Delving Deeper: Critical Challenges for 21St Century Deep-Sea Research

Total Page:16

File Type:pdf, Size:1020Kb

Delving Deeper: Critical Challenges for 21St Century Deep-Sea Research EUROPEAN MARINE BOARD Delving Deeper Critical challenges for 21st century deep-sea research Position Paper 22 Wandelaarkaai 7 I 8400 Ostend I Belgium Tel.: +32(0)59 34 01 63 I Fax: +32(0)59 34 01 65 E-mail: [email protected] www.marineboard.eu www.marineboard.eu European Marine Board The Marine Board provides a pan-European platform for its member organizations to develop common priorities, to advance marine research, and to bridge the gap between science and policy in order to meet future marine science challenges and opportunities. The Marine Board was established in 1995 to facilitate enhanced cooperation between European marine science organizations towards the development of a common vision on the research priorities and strategies for marine science in Europe. Members are either major national marine or oceanographic institutes, research funding agencies, or national consortia of universities with a strong marine research focus. In 2015, the Marine Board represents 36 Member Organizations from 19 countries. The Board provides the essential components for transferring knowledge for leadership in marine research in Europe. Adopting a strategic role, the Marine Board serves its member organizations by providing a forum within which marine research policy advice to national agencies and to the European Commission is developed, with the objective of promoting the establishment of the European marine Research Area. www.marineboard.eu European Marine Board Member Organizations UNIVERSITÉS MARINES Irish Marine Universities National Research Council of Italy Consortium MASTS Delving Deeper: Critical challenges for 21st century deep-sea research European Marine Board Position Paper 22 This position paper is based on the activities of the European Marine Board Working Group Deep-Sea Research (WG Deep Sea) Coordinating author and WG Chair Alex D. Rogers Contributing Authors Alex D. Rogers, Andrew Brierley, Peter Croot, Marina R. Cunha, Roberto Danovaro, Colin Devey, Alf-Håkon Hoel, Henry A. Ruhl, Pierre-Marie Sarradin, Seline Trevisanut, Sybille van den Hove, Helena Vieira, Martin Visbeck Series Editor Niall McDonough Publication Editors Kate Larkin, Karen Donaldson and Niall McDonough External Reviewers Kristina Gjerde (Wycliffe Management, Poland) and Phil Weaver (Seascape Consultants Ltd, UK) Internal review process The content of this document has been subject to internal review, editorial support and approval by the European Marine Board Member Organizations (shown opposite). Additional contributions EurOcean, Antje Boetius, Emily Corcoran, Karen Donaldson, Matt Gianni, Mark Hannington, Tim Packeiser, Francisco Souza Dias, Torsten Thiele and Klaus Wallmann The European Marine Board extends thanks to the members of international deep-sea stakeholder community who contributed to this position paper, and in particular the investment study. Suggested reference Rogers, A.D., Brierley, A., Croot, P., Cunha, M.R., Danovaro, R., Devey, C., Hoel, A.H., Ruhl, H.A., Sarradin, P-M., Trevisanut, S., van den Hove, S., Vieira, H., Visbeck, M. (2015) Delving Deeper: Critical challenges for 21st century deep-sea research. Larkin, K.E., Donaldson, K. and McDonough, N. (Eds.) Position Paper 22 of the European Marine Board, Ostend, Belgium. 224 pp. ISBN 978-94-920431-1-5 www.marineboard.eu [email protected] Second edition, September 2015 Foreword For centuries humans have been crossing the ocean in search of resources and new lands to occupy. Long-distance mariners have a rare insight into the sheer scale of the ocean beyond the continental shelf, where the seabed falls away to depths measured in kilometres. There is no agreed definition of what constitutes the “deep sea”. If we define it as that part of the ocean below 200m in depth (i.e. beyond the penetration of natural light and the reach of humans without the use of submersible technology), then the deep sea covers about 65% of the earth’s surface and provides 95% of its bio- sphere. Its importance within the earth system as a regulator of climate and a provider of ecosystem goods and services cannot be overstated, although the nature and value of these benefits remain poorly understood. Arguably, we know more about the moon and Venus than the deep sea and spend considerably more on space exploration than on deep-sea research. It is imperative that we rectify this knowledge (and funding) deficit by moving beyond piecemeal and short-term scientific studies. In short, we must embark on a new era of exploration of the earth’s final frontier: the deep sea. Why now? Europe is a maritime continent and the EU Blue Growth strategy, launched in 2012, aims to expand our maritime economy, creating 1.6 million new jobs by 2020. Until now, human maritime activities such as fisheries, aquaculture, oil and gas production, aggregate extraction, and recreation and tourism have largely been conducted in coastal and shallow shelf seas. However, there has been a rapid development in interest in accessing ocean resources in deeper waters beyond the continental shelf. Commercial inter- ests include deep-sea mining (mining the ocean floor for valuable minerals and rare earth elements), deep-sea oil and gas production, and deep-sea fisheries. There is also interest in using organisms found in extreme deep-sea environments as a source of interesting bioactive compounds which could be used to generate new drugs, nutraceuticals and industrial products. While activities such as fishing, mining and oil and gas production in the deep sea are becoming technically and economically feasi- ble, they remain highly contentious. Many believe that the potential risks and environmental impacts associated with such activities in the deep sea are too great. We also lack adequate legal and policy frameworks to regulate access to and utilization of deep-sea resources - both living and non-living - in areas beyond national jurisdiction (ABNJ) and international discussions on these issues are currently ongoing in the framework of the United Nations Convention on the Law of the Sea (UNCLOS). What is clear is that technol- ogy development and commercial interest is moving at a pace that outstrips the ocean governance discussions and the generation of new knowledge through scientific research. If commercial activities are to proceed, it is imperative that we develop a much greater knowledge and understanding of the deep sea. It is important to note that in producing a position paper that addresses deep-sea research explicitly, we are not advocating a reduc- tionist approach whereby the deep sea is studied in isolation from other parts of the ocean and earth system. Indeed, understanding the links between the deep ocean, shallow and coastal waters, the land and atmosphere is an important recommendation of this paper. Nonetheless, there are particular challenges to studying the deep sea that merit special attention. Deep-sea exploration is costly, requires extensive and long-term planning, and carries with it a greater level of risk. In addition, most of the deep sea falls out- side of national jurisdiction which presents legal and regulatory challenges. For these reasons, international cooperation is especially important in addressing deep-sea research and in deciding on appropriate management and governance frameworks for deep-sea resources. Industrial development in the deep sea will require advanced technologies and significant investment, the vast majority of which will come from private sources. Hence, an overarching recommendation of this position paper is that, to support Blue Growth, European public research funding should target fundamental scientific research on all components of the deep sea environment and the estab- lishment of environmental baselines. Where possible, this should be done in a time frame that will complement and keep track with industrial expansion in the deep sea. Key areas for public research investment include, inter alia, mapping deep-sea terrain and habi- tats; studying deep-sea biodiversity; understanding deep-sea ecosystem functioning, connectivity and resilience; developing sustained deep-sea observing systems; identifying appropriate indicators and targets for environmental health in the deep sea; and developing innovative governance frameworks to ensure efficiency, transparency and fairness in accessing, utilizing and deriving benefits from deep-sea resources. On behalf of the EMB membership, I would like to extend my sincere thanks to the deep-sea working group experts for their dedica- tion and hard work in producing this detailed paper. Particular thanks must go to Professor Alex Rogers, Chair of the working group. It is a well-worn adage that if you want to get something done, ask a busy person. This is notably true in Alex’s case. He has worked tirelessly and always in good spirit to guide the process at all stages, despite his numerous other committments. My thanks also to the EMB Secretariat, in particular to Niall McDonough, Kate Larkin and Karen Donaldson, who worked continuously behind the scenes to support the work of the group and the finalization of the paper. I sincerely hope that this paper will provide the basis for a new im- petus in European deep-sea research and a guide to funders and decision makers on the most pressing deep-sea research challenges. Jan Mees Chair, European Marine Board Table of contents Foreword 2 Executive Summary 6 1. Introduction 8 1.1 The deep sea 9 1.2 The knowledge deficit 14 1.2.1 Our inner planet 14 1.2.2 Deep-sea ecosystems and connectivity 14
Recommended publications
  • Hikurangi Plateau: Crustal Structure, Rifted Formation, and Gondwana Subduction History
    Article Geochemistry 3 Volume 9, Number 7 Geophysics 3 July 2008 Q07004, doi:10.1029/2007GC001855 GeosystemsG G ISSN: 1525-2027 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Click Here for Full Article Hikurangi Plateau: Crustal structure, rifted formation, and Gondwana subduction history Bryan Davy Institute of Geological and Nuclear Sciences, P.O. Box 30368, Lower Hutt, New Zealand ([email protected]) Kaj Hoernle IFM-GEOMAR, Wischhofstraße 1-3, D-24148 Kiel, Germany Reinhard Werner Tethys Geoconsulting GmbH, Wischhofstraße 1-3, D-24148 Kiel, Germany [1] Seismic reflection profiles across the Hikurangi Plateau Large Igneous Province and adjacent margins reveal the faulted volcanic basement and overlying Mesozoic-Cenozoic sedimentary units as well as the structure of the paleoconvergent Gondwana margin at the southern plateau limit. The Hikurangi Plateau crust can be traced 50–100 km southward beneath the Chatham Rise where subduction cessation timing and geometry are interpreted to be variable along the margin. A model fit of the Hikurangi Plateau back against the Manihiki Plateau aligns the Manihiki Scarp with the eastern margin of the Rekohu Embayment. Extensional and rotated block faults which formed during the breakup of the combined Manihiki- Hikurangi plateau are interpreted in seismic sections of the Hikurangi Plateau basement. Guyots and ridge- like seamounts which are widely scattered across the Hikurangi Plateau are interpreted to have formed at 99–89 Ma immediately following Hikurangi Plateau jamming of the Gondwana convergent margin at 100 Ma. Volcanism from this period cannot be separately resolved in the seismic reflection data from basement volcanism; hence seamount formation during Manihiki-Hikurangi Plateau emplacement and breakup (125–120 Ma) cannot be ruled out.
    [Show full text]
  • Hoplostethus Atlanticus Fisheries Relating to the South Pacific Regional Fishery Management Organisation
    SP-07-SWG-INF-09 Chile 13 May 2009 Information describing orange roughy Hoplostethus atlanticus fisheries relating to the South Pacific Regional Fishery Management Organisation WORKING DRAFT 04 MAY 2007 1. Overview ................................................................................................................ 2 2. Taxonomy .............................................................................................................. 3 2.1 Phylum ............................................................................................................. 3 2.2 Class ................................................................................................................. 3 2.3 Order ................................................................................................................ 3 2.4 Family .............................................................................................................. 3 2.5 Genus and species ............................................................................................ 3 2.6 Scientific synonyms ......................................................................................... 3 2.7 Common names ............................................................................................... 3 2.8 Molecular (DNA or biochemical) bar coding .................................................. 3 3. Species characteristics ........................................................................................... 4 3.1 Global distribution and depth range
    [Show full text]
  • Vulnerable Marine Ecosystems – Processes and Practices in the High Seas Vulnerable Marine Ecosystems Processes and Practices in the High Seas
    ISSN 2070-7010 FAO 595 FISHERIES AND AQUACULTURE TECHNICAL PAPER 595 Vulnerable marine ecosystems – Processes and practices in the high seas Vulnerable marine ecosystems Processes and practices in the high seas This publication, Vulnerable Marine Ecosystems: processes and practices in the high seas, provides regional fisheries management bodies, States, and other interested parties with a summary of existing regional measures to protect vulnerable marine ecosystems from significant adverse impacts caused by deep-sea fisheries using bottom contact gears in the high seas. This publication compiles and summarizes information on the processes and practices of the regional fishery management bodies, with mandates to manage deep-sea fisheries in the high seas, to protect vulnerable marine ecosystems. ISBN 978-92-5-109340-5 ISSN 2070-7010 FAO 9 789251 093405 I5952E/2/03.17 Cover photo credits: Photo descriptions clockwise from top-left: Acanthagorgia spp., Paragorgia arborea, Vase sponges (images courtesy of Fisheries and Oceans, Canada); and Callogorgia spp. (image courtesy of Kirsty Kemp, the Zoological Society of London). FAO FISHERIES AND Vulnerable marine ecosystems AQUACULTURE TECHNICAL Processes and practices in the high seas PAPER 595 Edited by Anthony Thompson FAO Consultant Rome, Italy Jessica Sanders Fisheries Officer FAO Fisheries and Aquaculture Department Rome, Italy Merete Tandstad Fisheries Resources Officer FAO Fisheries and Aquaculture Department Rome, Italy Fabio Carocci Fishery Information Assistant FAO Fisheries and Aquaculture Department Rome, Italy and Jessica Fuller FAO Consultant Rome, Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2016 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Benthic Invertebrate Bycatch from a Deep-Water Trawl Fishery, Chatham Rise, New Zealand
    AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, VOL. 7, 27±40 (1997) CASE STUDIES AND REVIEWS Benthic invertebrate bycatch from a deep-water trawl fishery, Chatham Rise, New Zealand P. KEITH PROBERT1, DON G. MCKNIGHT2 and SIMON L. GROVE1 1Department of Marine Science, University of Otago, PO Box 56, Dunedin, New Zealand 2National Institute of Water and Atmospheric Research Ltd, PO Box 14-901, Kilbirnie, Wellington, New Zealand ABSTRACT 1. Benthic invertebrate bycatch was collected during trawling for orange roughy (Hoplostethus atlanticus) at water depths of 662±1524 m on the northern and eastern Chatham Rise, New Zealand, in July 1994. Seventy-three trawl tows were examined, 49 from `flat' areas and 24 from two groups of `hills' (small seamounts). Benthos was recorded from 82% of all tows. 2. Some 96 benthic species were recorded including Ophiuroidea (12 spp.), Natantia (11 spp.), Asteroidea (11 spp.), Gorgonacea (11 spp.), Holothuroidea (7 spp.), and Porifera (6 spp.). 3. Cluster analysis showed the bycatch from flats and hills to differ significantly. Dominant taxa from flats were Holothuroidea, Asteroidea and Natantia; whereas taxa most commonly recorded from hills were Gorgonacea and Scleractinia. Bycatch from the two geographically separate groups of hills also differed significantly. 4. The largest bycatch volumes comprised corals from hills: Scleractinia (Goniocorella dumosa), Stylasteridae (Errina chathamensis) and Antipatharia (?Bathyplates platycaulus). Such large sessile epifauna may significantly increase the complexity of benthic habitat and trawling damage may thereby depress local biodiversity. Coral patches may require 4100 yr to recover. 5. Other environmental effects of deep-water trawling are briefly reviewed. 6. There is an urgent need to assess more fully the impact of trawling on seamount biotas and, in consequence, possible conservation measures.
    [Show full text]
  • Appendices Appendices
    APPENDICES APPENDICES APPENDIX 1 – PUBLICATIONS SCIENTIFIC PAPERS Aidoo EN, Ute Mueller U, Hyndes GA, and Ryan Braccini M. 2015. Is a global quantitative KL. 2016. The effects of measurement uncertainty assessment of shark populations warranted? on spatial characterisation of recreational fishing Fisheries, 40: 492–501. catch rates. Fisheries Research 181: 1–13. Braccini M. 2016. Experts have different Andrews KR, Williams AJ, Fernandez-Silva I, perceptions of the management and conservation Newman SJ, Copus JM, Wakefield CB, Randall JE, status of sharks. Annals of Marine Biology and and Bowen BW. 2016. Phylogeny of deepwater Research 3: 1012. snappers (Genus Etelis) reveals a cryptic species pair in the Indo-Pacific and Pleistocene invasion of Braccini M, Aires-da-Silva A, and Taylor I. 2016. the Atlantic. Molecular Phylogenetics and Incorporating movement in the modelling of shark Evolution 100: 361-371. and ray population dynamics: approaches and management implications. Reviews in Fish Biology Bellchambers LM, Gaughan D, Wise B, Jackson G, and Fisheries 26: 13–24. and Fletcher WJ. 2016. Adopting Marine Stewardship Council certification of Western Caputi N, de Lestang S, Reid C, Hesp A, and How J. Australian fisheries at a jurisdictional level: the 2015. Maximum economic yield of the western benefits and challenges. Fisheries Research 183: rock lobster fishery of Western Australia after 609-616. moving from effort to quota control. Marine Policy, 51: 452-464. Bellchambers LM, Fisher EA, Harry AV, and Travaille KL. 2016. Identifying potential risks for Charles A, Westlund L, Bartley DM, Fletcher WJ, Marine Stewardship Council assessment and Garcia S, Govan H, and Sanders J.
    [Show full text]
  • Charactensation of the Alfonsino (Beryx Splendens) Fishery in BYX 3
    ISSN 1175-1584 MINISTRY OF FISHERIES Te Tautiaki i nga lid a Tangaroa Charactensation of the alfonsino (Beryx splendens) fishery in BYX 3 A. D. Langley N. A Walker New Zealand Fisheries Assessment Report 2002129 July 2002 Characterisation of the alfonsino (Beryx spZendm) fishery in BYX 3 A D. Langley N. A Walker Trophia Ltd PO Box 60 Kaikoura New Zealand Fisheries Assessment Report 2002129 July 2002 Published by Ministry of Fisheries Wellington 2002 ISSN 1175-1584 0 Ministry of Fisheries 2002 Citation: Langley, A.D.; Walker, N.A. (2002). Characterisation of the alfonsino (Beysplendens) fishery in BYX 3. New Zealand Fisheries Assessment Report 2002/29.40 p. This series continues the informal New Zealand Fisheries Assessment Research Document series which ceased at the end of 1999. EXECUTIVE SUMMARY Langley, A.D.; Walker, N.A. (2002). Characterisation of the alfonsino (Beryx splendem) fishery in BYX 3. New Zealand Fisheries Assessment Report 2002B9.40 p. Alfonsino, Belyx splendens, are distributed worldwide in temperate and bopical waters with the exception of the northeastern Pacific. The commercial fishery in New Zealand fishes seamounts and underwater ridges at depths ranging from 200 to 1000 m. In BYX 3, the alfonsino fishery off the east coast of the south island of New Zealand, a target trawl fishery has developed recently, particularly to the southeast of the Chatham Islands, which has resulted in a large increase in catches and a concomitant increase in bycatch of bluenose, EfypezogIypJze antarctica. These developments prompted concerns regarding the status of the stocks and the Ministry of Fisheries commissioned a review of the fishery.
    [Show full text]
  • Targeted Review of Biological and Ecological Information from Fisheries Research in the South East Marine Region
    TARGETED REVIEW OF BIOLOGICAL AND ECOLOGICAL INFORMATION FROM FISHERIES RESEARCH IN THE SOUTH EAST MARINE REGION FINAL REPORT B. D. Bruce, R. Bradford, R. Daley, M. Green and K. Phillips December 2002 Client: National Oceans Office Targeted review of biological and ecological information from fisheries research in the South East Marine Region Final Report B. D. Bruce, R. Bradford, R. Daley M. Green and K. Phillips* CSIRO Marine Research, Hobart * National Oceans Office December 2002 2 Table of Contents: Table of Contents:...................................................................................................................................3 Introduction.............................................................................................................................................5 Objective of review.............................................................................................................................5 Structure of review..............................................................................................................................5 Format.................................................................................................................................................6 General ecological/biological issues and uncertainties for the South East Marine Region ....................9 Specific fishery and key species accounts ............................................................................................10 South East Fishery (SEF) including the South East Trawl
    [Show full text]
  • Orange Roughy New Zealand
    Orange Roughy Hoplostethus atlanticus Image ©Monterey Bay Aquarium New Zealand Bottom Trawl July 21, 2014 Andy Woolmer and Jess Woo, Consulting Researcher 2 About Seafood Watch® The Monterey Bay Aquarium Seafood Watch® program evaluates the ecological sustainability of wild- caught and farmed seafood commonly found in the North American marketplace. Seafood Watch defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. The program’s mission is to engage and empower consumers and businesses to purchase environmentally responsible seafood fished or farmed in ways that minimize their impact on the environment or are in a credible improvement project with the same goal. Each sustainability recommendation is supported by a seafood report. Each report synthesizes and analyzes the most current ecological, fisheries and ecosystem science on a species, then evaluates this information against the program’s Sustainability Criteria to arrive at a recommendation of “Best Choice,” “Good Alternative,” or “Avoid.” In producing the seafood reports, Seafood Watch utilizes research published in academic, peer-reviewed journals whenever possible. Other sources of information include government technical publications, fishery management plans and supporting documents, and other scientific reviews of ecological sustainability. Seafood Watch research analysts also communicate with ecologists, fisheries and aquaculture scientists, and members of industry and conservation organizations when evaluating fisheries and aquaculture practices. Capture fisheries and aquaculture practices are highly dynamic; as the scientific information on each species changes, Seafood Watch’s sustainability recommendations and the underlying seafood reports will be updated to reflect these changes.
    [Show full text]
  • Oceanography and Marine Zoology of the New Zealand Subantarctic
    44 ECOLOGY OF SUBANTARCTIC ISLANDS The highest temperatures recorded at Auck- REFERENCES land Is. and at Campbell 1. are much the same, approximately 65°F., and are 12°F. DE LISLE, J. F., 1964. Weather and climate of Campbell higher than that at Macquarie 1. (Table 12). Island. Pacific Ins. Monograph 7: 34-44. The extreme minimum at Macquarie I. is 10°F. lower than that at Port Ross. FABRICIUS, A. F., 1957. Climate of the Subantarctic Islands. In Meteorology of the Antarctic, ed. Van Sea temperatures at Campbell 1. are about Rooy. Weather Bureau, South Africa. 3°F. warmer than the earth temperatures at 12 inches in mid winter and about I!OF. colder FALLA, R. A., 1948. The outlying islands of New Zea- in midsummer (Table 13). land. N.Z. Geographer 4; 127-154. HITCHINGS, M. G., 1949. Campbell Island. A subantarc- TABLE 13. Mean monthly earth and sea tic meteorological station. Weather 4: 389-92. temperatures. Earth temp. Sea temp. MARSHALL, 0., 1909. The Meteorology of Campbell at 1 foot Campbell Auckland Island. In The Subantarctic Islands of New Zea- Campbell L I. Is. land, ed. C. Chilton. Philosophical Institute of Jan. 51.0 49.5 50.8 Canterbury. 2 vols. Feb. 50.3 49.t 51.0 Mar. 48.5 48.5 50.5 MAWSON, D., 1915. The home of the blizzard. Heine- man, London. 2 vols. A~ ~ ~ ~ May 43.2 45.3 47.4 NEWMAN, W., 1929. Tabulated and reduced records of June 40.3 43.2 46.1 the Macquarie Island Station. In Aust.
    [Show full text]
  • Biological Results of the Chatham Islands 1954 Expedition
    NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH BULLETIN 139 (1) Biological Results of The Chatham Islands 1954 Expedition PART 1 Decapoda Brachyura by R. K. DELL Cumacea by N. S. JONES Decapoda Natantia by J. c, YALDWYN New Zealand Oceanographic Institute Memoir No. 4 1960 BIOLOGICAL RESULTS OF THE CHATHAM ISLANDS 1954 EXPEDITION PART 1 <i Photo: I). Marshall Sorting a trawl haul on the after deek NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH BULLETIN 139 (1) Biological Results of The Chatham Islands 1954 Expedition PART 1 Decapoda Brachyura by R. K. DELL Cumacea by N. S. JONES Decapoda Natantia by J. C. YALDWYN New Zealand Oceanographic Institute Memoir No. 4 Price 10/- 1960 N.Z. Dep. sci. industr. Res. Bull. 139 (1) (N.Z. oceanogr. Inst. Mem. 4) Printed by Wright & Carman Ltd., Wellington, New Zealand—1960 Under authority R. E. Owen, Government Printer, Wellington, N.Z. FOREWORD The Chatham Islands 1954 Expedition was organised and led by Prof. G. A. Knox of the Zoology Department of Canterbury University. The expedition was planned to explore the distribution of benthic and pelagic animals between the New Zealand coast and the Chatham Islands over the Chatham Rise, and to investigate the faunal affinities of the Chathams group, which lies in the Sub- tropical Convergence zone. A substantial grant towards the cost of the expedition was made by the Council for Scientific and Industrial Research on the recommendation of the N.Z. Oceanographic Committee: further financial support was given by Canterbury University, Canterbury Museum, Dominion Museum and Canterbury and South- land Branches of the Royal Society of New Zealand.
    [Show full text]
  • 38. Seismic Stratigraphy and Structure Adjacent to an Evolving Plate Boundary, Western Chatham Rise, New Zealand1
    38. SEISMIC STRATIGRAPHY AND STRUCTURE ADJACENT TO AN EVOLVING PLATE BOUNDARY, WESTERN CHATHAM RISE, NEW ZEALAND1 K. B. Lewis, New Zealand Oceanographic Institute D. J. Bennett, Geophysics Division of the Department of Scientific and Industrial Research, New Zealand R. H. Herzer, New Zealand Geological Survey and C. C. von der Borch, Flinders University2 ABSTRACT Seismic profiles obtained from the eastern side of New Zealand, in transit to and from Site 594, illustrate the evolu- tion of the western end of the Chatham Rise and the southern extremity of the Hikurangi Trough. They show several unconformities and several major changes in tectonic and depositional regime. The unconformities represent major changes in oceanic circulation, possibly triggered by large lowerings of sea level in the late Oligocene and late Miocene. Tectonism is exemplified by a Late Cretaceous phase of block faulting, heralding the rift from Gondwanaland, and by Plio-Pleistocene normal faulting on the northern flank of the rise antithetic to the oblique-collision plate boundary in the southern Hikurangi Trough. This active normal faulting may indicate that the northwestern corner of Chatham Rise continental crust is being dragged down with the subducting slab to the north. The depositional regime has changed from Late Cretaceous infilling of fault-angle depressions, through an early Tertiary transgression and mid-Tertiary car- bonate drape, to a late Miocene-Recent sequence recording repeated glacial-interglacial events. This upper stratified unit onlaps a late Miocene erosion/phosphatization unconformity toward the crest of the rise. It is locally truncated by a slope-parallel erosion surface, with downslope buildup, which may indicate either current scour and deposition or mass movement.
    [Show full text]
  • Ocean Survey 20/20, Chatham Rise Benthos: Effects of Seabed Trawling on Benthic Communities
    Ocean Survey 20/20, Chatham Rise Benthos: effects of seabed trawling on benthic communities New Zealand Aquatic Environment and Biodiversity Report No. 183 David Bowden Daniel Leduc ISSN 1179-6480 (online) ISBN 978-1-77665-594-6 (online) June 2017 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-and-resources/publications http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright - Ministry for Primary Industries TABLE OF CONTENTS Executive Summary 1 1. INTRODUCTION 2 1.1 Background 2 1.2 Fishing effects 2 2. METHODS 3 2.1 Study area 3 2.2 Survey design 4 2.3 Epifauna sampling 5 2.4 Infauna sampling 5 2.5 Trawl intensity data 6 2.6 Primary production data 7 2.7 Sample Data 7 Seabed terrain metrics 7 Epifauna and bioturbation data from camera transects 8 Infauna data from multicorer samples 8 Sediment data 9 Functional traits and sensitivity to disturbance 9 2.8 Analyses 10 Description of pattern 10 Correlations with environmental variables 11 Influence of trawling 12 3. RESULTS 13 3.1 Description of pattern 13 Mega-epifauna 13 Macro-infauna 19 Bioturbation marks 20 3.2 Relationships between community and environment 22 Mega-epifauna 22 Macro-infauna 23 Bioturbation marks 24 3.3 Influence of trawling 25 Mega-epifauna 25 Bioturbation marks 30 4.
    [Show full text]