The Official Magazine of The

Total Page:16

File Type:pdf, Size:1020Kb

The Official Magazine of The OceTHE OFFICIALa MAGAZINEn ogOF THE OCEANOGRAPHYra SOCIETYphy CITATION Haddock, S.H.D., L.M. Christianson, W.R. Francis, S. Martini, C.W. Dunn, P.R. Pugh, C.E. Mills, K.J. Osborn, B.A. Seibel, C.A. Choy, C.E. Schnitzler, G.I. Matsumoto, M. Messié, D.T. Schultz, J.R. Winnikoff, M.L. Powers, R. Gasca, W.E. Browne, S. Johnsen, K.L. Schlining, S. von Thun, B.E. Erwin, J.F. Ryan, and E.V. Thuesen. 2017. Insights into the biodiversity, behavior, and bioluminescence of deep-sea organisms using molecular and maritime technology. Oceanography 30(4):38–47, https://doi.org/ 10.5670/oceanog.2017.422. DOI https://doi.org/10.5670/oceanog.2017.422 COPYRIGHT This article has been published in Oceanography, Volume 30, Number 4, a quarterly journal of The Oceanography Society. Copyright 2017 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. DOWNLOADED FROM HTTP://TOS.ORG/OCEANOGRAPHY CELEBRATING 30 YEARS OF OCEAN SCIENCE AND TECHNOLOGY AT THE MONTEREY BAY AQUARIUM RESEARCH INSTITUTE Insights into the BIODIVERSITY, BEHAVIOR, AND BIOLUMINESCENCE OF DEEP-SEA ORGANISMS Using Molecular and Maritime Technology By Steven H.D. Haddock, Lynne M. Christianson, Warren R. Francis, Séverine Martini, Casey W. Dunn, Philip R. Pugh, Claudia E. Mills, Karen J. Osborn, Brad A. Seibel, C. Anela Choy, Christine E. Schnitzler, George I. Matsumoto, Monique Messié, Darrin T. Schultz, Jacob R. Winnikoff, Meghan L. Powers, Rebeca Gasca, William E. Browne, Sönke Johnsen, Kyra L. Schlining, Susan von Thun, Benjamin E. Erwin, Joseph F. Ryan, and Erik V. Thuesen 38 Oceanography | Vol.30, No.4 ABSTRACT. Since its founding, the Monterey Bay Aquarium Research Institute were devoted to water column research, (MBARI) has pioneered unique capabilities for accessing the deep ocean and its though, were numbered in the dozens inhabitants through focused peer relationships between scientists and engineers. to low hundreds—sufficient for making This focus has enabled breakthroughs in our understanding of life in the sea, leading opportunistic discoveries, but not ideal for to fundamental advances in describing the biology and the ecology of open-ocean experiments or long-term studies. Even and deep-sea animals. David Packard’s founding principle was the application of today with MBARI’s marine operations technological advances to studying the deep ocean, in part because he recognized the and the remotely operated vehicle (ROV) critical importance of this habitat in a global context. Among other fields, MBARI’s dives conducted by other nongovernmen- science has benefited from applying novel methodologies in molecular biology and tal organizations and governmental ocean genetics, imaging systems, and in situ observations. These technologies have allowed exploration programs around the world MBARI’s bioluminescence and biodiversity laboratory and worldwide collaborators to (e.g., NOAA Ship Okeanos Explorer, address centuries-old questions related to the biodiversity, behavior, and bio-optical Ocean Exploration Trust’s E/V Nautilus, properties of organisms living in the water column, from the surface into the deep sea. and Schmidt Ocean Institute’s R/V Falkor; Many of the most interesting of these phenomena are in the midwater domain—the see Oceanography ocean exploration vast region of ocean between the sunlit surface waters and the deep seafloor. supplements at https://tos.org/ ocean- exploration), the combined effort covers a INTRODUCTION hydrozoans), doliolids (sea squirt rela- minute fraction of the massive volume of When the Monterey Bay Aquarium tives), and other key players in water- deep-sea habitat (Figure 1). Research Institute (MBARI) was founded column ecosystems that had otherwise At the time of MBARI’s found- in 1987, the biodiversity of gelatinous not been known, despite centuries of ing, molecular methods were in their deep-sea organisms was mainly known sampling using more destructive meth- relative infancy, with DNA ampli- from trawl-based studies and a few pio- ods. Specialists focused on these poorly fication via polymerase chain reac- neering dives with Woods Hole Ocean- known invertebrates, studying everything tion (PCR) not widely used, and ographic Institution’s Alvin submersible from basic taxonomy (e.g., Pugh, 1992; DNA sequencing achieved only and Harbor Branch Oceanographic Insti- Pugh and Harbison, 1986; Madin and through time-consuming and labor- tution’s Johnson-Sea-Link submersibles. Harbison, 1978) to metabolic rates intensive methods. As an example, the International teams of taxonomists and (Bailey et al., 1995) and bioluminescence gene for the photoprotein aequorin, used ecologists were beginning to appreciate (Herring et al., 1992; Widder et al., 1992; in the bioluminescence systems of some the undocumented species of comb jellies Haddock and Case, 1999). The number jellies, had just been cloned (Prasher et al., (ctenophores), siphonophores (a clade of of dives and sampling opportunities that 1986), and the gene for green-fluorescent VOLUME BY PERCENTAGE 1% 5% 1% Terrestrial (100 m high) FIGURE 1. Perspective of the habitable space Shallow Ocean (<200 m) on the planet differs substantially whether Benthic Ocean (50 m up) area or volume is considered. By area, the Deep Pelagic Ocean ocean indeed covers about 70% of Earth’s sur- 93% face. Factoring in that the average depth of the HABITAT BY AREA ocean is 4,000 m, and considering that the liv- ing space over land is perhaps 100 m high, we find that 98% of the volume of the biosphere is seawater. Of that, the vast majority is the deep, dark ocean below 200 m. The field of deep-sea research has historically focused on organisms living in and on the seafloor—ignoring the kilo- meters of water that lie above. While unfamil- iar to most, this deep water column is a source of nutrients and food for shallow-living species, and home to spectacular biodiversity, massive HABITAT BY VOLUME daily migrations, and processes controlling the cycling and sequestration of carbon. The study of midwater animals can provide unique insights into the evolutionary history of many animals, because most animals there have rel- atives in shallow water or the benthos. Despite its size and global importance, few institutions support research on the midwater environment. Oceanography | December 2017 39 BOX 1. EDUCATION AND OUTREACH IMPACTS The public is often intrigued by observations and research related international venues. The Monterey Bay Aquarium also has been to the remote midwater and open-ocean environments. Anything involved in research collaborations that have resulted in unique we can do to make these habitats and organisms more approach- studies of the origin of luciferin in jellies (Haddock et al., 2001) able and part of the public’s everyday life will have broad socie- and the use of natural fluorescence as a lure for prey (Haddock tal impacts. By shifting public perception of the deep sea from a and Dunn, 2015). Other research collaborations are with the staff frightening and desolate environment to one rich with fascinating of the Monterey Bay National Marine Sanctuary. diversity, we can instill an appreciation of how our fates are inter- Another mechanism for dissemination of our ever-expanding linked and inspire conservation of the ocean and life within. knowledge of deep-ocean biodiversity is MBARI’s Deep-Sea One of the most direct and powerful ways to educate the pub- Guide (http://dsg.mbari.org; https://youtu.be/6-vpezVgD9o). This lic is by producing videos that combine our ROV footage with ani- guide provides public access to the species, data, and concepts mations and scientific information. These videos reach hundreds that have been identified, observed, and collected since MBARI of thousands or millions of viewers, and are widely used as con- was founded. More formally, the software to operate the Video tent in classrooms spanning elementary schools to universities. Annotation and Reference System (VARS; http://mbari.org/vars) is Because many of the organisms and interactions are new to sci- also open source, so that others can use it. entists, they are also novel to the general public, and appeal to our universal fascination with all things strange and wonderful. MBARI also offers in-depth engagement with students, research- ers, and teachers through many participatory programs and fellow- ships. Educational efforts include the summer internship program, the EARTH teacher professional development program, and the Monterey Bay Aquarium WATCH program at local high schools. MBARI’s sister institution, the Monterey Bay Aquarium, Monterey Bay hosts nearly two million visitors per year, and MBARI research, Aquarium Exhibits knowledge, and images have been instrumental in the cre- ation of several popular exhibits, including “Jellies: Living Art,” “Mysteries of the Deep,” “The Jellies Experience,” and their LiveLink auditorium program. MBARI staff have also participated in the creation of exhibits at the Smithsonian Institution National Museum of Natural History, the American Museum of Natural History, the Exploratorium, and other MBARI VIDEO. There’s No Such Thing as a Jellyfish » More than 300,000 views on YouTube SpectorDance – Bioluminescence. Photo credit: W. Roden/New Dawn Studios MBARI VIDEO. The Secret Life of Velella: Adrift with the By-the-Wind Sailor » More than 80,000 views on YouTube 40 Oceanography | Vol.30, No.4 protein (GFP), which would ultimately procedure and database have become the development of the databases does not revolutionize biotechnology and lead to Video Annotation and Reference System mean that annotations have not changed the Nobel Prize in chemistry for its devel- (VARS; Schlining and Jacobsen Stout, over the years. For many species, as we opers, had not yet been isolated (Prasher 2006).
Recommended publications
  • The Evolution of Siphonophore Tentilla for Specialized Prey Capture in the Open Ocean
    The evolution of siphonophore tentilla for specialized prey capture in the open ocean Alejandro Damian-Serranoa,1, Steven H. D. Haddockb,c, and Casey W. Dunna aDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520; bResearch Division, Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039; and cEcology and Evolutionary Biology, University of California, Santa Cruz, CA 95064 Edited by Jeremy B. C. Jackson, American Museum of Natural History, New York, NY, and approved December 11, 2020 (received for review April 7, 2020) Predator specialization has often been considered an evolutionary makes them an ideal system to study the relationships between “dead end” due to the constraints associated with the evolution of functional traits and prey specialization. Like a head of coral, a si- morphological and functional optimizations throughout the organ- phonophore is a colony bearing many feeding polyps (Fig. 1). Each ism. However, in some predators, these changes are localized in sep- feeding polyp has a single tentacle, which branches into a series of arate structures dedicated to prey capture. One of the most extreme tentilla. Like other cnidarians, siphonophores capture prey with cases of this modularity can be observed in siphonophores, a clade of nematocysts, harpoon-like stinging capsules borne within special- pelagic colonial cnidarians that use tentilla (tentacle side branches ized cells known as cnidocytes. Unlike the prey-capture apparatus of armed with nematocysts) exclusively for prey capture. Here we study most other cnidarians, siphonophore tentacles carry their cnidocytes how siphonophore specialists and generalists evolve, and what mor- in extremely complex and organized batteries (3), which are located phological changes are associated with these transitions.
    [Show full text]
  • Chaetognatha) Западной Части Тихого Океана (Морфология, Систематика, Филогения)
    На правах рукописи КАСАТКИНА Алла Петровна ЩЕТИНКОЧЕЛЮСТНЫЕ (CHAETOGNATHA) ЗАПАДНОЙ ЧАСТИ ТИХОГО ОКЕАНА (морфология, систематика, филогения) 03.02.04 - зоология АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора биологических наук Владивосток - 2012 Работа выполнена в Лаборатории исследования загрязнения и экологии Федерального государственного бюджетного учреждения науки Тихоокеан- ском океанологическом институте им. В.И.Ильичева ДВО РАН Официальные оппоненты: Малахов Владимир Васильевич, доктор биологических наук, профессор, член-корреспондент РАН, ФГОУ ВПО "Москов- ский государственный университет им. М.В. Ло- моносова", заведующий кафедрой зоологии бес- позвоночных Лелей Аркадий Степанович, доктор биологических наук, профессор, ФГБУН Биолого-почвенного института ДВО РАН заведующий Лабораторией энтомологии Долматов Игорь Юрьевич, доктор биологических наук, старший научный сотрудник ФГБУН Института биологии моря им. A.B. Жирмунского ДВО РАН, заведующий Лабораторией сравнительной цитологии Ведущая организация: Федеральное государственное бюджетное учрежде- ние науки Зоологический институт РАН (г. Санкт-Петербург) Защита состоится «08» февраля 2013 г. в 10 часов на заседании диссертаци- онного совета Д 005.003.03 при Биолого-почвенном институте ДВО РАН по адресу: 690022, г. Владивосток-22, проспект 100- летия Владивостока, 159. Отзывы на автореферат в двух экземплярах с заверенными подписями просим направлять по адресу: 690022, г. Владивосток-22, проспект 100-летия Влади- востока, 159, ученому секретарю диссертационного совета.
    [Show full text]
  • Crustacea, Malacostraca)*
    SCI. MAR., 63 (Supl. 1): 261-274 SCIENTIA MARINA 1999 MAGELLAN-ANTARCTIC: ECOSYSTEMS THAT DRIFTED APART. W.E. ARNTZ and C. RÍOS (eds.) On the origin and evolution of Antarctic Peracarida (Crustacea, Malacostraca)* ANGELIKA BRANDT Zoological Institute and Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany Dedicated to Jürgen Sieg, who silently died in 1996. He inspired this research with his important account of the zoogeography of the Antarctic Tanaidacea. SUMMARY: The early separation of Gondwana and the subsequent isolation of Antarctica caused a long evolutionary his- tory of its fauna. Both, long environmental stability over millions of years and habitat heterogeneity, due to an abundance of sessile suspension feeders on the continental shelf, favoured evolutionary processes of “preadapted“ taxa, like for exam- ple the Peracarida. This taxon performs brood protection and this might be one of the most important reasons why it is very successful (i.e. abundant and diverse) in most terrestrial and aquatic environments, with some species even occupying deserts. The extinction of many decapod crustaceans in the Cenozoic might have allowed the Peracarida to find and use free ecological niches. Therefore the palaeogeographic, palaeoclimatologic, and palaeo-hydrographic changes since the Palaeocene (at least since about 60 Ma ago) and the evolutionary success of some peracarid taxa (e.g. Amphipoda, Isopo- da) led to the evolution of many endemic species in the Antarctic. Based on a phylogenetic analysis of the Antarctic Tanaidacea, Sieg (1988) demonstrated that the tanaid fauna of the Antarctic is mainly represented by phylogenetically younger taxa, and data from other crustacean taxa led Sieg (1988) to conclude that the recent Antarctic crustacean fauna must be comparatively young.
    [Show full text]
  • In Worms Geoff Read NIWA New Zealand
    Brussels, 28-30 September Polychaeta (Annelida) in WoRMS Geoff Read NIWA New Zealand www.marinespecies.org/polychaeta/index.php Context interface Swimming — an unexpected skill of Polychaeta Acrocirridae Alciopidae Syllidae Nereididae Teuthidodr ilus = squidworm Acrocirridae Polynoidae Swima bombiviridis Syllidae Total WoRMS Polychaeta records, excluding fossils 91 valid families. Entries >98% editor checked, except Echiura (69%) Group in WoRMS all taxa all species valid species names names names Class Polychaeta 23,872 20,135 11,615 Subclass Echiura 296 234 197 Echiura were recently a Subclass Errantia 12,686 10,849 6,210 separate phylum Subclass Polychaeta incertae sedis 354 265 199 Subclass Sedentaria 10,528 8,787 5,009 Non-marine Polychaeta 28 16 (3 terrestrial) Class Clitellata* 1601 1086 (279 Hirudinea) *Total valid non-leech clitellates~5000 spp, 1700 aquatic. (Martin et al. 2008) Annelida diversity "It is now clear that annelids, in addition to including a large number of species, encompass a much greater disparity of body plans than previously anticipated, including animals that are segmented and unsegmented, with and without parapodia, with and without chaetae, coelomate and acoelomate, with straight guts and with U-shaped digestive tracts, from microscopic to gigantic." (Andrade et al. 2015) Andrade et al (2015) “Articulating “archiannelids”: Phylogenomics and annelid relationships, with emphasis on meiofaunal taxa.” Molecular Biology and Evolution, efirst Myzostomida (images Summers et al)EV Nautilus: Riftia Semenov: Terebellidae Annelida latest phylogeny “… it is now well accepted that Annelida includes many taxa formerly considered different phyla or with supposed affiliations with other animal groups, such as Sipuncula, Echiura, Pogonophora and Vestimentifera, Myzostomida, or Diurodrilida (Struck et al.
    [Show full text]
  • Holoplanktonic Polychaetes from the Gulf of California: August-September 1977
    ALAMO: HOLOPLANKTONICPOLYCHAETES FROM GULF OF CALIFORNIA: 1977 CalCOFl Rep., Vol. 32,1991 HOLOPLANKTONIC POLYCHAETES FROM THE GULF OF CALIFORNIA: AUGUST-SEPTEMBER 1977 M ANA FERNANDEZ ALAMO Laboratorio de Invertebrados Facultad de Ciencias, UNAM A P. 70-371, Mexico, D E 04510 ABSTRACT men islands; Treadwell (1929) described Cevatoneveis This study is based on zooplankton samples col- singularis from San Jose and Carmen islands; and lected by Instituto Nacional de Pesca, Mexico Steinbeck and Ricketts (1971) recorded pelagic (August-September 1977) with a standard open net, forms of Cevatonereis tentaculata, Platyneveis polis- at 41 stations in the epipelagic region of the Gulf of calma, I? agassizi, Pevineveis sp., Neanthes sp., and a California. The seventeen species of holoplanktonic pelagic form of Alnhlyosyllis sp. from La Paz and polychaetes that were determined represent new Cab0 San Lucas. records from this region. Tomoptevisplanktonis, with No records of holoplanktonic species of the fami- a relative abundance of 73%, and 85% of occur- lies Tomopteridae, Alciopidae, Lopadorhynchidae, rence, was the dominant species. Typhloscolecidae, Pontodoridae, and Iospilidae With respect to their biogeographical affinities, have been found. most species belong to a subtropical-tropical pat- In general, knowledge of the pelagic polychaetes tern, three species are true cosmopolitans, and two in the Pacific Ocean is contained in a few papers. have warm-water affinities. The data agree with the Dales (1957) included literature records and reported general patterns of distribution recorded for other the distribution of the species in the northeast Pa- groups of zooplankton in the epipelagic region of cific, from Cape Disappointment, Oregon (about the Gulf of California.
    [Show full text]
  • Await in Deep-Pelagic Habitats the Remarkable Squidworm Is An
    Downloaded from rsbl.royalsocietypublishing.org on November 24, 2010 The remarkable squidworm is an example of discoveries that await in deep-pelagic habitats Karen J. Osborn, Laurence P. Madin and Greg W. Rouse Biol. Lett. published online 24 November 2010 doi: 10.1098/rsbl.2010.0923 Supplementary data "Data Supplement" http://rsbl.royalsocietypublishing.org/content/suppl/2010/11/19/rsbl.2010.0923.DC1.ht ml References This article cites 12 articles, 1 of which can be accessed free http://rsbl.royalsocietypublishing.org/content/early/2010/11/19/rsbl.2010.0923.full.html #ref-list-1 P<P Published online 24 November 2010 in advance of the print journal. Subject collections Articles on similar topics can be found in the following collections taxonomy and systematics (299 articles) evolution (2221 articles) Receive free email alerts when new articles cite this article - sign up in the box at the top Email alerting service right-hand corner of the article or click here Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication. To subscribe to Biol. Lett. go to: http://rsbl.royalsocietypublishing.org/subscriptions This journal is © 2010 The Royal Society Downloaded from rsbl.royalsocietypublishing.org on November 24, 2010 Biol. Lett. mixing with basin water, resulting in long residence doi:10.1098/rsbl.2010.0923 times for water below 1500 m [2].
    [Show full text]
  • Polychaete Worms Definitions and Keys to the Orders, Families and Genera
    THE POLYCHAETE WORMS DEFINITIONS AND KEYS TO THE ORDERS, FAMILIES AND GENERA THE POLYCHAETE WORMS Definitions and Keys to the Orders, Families and Genera By Kristian Fauchald NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY In Conjunction With THE ALLAN HANCOCK FOUNDATION UNIVERSITY OF SOUTHERN CALIFORNIA Science Series 28 February 3, 1977 TABLE OF CONTENTS PREFACE vii ACKNOWLEDGMENTS ix INTRODUCTION 1 CHARACTERS USED TO DEFINE HIGHER TAXA 2 CLASSIFICATION OF POLYCHAETES 7 ORDERS OF POLYCHAETES 9 KEY TO FAMILIES 9 ORDER ORBINIIDA 14 ORDER CTENODRILIDA 19 ORDER PSAMMODRILIDA 20 ORDER COSSURIDA 21 ORDER SPIONIDA 21 ORDER CAPITELLIDA 31 ORDER OPHELIIDA 41 ORDER PHYLLODOCIDA 45 ORDER AMPHINOMIDA 100 ORDER SPINTHERIDA 103 ORDER EUNICIDA 104 ORDER STERNASPIDA 114 ORDER OWENIIDA 114 ORDER FLABELLIGERIDA 115 ORDER FAUVELIOPSIDA 117 ORDER TEREBELLIDA 118 ORDER SABELLIDA 135 FIVE "ARCHIANNELIDAN" FAMILIES 152 GLOSSARY 156 LITERATURE CITED 161 INDEX 180 Preface THE STUDY of polychaetes used to be a leisurely I apologize to my fellow polychaete workers for occupation, practised calmly and slowly, and introducing a complex superstructure in a group which the presence of these worms hardly ever pene- so far has been remarkably innocent of such frills. A trated the consciousness of any but the small group great number of very sound partial schemes have been of invertebrate zoologists and phylogenetlcists inter- suggested from time to time. These have been only ested in annulated creatures. This is hardly the case partially considered. The discussion is complex enough any longer. without the inclusion of speculations as to how each Studies of marine benthos have demonstrated that author would have completed his or her scheme, pro- these animals may be wholly dominant both in num- vided that he or she had had the evidence and inclina- bers of species and in numbers of specimens.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • (Polychaeta: Tomopteridae) of the Western Caribbean Sea
    I I BULLETIN DE L'INSTITUT ROYAL DES SC IENCES NATURELLES DE BELG IQUE, BIOLOGIE, 69: 5-14, 1999 BULLETIN VAN HET KONINKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN, BIOLOGIE, 69: 5-1 4, 1999 Tomopterids (Polychaeta: Tomopteridae) of the Western Caribbean Sea by Soledad JIMENEZ-CUETO & Eduardo SUAREZ-MORALES Abstract is known about their biology. Most of them are regarded as active predators of other zooplankters including Tomopterid polychaetes were collected during five oceano­ siphonophores, chaetognaths, salps, fish larvae (AKESSON, graphic cruises carried out off the eastern coast of the Yucatan 1962; RAKUSA-SUSZCZEWSKJ, 1968; HARTMANN-SCHRODER, Peninsula, western Caribbean Sea. Five species of the 1971 ), and even other tomopterids (MciNTOSH, 1921 ). holoplanktic genus Tomopteris were recorded, increasing the Some species have been recognized as indicators of hydro­ number of Tomopteris species known from the Caribbean Sea graphic conditions or of specific water masses. For to 7. The most common species in the area were T. elegans example, Tomopteris carpenteri QUATREFAGES, 1865 is CHUN, 1888 and T. nationalis DALES, 1957. Together, they repre­ restricted to the southern zone of the Subtropical sented more than 83 % of the total tomopterid fauna. Diagnoses and illustrations are given here for the five species recorded, Convergence (DAY, 1967), T. euchaeta CHUN,1888 is together an identification key for the Caribbean species of related to warm waters in the Southwestern Atlantic (ST0P­ Tomopteris. BOWITZ, 1948; RAMiREZ, 1977), and T. septentrionalis QUATREFAGES, 1866 and T. planktonis APSTEIN, 1900 Key words: zooplankton, polychaetes, Tomopteridae, Mexico indicate seasonal inflow of cold waters in the Argentinian shelf (RAMiREZ, 1977). Records of tomopterids in the Atlantic Ocean are rather Resumen scarce (TEBBLE, 1960; DAY, 1967; ORENSANZ & RAMiREZ, 1973; ST0P-BOWIT.Z, 1948;1992), only 29 tomopteriid Se recolectaron poliquetos tomopteridos durante 5 cruceros species have been reported.
    [Show full text]
  • Isopoda, Munnopsidae) from Icelandic Waters
    vol. 35, no. 2, pp. 361–388, 2014 doi: 10.2478/popore−2014−0013 Two new species of the genus Eurycope (Isopoda, Munnopsidae) from Icelandic waters Sarah SCHNURR1* and Marina V. MALYUTINA2 1 Senckenberg am Meer, German Center for Marine Biodiversity Research (DZMB), c/o Biocentrum Grindel, Martin−Luther−King−Platz 3, 20146 Hamburg, Germany <[email protected]> 2 A.V. Zhirmunsky Institute of Marine Biology FEB RAS, Palchevsky Str, 17, 690041, Far East Federal University, Oktiabrskaya Str, 29, 690600, Vladivostok, Russia <[email protected]> * corresponding author Abstract: Collections of munnopsid isopods of the BIOICE (Benthic Invertebrates of Ice− landic Waters; 1991–2004) and the IceAGE1 (Icelandic Marine Animals: Genetics and Ecology; since 2011) expeditions included ten species of the genus Eurycope G.O. Sars, 1864, thereof are two species new to science. Thus, the descriptions of the two new species are presented herein. Eurycope elianae sp. n. is distinguished from the other species of the genus mainly by two long, slightly robust, simple setae on the tip of the rostrum in combina− tion with the size and shape of the rostrum itself. E elianae sp. n. shares the presence of two long, slightly robust, simple seta on the tip of the rostrum with E. tumidicarpus. The shape of the rostrum itself is more similar to E. inermis and species of the E. complanata complex. E. aculeata sp. n. is characterized by possessing dorsomedial acute projections on pereo− nites 5–7, which is unusual for the genus. E. aculeata sp. n. is most similar to E. cornuta. Both new species are, so far, known only from localities south of the Greenland−Scotland Ridge.
    [Show full text]
  • Species Composition of the Free Living Multicellular Invertebrate Animals
    Historia naturalis bulgarica, 21: 49-168, 2015 Species composition of the free living multicellular invertebrate animals (Metazoa: Invertebrata) from the Bulgarian sector of the Black Sea and the coastal brackish basins Zdravko Hubenov Abstract: A total of 19 types, 39 classes, 123 orders, 470 families and 1537 species are known from the Bulgarian Black Sea. They include 1054 species (68.6%) of marine and marine-brackish forms and 508 species (33.0%) of freshwater-brackish, freshwater and terrestrial forms, connected with water. Five types (Nematoda, Rotifera, Annelida, Arthropoda and Mollusca) have a high species richness (over 100 species). Of these, the richest in species are Arthropoda (802 species – 52.2%), Annelida (173 species – 11.2%) and Mollusca (152 species – 9.9%). The remaining 14 types include from 1 to 38 species. There are some well-studied regions (over 200 species recorded): first, the vicinity of Varna (601 spe- cies), where investigations continue for more than 100 years. The aquatory of the towns Nesebar, Pomorie, Burgas and Sozopol (220 to 274 species) and the region of Cape Kaliakra (230 species) are well-studied. Of the coastal basins most studied are the lakes Durankulak, Ezerets-Shabla, Beloslav, Varna, Pomorie, Atanasovsko, Burgas, Mandra and the firth of Ropotamo River (up to 100 species known). The vertical distribution has been analyzed for 800 species (75.9%) – marine and marine-brackish forms. The great number of species is found from 0 to 25 m on sand (396 species) and rocky (257 species) bottom. The groups of stenohypo- (52 species – 6.5%), stenoepi- (465 species – 58.1%), meso- (115 species – 14.4%) and eurybathic forms (168 species – 21.0%) are represented.
    [Show full text]
  • A Review of Toxins from Cnidaria
    marine drugs Review A Review of Toxins from Cnidaria Isabella D’Ambra 1,* and Chiara Lauritano 2 1 Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy 2 Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-081-5833201 Received: 4 August 2020; Accepted: 30 September 2020; Published: 6 October 2020 Abstract: Cnidarians have been known since ancient times for the painful stings they induce to humans. The effects of the stings range from skin irritation to cardiotoxicity and can result in death of human beings. The noxious effects of cnidarian venoms have stimulated the definition of their composition and their activity. Despite this interest, only a limited number of compounds extracted from cnidarian venoms have been identified and defined in detail. Venoms extracted from Anthozoa are likely the most studied, while venoms from Cubozoa attract research interests due to their lethal effects on humans. The investigation of cnidarian venoms has benefited in very recent times by the application of omics approaches. In this review, we propose an updated synopsis of the toxins identified in the venoms of the main classes of Cnidaria (Hydrozoa, Scyphozoa, Cubozoa, Staurozoa and Anthozoa). We have attempted to consider most of the available information, including a summary of the most recent results from omics and biotechnological studies, with the aim to define the state of the art in the field and provide a background for future research. Keywords: venom; phospholipase; metalloproteinases; ion channels; transcriptomics; proteomics; biotechnological applications 1.
    [Show full text]