hillside Avenue Kent, Ohio 44240 Greenburgh, New York 10607 800-828-8312 Davey Resource Group, Inc.1May 2020 TABLE OF CONTENTS Acknowledgments ............................................................................................................................................ ii Standard Inventory Analysis and Community Forest Management Plan Executive Summary ......... iii Introduction ....................................................................................................................................................... 4 Section 1: Structure and Composition of the Public Tree Resource .......................................................... 4 Section 2: Functions and Benefits of the Public Tree Resource ................................................................ 19 Section 3: Recommended Management of the Public Tree Resource ..................................................... 26 Conclusion ....................................................................................................................................................... 41 References ........................................................................................................................................................ 43 TABLES 1. Defect observations recorded during the tree inventory ....................................................................
    [Show full text]
  • View the PDF File of the Tachinid Times, Issue 9
    The Tachinid Times ISSUE 9 February 1996 Jim O'Hara, editor Agriculture & Agri-Food Canada, Biological Resources Division Centre for Land & Biological Resources Research C.E.F., Ottawa, Ontario, Canada, K1A 0C6 This is the first issue of this newsletter to be offered variegata) is one of the most common pests of many simultaneously (more or less) as hardcopy and over the kinds of roadside trees of urban areas in southern Japan, Internet. For those of you receiving this newsletter in west of Tokyo. This bagworm is never found in natural hardcopy and who wish to view the Internet version, the forests. In the fall of 1995, one of us (TT) collected Internet address of the Biological Resources Division of many specimens of this bagworm near our University our Centre is: http://res.agr.ca/brd/home.html. The campus in Fukuoka and reared them to get some Tachinid Times can be accessed through the BRD parasitoids. Unexpectedly, many individuals of an Homepage. In the years to come the mailing list for the unknown tachinid soon emerged from the bagworms, for hardcopy version of this newsletter will certainly decline the only known tachinid parasitoid of the bagworm is as Internet access becomes more widespread. Exorista japonica and its percentage parasitism had been The Biological Resources Division is about to known to be very low. Later this tachinid was identified undergo another name change. For those attempting to as Nealsomyia rufella (Bezzi), a microtype Oriental keep track, the group of systematists to which I belong tachinid known as a parasitoid of E.
    [Show full text]
  • Chapter 9 Biodiversity of Diptera
    Chapter 9 Biodiversity of Diptera Gregory W. Courtney1, Thomas Pape2, Jeffrey H. Skevington3, and Bradley J. Sinclair4 1 Department of Entomology, 432 Science II, Iowa State University, Ames, Iowa 50011 USA 2 Natural History Museum of Denmark, Zoological Museum, Universitetsparken 15, DK – 2100 Copenhagen Denmark 3 Agriculture and Agri-Food Canada, Canadian National Collection of Insects, Arachnids and Nematodes, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario K1A 0C6 Canada 4 Entomology – Ontario Plant Laboratories, Canadian Food Inspection Agency, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario K1A 0C6 Canada Insect Biodiversity: Science and Society, 1st edition. Edited by R. Foottit and P. Adler © 2009 Blackwell Publishing, ISBN 978-1-4051-5142-9 185 he Diptera, commonly called true flies or other organic materials that are liquified or can be two-winged flies, are a familiar group of dissolved or suspended in saliva or regurgitated fluid T insects that includes, among many others, (e.g., Calliphoridae, Micropezidae, and Muscidae). The black flies, fruit flies, horse flies, house flies, midges, adults of some groups are predaceous (e.g., Asilidae, and mosquitoes. The Diptera are among the most Empididae, and some Scathophagidae), whereas those diverse insect orders, with estimates of described of a few Diptera (e.g., Deuterophlebiidae and Oestridae) richness ranging from 120,000 to 150,000 species lack mouthparts completely, do not feed, and live for (Colless and McAlpine 1991, Schumann 1992, Brown onlyabrieftime. 2001, Merritt et al. 2003). Our world tally of more As holometabolous insects that undergo complete than 152,000 described species (Table 9.1) is based metamorphosis, the Diptera have a life cycle that primarily on figures extracted from the ‘BioSystematic includes a series of distinct stages or instars.
    [Show full text]