Biochemistry Biotechnology Cell Biology

Total Page:16

File Type:pdf, Size:1020Kb

Biochemistry Biotechnology Cell Biology Undergraduate Biochemistry Opportunities www.ed.ac.uk/biology Biotechnology Cell Biology Biochem_Biotech_CellBio_A5.indd 1 21/05/2019 14:25 Biochemistry The programme combines coverage of the Biochemistry is the study of living systems at basic principles and knowledge underpinning the cellular and molecular level. This dynamic biotechnology and an appreciation of the field draws on a variety of subjects and has processes involved in converting an idea widespread application. Biochemistry applies a into a product. The objective is to provide a knowledge of chemistry and physical sciences firm foundation in molecular and microbial to investigate basic life processes. The subject biotechnology through compulsory sections has a major impact on modern medical research dealing with topics such as expression vectors, and upon the pharmaceutical, bioengineering, microbial fermentation, protein structure, drug agricultural and environmental industries. design and the development of antimicrobials and vaccines. The programme encourages the critical assessment of current developments in areas of Cell Biology biological interest. Modern cell biology is a dynamic discipline that combines the interests and techniques of many Biotechnology scientific fields. Cell biologists investigate the Biotechnology is concerned with industrial basic structural and functional units of life, the and biomedical applications of fundamental cells that compose all living organisms. They aim knowledge derived from biology. This covers to understand: cellular structure, composition many facets from making useful products and regulation, the organelles that cells contain, using microbial, plant or animal cells to using cell growth, nuclear and cellular division, and bioinformatics and structural biology to design cell death. Understanding how cells work is new drugs. Biotechnology is an exciting area fundamental to many areas of biology and is of with new developments each year in areas that particular importance to fields such as cancer affect us all. Examples include new drugs and research. vaccines to combat diseases, new enzymes for health care, biocontrol agents in the field and Contact us biosensors to monitor environmental pollution. www.ed.ac.uk/biology [email protected] +44 (0)131 650 5528 This publication is available in alternative formats on request. Please contact [email protected] © The University of Edinburgh. All information correct at time of going to print (May 2019). The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336. Main image: ©iStock.com/hidesy Biochem_Biotech_CellBio_A5.indd 2 21/05/2019 14:25.
Recommended publications
  • Structural Data in Synthetic Biology Approaches for Studying General Design Principles of Cellular Signaling Networks
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Structure Perspective Structural Data in Synthetic Biology Approaches for Studying General Design Principles of Cellular Signaling Networks Christina Kiel1,2,* and Luis Serrano1,2,3 1EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain 2Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain 3ICREA, Pg. Lluı´s Companys 23, 08010 Barcelona, Spain *Correspondence: [email protected] http://dx.doi.org/10.1016/j.str.2012.10.002 In recent years, high-throughput discovery of macromolecular protein structures and complexes has played a major role in advancing a more systems-oriented view of protein interaction and signaling networks. The design of biological systems often employs structural information or structure-based protein design to successfully implement synthetic signaling circuits or for rewiring signaling flows. Here, we summarize the latest advances in using structural information for studying protein interaction and signaling networks, and in synthetic biology approaches. We then provide a perspective of how combining structural biology with engineered cell signaling modules—using additional information from quantitative biochemistry and proteo- mics, gene evolution, and mathematical modeling—can provide insight into signaling modules and the general design principles of cell signaling. Ultimately, this will improve our understanding of cell- and tissue-type-specific signal transduction. Integrating the quantitative effects of disease mutations into these systems may provide a basis for elucidating the molecular mechanisms of diseases. Introduction further complicated by the fact that often proteins recruit binding There is growing three-dimensional (3D) structural information partners using several domain or linear motifs.
    [Show full text]
  • Intelligent Design, Abiogenesis, and Learning from History: Dennis R
    Author Exchange Intelligent Design, Abiogenesis, and Learning from History: Dennis R. Venema A Reply to Meyer Dennis R. Venema Weizsäcker’s book The World View of Physics is still keeping me very busy. It has again brought home to me quite clearly how wrong it is to use God as a stop-gap for the incompleteness of our knowledge. If in fact the frontiers of knowledge are being pushed back (and that is bound to be the case), then God is being pushed back with them, and is therefore continually in retreat. We are to find God in what we know, not in what we don’t know; God wants us to realize his presence, not in unsolved problems but in those that are solved. Dietrich Bonhoeffer1 am thankful for this opportunity to nature, is the result of intelligence. More- reply to Stephen Meyer’s criticisms over, this assertion is proffered as the I 2 of my review of his book Signature logical basis for inferring design for the in the Cell (hereafter Signature). Meyer’s origin of biological information: if infor- critiques of my review fall into two gen- mation only ever arises from intelli- eral categories. First, he claims I mistook gence, then the mere presence of Signature for an argument against bio- information demonstrates design. A few logical evolution, rendering several of examples from Signature make the point my arguments superfluous. Secondly, easily: Meyer asserts that I have failed to refute … historical scientists can show that his thesis by not providing a “causally a presently acting cause must have adequate alternative explanation” for the been present in the past because the origin of life in that the few relevant cri- proposed candidate is the only known tiques I do provide are “deeply flawed.” cause of the effect in question.
    [Show full text]
  • Standard 2: CELL BIOLOGY – REVIEW of BASICS
    Standard 2: CELL BIOLOGY – REVIEW OF BASICS CELL PART OR TYPE OF CELL WHERE FOUND WHAT DOES IT FUNCTION: MISCELLANEOUS ORGANELLE Prokaryotic cell Plant cell LOOK LIKE: Job it does in INFORMATION: things Eukaryotic cell Animal cell Describe or Draw the cell such as color, what it is Both Both made of, size, etc. plasma/cell See diagram Holds cell together Phospholipid bilayer with membrane both both Regulates what goes proteins in/out of cell Semipermeable cytoplasm both Clear thick jelly- Supports/protects both like material in cell cell organelles See diagram Control center nucleus eukaryotic both Contains DNA See diagram Where proteins are ribosome both both made See diagram Process proteins Golgi complex eukaryotic both that go to other /apparatus parts of cell Membrane-bound Digests materials lysosome eukaryotic animal sac of digestive within the cell enzymes Membrane-bound Stores water, food, One large one in plants vacuole eukaryotic both storage area waste and dissolved Many smaller ones in minerals animals endoplasmic Network of Transport materials Can be rough (with reticulum eukaryotic both membrane tubes throughout the cell ribosomes attached) or smooth (without ribosomes) See diagram Where cell respiration Called Powerhouse of cell mitochondria eukaryotic both occurs (releases Makes ATP from energy for cell to use) breaking down glucose See diagram Where photosynthesis Contains chlorophyll chloroplast eukaryotic plant takes place Converts light energy into chemical energy in glucose Some pro- and plant (also fungi Rigid structure
    [Show full text]
  • Synthetic Biology Applying Engineering to Biology
    Synthetic Biology Applying Engineering to Biology Report of a NEST High-Level Expert Group EUR 21796 PROJECT REPORT Interested in European research? RTD info is our quarterly magazine keeping you in touch with main developments (results, programmes, events, etc). It is available in English, French and German. A free sample copy or free subscription can be obtained from: European Commission Directorate-General for Research Information and Communication Unit B-1049 Brussels Fax : (32-2) 29-58220 E-mail: [email protected] Internet: http://europa.eu.int/comm/research/rtdinfo/index_en.html EUROPEAN COMMISSION Directorate-General for Research Directorate B — Structuring the European Research Area Unit B1 — Anticipation of Scientific and Technological Needs (NEST activity); Basic Research E-mail: [email protected] Contact: Christian Krassnig European Commission Office SDME 01/37 B-1049 Brussels Tel. (32-2) 29-86445 Fax (32-2) 29-93173 E-mail: [email protected] For further information on the NEST activity please refer to the following website: http://www.cordis.lu/nest/home.html EUROPEAN COMMISSION Synthetic Biology Applying Engineering to Biology Report of a NEST High-Level Expert Group NEST - New and Energing Science and Technology - is a research activity under the European Community’s 6th Framework Programme Directorate-General for Research Structuring the European Research Area 2005 Anticipating Scientific and Technological Needs; Basic Research EUR 21796 Europe Direct is a service to help you find answers to your questions about the European Union Freephone number: 00 800 6 7 8 9 10 11 LEGAL NOTICE: Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information.
    [Show full text]
  • Introduction to the Cell Cell History Cell Structures and Functions
    Introduction to the cell cell history cell structures and functions CK-12 Foundation December 16, 2009 CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and distribution of high quality educational content that will serve both as core text as well as provide an adaptive environment for learning. Copyright ©2009 CK-12 Foundation This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Contents 1 Cell structure and function dec 16 5 1.1 Lesson 3.1: Introduction to Cells .................................. 5 3 www.ck12.org www.ck12.org 4 Chapter 1 Cell structure and function dec 16 1.1 Lesson 3.1: Introduction to Cells Lesson Objectives • Identify the scientists that first observed cells. • Outline the importance of microscopes in the discovery of cells. • Summarize what the cell theory proposes. • Identify the limitations on cell size. • Identify the four parts common to all cells. • Compare prokaryotic and eukaryotic cells. Introduction Knowing the make up of cells and how cells work is necessary to all of the biological sciences. Learning about the similarities and differences between cell types is particularly important to the fields of cell biology and molecular biology.
    [Show full text]
  • BCH 6746: Structural Biology Course Prerequisites: CRN 12063 Section 001, 3 Credit Hours
    Please note: Each college and department may have their own requirements, in addition to those stated in the Syllabus Guidelines. BCH 6746: Structural Biology Course Prerequisites: CRN 12063 Section 001, 3 Credit hours College of Arts and Sciences, CMMB COURSE SYLLABUS Insert USF Logo here Instructor Name: Yu Chen Semester/Term & Year: Spring 2019 Class Meeting Days: TR Class Meeting Time: 11:00 – 12:20 pm Class Meeting Location: MDC 1507 Lab Meeting Location: N/A Delivery Method: Lecture I. Welcome! II. University Course Description The theory and application of modern physical biochemical techniques. III. Course Objectives This course focuses on relating theoretical concepts and experimental approaches to a wide range of potential research problems in the area of structural biology. The course aims to provide a solid foundation and breadth of understanding in structural biology that will facilitate application to current and future research problems. IV. Course Purpose Major Topics: Introduction to Structural Biology; From Structure to Function I; From Structure to Function II; From Structure to Function III; From Structure fo Function IV; Control of Protein Function I; Strategies for Protein Separation; Strategies for Protein Identification; Chemical and Immunochemical Probes of Structure; Methods in Structural Bio I, II, II; Structure Determination I, II, III, IV; Control of Protein Function II, III, IV V. Learning Outcomes Students will gain an understanding of the basic science of Protein Structure, including first principles of the physical interactions that maintain proteins and the mechanisms that make them tic. They will also learn about different techniques and experimental approaches that represent the state-of-the-art and are widely used in the study of proteins.
    [Show full text]
  • Independent Research Resources Demonstrations/Simulations
    Independent Research Resources Independent Generation of Research (IGoR) - IGoR provides a platform for people to pool their knowledge, resources, time, and creativity so that everyone can pursue their own scientific curiosity. Virginia Junior Academy of Science Resource Library - Extensive collection of open-access resources for students in Biology & Medicine, Botany, Ecology, Environmental Sciences, Chemistry, Engineering and Physics The Society for Science and the Public Science Project Resources - A catalog of science resources that can support your quest to learn and do science Science Buddies - Ideas for science projects Teacher resources National Center for Science Education Scientist in the Classroom - Platform allows teachers to request classroom visits from scientists Genetics Education Outreach Network (GEON) - Network of genetics professionals HHMI BioInteractive Data Points - Explore and interpret primary data from published research Biotech in a Box Loan Kits - Shipped to your school from Fralin Life Sciences Institute at Virginia Tech Demonstrations/Simulations Genetic Science Learning Center- Simulations, videos and interactive activities that explore genetics, cell biology, neuroscience, ecology and health Remotely Accessible Instruments for Nanotechnology (RAIN) - Access and control nanoinstruments over the Internet in real-time with the assistance of an experienced engineer PhET Simulations - Interactive STEM simulations for all grade levels HHMI BioInteractive Interactive Media - Recommendations: Virus Explorer; Exploring
    [Show full text]
  • MATHEMATICAL TECHNIQUES in STRUCTURAL BIOLOGY Contents 0. Introduction 4 1. Molecular Genetics: DNA 6 1.1. Genetic Code 6 1.2. T
    MATHEMATICAL TECHNIQUES IN STRUCTURAL BIOLOGY J. R. QUINE Contents 0. Introduction 4 1. Molecular Genetics: DNA 6 1.1. Genetic code 6 1.2. The geometry of DNA 6 1.3. The double helix 6 1.4. Larger organization of DNA 7 1.5. DNA and proteins 7 1.6. Problems 7 2. Molecular Genetics: Proteins 10 2.1. Amino Acids 10 2.2. The genetic code 10 2.3. Amino acid template 11 2.4. Tetrahedral geometry 11 2.5. Amino acid structure 13 2.6. The peptide bond 13 2.7. Protein structure 14 2.8. Secondary structure 14 3. Frames and moving frames 19 3.1. Basic definitions 19 3.2. Frames and gram matrices 19 3.3. Frames and rotations 20 3.4. Frames fixed at a point 20 3.5. The Frenet Frame 20 3.6. The coiled-coil 22 3.7. The Frenet formula 22 3.8. Problems 24 4. Orthogonal transformations and Rotations 25 4.1. The rotation group 25 4.2. Complex form of a rotation 28 4.3. Eigenvalues of a rotation 28 4.4. Properties of rotations 29 4.5. Problems 30 5. Torsion angles and pdb files 33 5.1. Torsion Angles 33 5.2. The arg function 34 5.3. The torsion angle formula 34 5.4. Protein torsion angles. 35 5.5. Protein Data Bank files. 35 1 2 J. R. QUINE 5.6. Ramachandran diagram 36 5.7. Torsion angles on the diamond packing 37 5.8. Appendix, properties of cross product 38 5.9. Problems 38 6.
    [Show full text]
  • Biochemistry Metabolism
    Biochemistry Metabolism 07.11.2017 – 27.11.2017 Photosynthesis Gerhild van Echten-Deckert Tel. 73 2703 E-mail: [email protected] www.limes-institut-bonn.de Photosynthesis Light reaction: - Light absorption, generation of a high energy electron and oxidation of water - Electron transport from water to NADPH and generation of a proton-motive force -Synthesis of ATP Berg, Tymoczko, Stryer: Biochemistry “Dark reaction”: - CO2 conversion into carbohydrates consuming ATP and NADPH (Calvin Cycle) Photosynthesis is localized to the thylakoid membranes Lodish et al. Molecular Cell Biology Comparison of photosynthesis and oxidative phosphorylation Berg, Tymoczko, Stryer: Biochemistry Chlorophyll a is the main pigment capturing energy of light Lodish et al. Molecular Cell Biology Energy diagram indicating the electronic states of chlorophyll and their most important modes of interconversion Other light-absorbing pigments, such as carotenoids, extend the range of light that can be absorbed and used for photosynthesis The action spectrum of photosynthesis matches the absorption spectra of chlorophyll a and b and of -carotene The absorption of photons from two distinct photosystems (PSI and PSII + is required for complete electron flow from H2O to NADP Berg, Tymoczko, Stryer: Biochemistry Light absorption by reaction-centre chlorophylls causes a charge separation across the thylakoid membrane The energy of the absorbed light is used to strip an electron from a chlorophyll molecule of the reaction centre to a primary electron acceptor thereby acquiring a positive charge (generation of a strong oxidizing- and a strong reducing agent) Lodish et al. Molecular Cell Biology Subsequent electron flow and coupled proton movement Lodish et al.
    [Show full text]
  • 2019 Cell Biology Syllabus and Course Policies
    Cell Biology 2019 Syllabus and Policies 1 of 6 COURSE POLICIES AND SYLLABUS CELL BIOLOGY AS.020.306 SPRING 2019 Learning Goals • Describe the structure and function of cellular components. • Explain how cellular components are localized and organized. • Explain the regulatory mechanisms that enable diversity and dynamics of cellular components. • Recognize, discuss examples, and apply common themes in cell biology. • Propose experiments to answer questions or test hypotheses about cellular structures and functions. • Predict experimental results, interpret experimental data, and use experimental evidence to generate and/or support a hypothesis. Specific learning objectives for each section of the course will be posted on Blackboard. Course material and assessments with be based on the learning goals and objectives. We encourage you to use the learning goals and objectives to guide your learning process during the course. Course Instructors Dr. Katie Tifft [email protected] Office: 183 UTL Dr. Yumi Kim [email protected] Office: 385 UTL Course Administration Dr. Tifft will be the course administrator who will handle course organization and logistics. If you have any questions about the course that are not directly related to the course content, please first check Blackboard and Piazza for relevant information and then contact Dr. Tifft by through Piazza (or by email). Textbook Bruce Alberts, et al. Molecular biology of the cell. Garland Science, 2015. 6th edition. ISBN: 9780815344322 Reading assignments for each class will be posted on Blackboard. The textbook is recommended but not required- all course material will be covered in class or through class materials provided online, but you may find the textbook is a good extra resource.
    [Show full text]
  • Photorespiration Pathways in a Chemolithoautotroph
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.083683; this version posted May 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Photorespiration pathways in a chemolithoautotroph Nico J. Claassens*1, Giovanni Scarinci*1, Axel Fischer1, Avi I. Flamholz2, William Newell1, Stefan Frielingsdorf3, Oliver Lenz3, Arren Bar-Even†1 1Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany 2Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States. 3Institut für Chemie, Physikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany †corresponding author; phone: +49 331 567-8910; Email: [email protected] *contributed equally Key words: CO2 fixation; hydrogen-oxidizing bacteria; glyoxylate shunt; malate synthase; oxalate metabolism 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.083683; this version posted May 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Carbon fixation via the Calvin cycle is constrained by the side activity of Rubisco with dioxygen, generating 2-phosphoglycolate. The metabolic recycling of 2-phosphoglycolate, an essential process termed photorespiration, was extensively studied in photoautotrophic organisms, including plants, algae, and cyanobacteria, but remains uncharacterized in chemolithoautotrophic bacteria.
    [Show full text]
  • GCSE Biology Key Words
    GCSE Biology Key Words Definitions and Concepts for AQA Biology GCSE Definitions in bold are for higher tier only Topic 1- Cell Biology Topic 2 - Organisation Topic 3 – Infection and Response Topic 4 – Bioenergetics Topic 5 - Homeostasis Topic 6 – Inheritance and Variation Topic 7 – Ecology Topic 1: Cell Biology Definitions in bold are for higher tier only Active transport: The movement of substances from a more dilute solution to a more concentrated solution (against a concentration gradient) with the use of energy from respiration. Adult stem cell: A type of stem cell that can form many types of cells. Agar jelly: A substance placed in petri dishes which is used to culture microorganisms on. Cell differentiation: The process where a cell becomes specialised to its function. Cell membrane: A partially permeable barrier that surrounds the cell. Cell wall: An outer layer made of cellulose that strengthens plant cells. Chloroplast: An organelle which is the site of photosynthesis. Chromosomes: DNA structures that are found in the nucleus which are made up of genes. Concentration gradient: The difference in concentration between two areas. Diffusion: The spreading out of the particles of any substance in solution, or particles of a gas, resulting in a net movement from an area of higher concentration to an area of lower concentration.✢ Embryonic stem cell: A type of stem cell that can differentiate into most types of human cells. Eukaryotic cell: A type of cell found in plants and animals that contains a nucleus. Magnification: How much bigger an image appears compared to the original object. Meristematic cells: A type of stem cell that can differentiate into any type of plant cell.
    [Show full text]