1 Introduction to Cell Biology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary - Cellbiology
1 Glossary - Cellbiology Blotting: (Blot Analysis) Widely used biochemical technique for detecting the presence of specific macromolecules (proteins, mRNAs, or DNA sequences) in a mixture. A sample first is separated on an agarose or polyacrylamide gel usually under denaturing conditions; the separated components are transferred (blotting) to a nitrocellulose sheet, which is exposed to a radiolabeled molecule that specifically binds to the macromolecule of interest, and then subjected to autoradiography. Northern B.: mRNAs are detected with a complementary DNA; Southern B.: DNA restriction fragments are detected with complementary nucleotide sequences; Western B.: Proteins are detected by specific antibodies. Cell: The fundamental unit of living organisms. Cells are bounded by a lipid-containing plasma membrane, containing the central nucleus, and the cytoplasm. Cells are generally capable of independent reproduction. More complex cells like Eukaryotes have various compartments (organelles) where special tasks essential for the survival of the cell take place. Cytoplasm: Viscous contents of a cell that are contained within the plasma membrane but, in eukaryotic cells, outside the nucleus. The part of the cytoplasm not contained in any organelle is called the Cytosol. Cytoskeleton: (Gk. ) Three dimensional network of fibrous elements, allowing precisely regulated movements of cell parts, transport organelles, and help to maintain a cell’s shape. • Actin filament: (Microfilaments) Ubiquitous eukaryotic cytoskeletal proteins (one end is attached to the cell-cortex) of two “twisted“ actin monomers; are important in the structural support and movement of cells. Each actin filament (F-actin) consists of two strands of globular subunits (G-Actin) wrapped around each other to form a polarized unit (high ionic cytoplasm lead to the formation of AF, whereas low ion-concentration disassembles AF). -
Bacterial Cell Membrane
BACTERIAL CELL MEMBRANE Dr. Rakesh Sharda Department of Veterinary Microbiology NDVSU College of Veterinary Sc. & A.H., MHOW CYTOPLASMIC MEMBRANE ➢The cytoplasmic membrane, also called a cell membrane or plasma membrane, is about 7 nanometers (nm; 1/1,000,000,000 m) thick. ➢It lies internal to the cell wall and encloses the cytoplasm of the bacterium. ➢It is the most dynamic structure of a prokaryotic cell. Structure of cell membrane ➢The structure of bacterial plasma membrane is that of unit membrane, i.e., a fluid phospholipid bilayer, composed of phospholipids (40%) and peripheral and integral proteins (60%) molecules. ➢The phospholipids of bacterial cell membranes do not contain sterols as in eukaryotes, but instead consist of saturated or monounsaturated fatty acids (rarely, polyunsaturated fatty acids). ➢Many bacteria contain sterol-like molecules called hopanoids. ➢The hopanoids most likely stabilize the bacterial cytoplasmic membrane. ➢The phospholipids are amphoteric molecules with a polar hydrophilic glycerol "head" attached via an ester bond to two non-polar hydrophobic fatty acid tails. ➢The phospholipid bilayer is arranged such that the polar ends of the molecules form the outermost and innermost surface of the membrane while the non-polar ends form the center of the membrane Fluid mosaic model ➢The plasma membrane contains proteins, sugars, and other lipids in addition to the phospholipids. ➢The model that describes the arrangement of these substances in lipid bilayer is called the fluid mosaic model ➢Dispersed within the bilayer are various structural and enzymatic proteins, which carry out most membrane functions. ➢Some membrane proteins are located and function on one side or another of the membrane (peripheral proteins). -
Intelligent Design, Abiogenesis, and Learning from History: Dennis R
Author Exchange Intelligent Design, Abiogenesis, and Learning from History: Dennis R. Venema A Reply to Meyer Dennis R. Venema Weizsäcker’s book The World View of Physics is still keeping me very busy. It has again brought home to me quite clearly how wrong it is to use God as a stop-gap for the incompleteness of our knowledge. If in fact the frontiers of knowledge are being pushed back (and that is bound to be the case), then God is being pushed back with them, and is therefore continually in retreat. We are to find God in what we know, not in what we don’t know; God wants us to realize his presence, not in unsolved problems but in those that are solved. Dietrich Bonhoeffer1 am thankful for this opportunity to nature, is the result of intelligence. More- reply to Stephen Meyer’s criticisms over, this assertion is proffered as the I 2 of my review of his book Signature logical basis for inferring design for the in the Cell (hereafter Signature). Meyer’s origin of biological information: if infor- critiques of my review fall into two gen- mation only ever arises from intelli- eral categories. First, he claims I mistook gence, then the mere presence of Signature for an argument against bio- information demonstrates design. A few logical evolution, rendering several of examples from Signature make the point my arguments superfluous. Secondly, easily: Meyer asserts that I have failed to refute … historical scientists can show that his thesis by not providing a “causally a presently acting cause must have adequate alternative explanation” for the been present in the past because the origin of life in that the few relevant cri- proposed candidate is the only known tiques I do provide are “deeply flawed.” cause of the effect in question. -
The Endomembrane System and Proteins
Chapter 4 | Cell Structure 121 Endosymbiosis We have mentioned that both mitochondria and chloroplasts contain DNA and ribosomes. Have you wondered why? Strong evidence points to endosymbiosis as the explanation. Symbiosis is a relationship in which organisms from two separate species depend on each other for their survival. Endosymbiosis (endo- = “within”) is a mutually beneficial relationship in which one organism lives inside the other. Endosymbiotic relationships abound in nature. We have already mentioned that microbes that produce vitamin K live inside the human gut. This relationship is beneficial for us because we are unable to synthesize vitamin K. It is also beneficial for the microbes because they are protected from other organisms and from drying out, and they receive abundant food from the environment of the large intestine. Scientists have long noticed that bacteria, mitochondria, and chloroplasts are similar in size. We also know that bacteria have DNA and ribosomes, just like mitochondria and chloroplasts. Scientists believe that host cells and bacteria formed an endosymbiotic relationship when the host cells ingested both aerobic and autotrophic bacteria (cyanobacteria) but did not destroy them. Through many millions of years of evolution, these ingested bacteria became more specialized in their functions, with the aerobic bacteria becoming mitochondria and the autotrophic bacteria becoming chloroplasts. The Central Vacuole Previously, we mentioned vacuoles as essential components of plant cells. If you look at Figure 4.8b, you will see that plant cells each have a large central vacuole that occupies most of the cell's area. The central vacuole plays a key role in regulating the cell’s concentration of water in changing environmental conditions. -
Standard 2: CELL BIOLOGY – REVIEW of BASICS
Standard 2: CELL BIOLOGY – REVIEW OF BASICS CELL PART OR TYPE OF CELL WHERE FOUND WHAT DOES IT FUNCTION: MISCELLANEOUS ORGANELLE Prokaryotic cell Plant cell LOOK LIKE: Job it does in INFORMATION: things Eukaryotic cell Animal cell Describe or Draw the cell such as color, what it is Both Both made of, size, etc. plasma/cell See diagram Holds cell together Phospholipid bilayer with membrane both both Regulates what goes proteins in/out of cell Semipermeable cytoplasm both Clear thick jelly- Supports/protects both like material in cell cell organelles See diagram Control center nucleus eukaryotic both Contains DNA See diagram Where proteins are ribosome both both made See diagram Process proteins Golgi complex eukaryotic both that go to other /apparatus parts of cell Membrane-bound Digests materials lysosome eukaryotic animal sac of digestive within the cell enzymes Membrane-bound Stores water, food, One large one in plants vacuole eukaryotic both storage area waste and dissolved Many smaller ones in minerals animals endoplasmic Network of Transport materials Can be rough (with reticulum eukaryotic both membrane tubes throughout the cell ribosomes attached) or smooth (without ribosomes) See diagram Where cell respiration Called Powerhouse of cell mitochondria eukaryotic both occurs (releases Makes ATP from energy for cell to use) breaking down glucose See diagram Where photosynthesis Contains chlorophyll chloroplast eukaryotic plant takes place Converts light energy into chemical energy in glucose Some pro- and plant (also fungi Rigid structure -
Living Cell Cytosol Stability to Segregation and Freezing-Out: Thermodynamic Aspect
1 Living Cell Cytosol Stability to Segregation and Freezing-Out: Thermodynamic aspect Viktor I. Laptev Russian New University, Moscow, Russian Federation The cytosol state in living cell is treated as homogeneous phase equilibrium with a special feature: the pressure of one phase is positive and the pressure of the other is negative. From this point of view the cytosol is neither solution nor gel (or sol as a whole) regardless its components (water and dissolved substances). This is its unique capability for selecting, sorting and transporting reagents to the proper place of the living cell without a so-called “pipeline”. To base this statement the theoretical investigation of the conditions of equilibrium and stability of the medium with alternative-sign pressure is carried out under using the thermodynamic laws and the Gibbs” equilibrium criterium. Keywords: living cellular processes; cytosol; intracellular fluid; cytoplasmic matrix; hyaloplasm matrix; segregation; freezing-out; zero isobare; negative pressure; homogeneous phase equilibrium. I. INTRODUCTION A. Inertial Motion in U,S,V-Space A full description of the thermodynamic state of a medium Cytosol in a living cell (intracellular fluid or cytoplasmic without chemical interactions is given by a relationship matrix, hyaloplasm matrix, aqueous cytoplasm) is a between the internal energy U, entropy S and volume V [5]. combination of the water dissolved substances. It places in the The mathematical procedure for a negative pressure supposes cell between the plasma membrane, the nucleus and a vacuole; using absolute values of the internal energy U and entropy S. it is a medium keeping granular-like and whisker-like The surface φ(U,S,V) = 0 corresponds to the all structures. -
Introduction to the Cell Cell History Cell Structures and Functions
Introduction to the cell cell history cell structures and functions CK-12 Foundation December 16, 2009 CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and distribution of high quality educational content that will serve both as core text as well as provide an adaptive environment for learning. Copyright ©2009 CK-12 Foundation This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Contents 1 Cell structure and function dec 16 5 1.1 Lesson 3.1: Introduction to Cells .................................. 5 3 www.ck12.org www.ck12.org 4 Chapter 1 Cell structure and function dec 16 1.1 Lesson 3.1: Introduction to Cells Lesson Objectives • Identify the scientists that first observed cells. • Outline the importance of microscopes in the discovery of cells. • Summarize what the cell theory proposes. • Identify the limitations on cell size. • Identify the four parts common to all cells. • Compare prokaryotic and eukaryotic cells. Introduction Knowing the make up of cells and how cells work is necessary to all of the biological sciences. Learning about the similarities and differences between cell types is particularly important to the fields of cell biology and molecular biology. -
Cell Growth-Regulated Expression of Mammalian MCM5 and MCM6 Genes Mediated by the Transcription Factor E2F
Oncogene (1999) 18, 2299 ± 2309 ã 1999 Stockton Press All rights reserved 0950 ± 9232/99 $12.00 http://www.stockton-press.co.uk/onc Cell growth-regulated expression of mammalian MCM5 and MCM6 genes mediated by the transcription factor E2F Kiyoshi Ohtani1, Ritsuko Iwanaga1, Masataka Nakamura*,1, Masa-aki Ikeda2, Norikazu Yabuta3, Hiromichi Tsuruga3 and Hiroshi Nojima3 1Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo 113-8510, Japan 2Department of Developmental Biology, Graduate School of Dentistry, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; 3Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan Initiation of DNA replication requires the function of family (MCM2-7) that have been identi®ed in yeast, MCM gene products, which participate in ensuring that Xenopus, and human. Mcm proteins seem to regulate DNA replication occurs only once in the cell cycle. the initiation at the replication origin where the loading Expression of all mammalian genes of the MCM family of the proteins onto the origin recognition complex is induced by growth stimulation, unlike yeast, and the (ORC) is regulated by Cdc6 and cyclin-dependent mRNA levels peak at G1/S boundary. In this study, we kinases (Donovan et al., 1997; Tanaka et al., 1997). examined the transcriptional activities of isolated human However, the mechanism(s) by which Mcm proteins MCM gene promoters. Human MCM5 and MCM6 control the initiation of DNA replication remains promoters with mutation in the E2F sites failed in unclear. promoter regulation following serum stimulation and Xenopus Mcm proteins seem to be able to access exogenous E2F expression. -
Biochemistry Biotechnology Cell Biology
Undergraduate Biochemistry Opportunities www.ed.ac.uk/biology Biotechnology Cell Biology Biochem_Biotech_CellBio_A5.indd 1 21/05/2019 14:25 Biochemistry The programme combines coverage of the Biochemistry is the study of living systems at basic principles and knowledge underpinning the cellular and molecular level. This dynamic biotechnology and an appreciation of the field draws on a variety of subjects and has processes involved in converting an idea widespread application. Biochemistry applies a into a product. The objective is to provide a knowledge of chemistry and physical sciences firm foundation in molecular and microbial to investigate basic life processes. The subject biotechnology through compulsory sections has a major impact on modern medical research dealing with topics such as expression vectors, and upon the pharmaceutical, bioengineering, microbial fermentation, protein structure, drug agricultural and environmental industries. design and the development of antimicrobials and vaccines. The programme encourages the critical assessment of current developments in areas of Cell Biology biological interest. Modern cell biology is a dynamic discipline that combines the interests and techniques of many Biotechnology scientific fields. Cell biologists investigate the Biotechnology is concerned with industrial basic structural and functional units of life, the and biomedical applications of fundamental cells that compose all living organisms. They aim knowledge derived from biology. This covers to understand: cellular structure, composition many facets from making useful products and regulation, the organelles that cells contain, using microbial, plant or animal cells to using cell growth, nuclear and cellular division, and bioinformatics and structural biology to design cell death. Understanding how cells work is new drugs. Biotechnology is an exciting area fundamental to many areas of biology and is of with new developments each year in areas that particular importance to fields such as cancer affect us all. -
VDAC: the Channel at the Interface Between Mitochondria and the Cytosol
Molecular and Cellular Biochemistry 256/257: 107–115, 2004. © 2004 Kluwer Academic Publishers. Printed in the Netherlands. 107 VDAC: The channel at the interface between mitochondria and the cytosol Marco Colombini Department of Biology, University of Maryland, MD, USA Abstract The mitochondrial outer membrane is not just a barrier but a site of regulation of mitochondrial function. The VDAC family of proteins are the major pathways for metabolite flux through the outer membrane. These can be regulated in a variety of ways and the integration of these regulatory inputs allows mitochondrial metabolism to be adjusted to changing cellular conditions. This includes total blockage of the flux of anionic metabolites leading to permeabilization of the outer membrane to small proteins followed by apoptotic cell death. (Mol Cell Biochem 256/257: 107–115, 2004) Key words: mitochondrion, outer membrane, apoptosis, isoforms, metabolism Introduction author’s view, see also ref. [6] for an alternative view). In- formation on VDAC can also be found on the VDAC web Mitochondria live, function, and reproduce in a very rich and page: www.life.umd.edu/vdac. friendly environment, the cytosol of the eukaryotic cell. Just as the plasma membrane is the interface between the inter- stitial space and the cytosol, so the mitochondrial outer The VDAC channels: Conservation and membrane is the interface between the cytosol and the mi- tochondrial spaces. Both separate the cell or the organelle specialization from its environment and both act as selective barriers to the entry and exit of matter. These membranes are also logical VDAC channels (Fig. 1) from a wide variety of sources (plants sites for control. -
Cell Wall Ribosomes Nucleus Chloroplast Cytoplasm
Cell Wall Ribosomes Nucleus Nickname: Protector Nickname: Protein Maker Nickname: Brain The cell wall is the outer covering of a Plant cell. It is Ribosomes read the recipe from the The nucleus is the largest organelle in a cell. The a strong and stiff and made of DNA and use this recipe to make nucleus directs all activity in the cell. It also controls cellulose. It supports and protects the plant cell by proteins. The nucleus tells the the growth and reproduction of the cell. holding it upright. It ribosomes which proteins to make. In humans, the nucleus contains 46 chromosomes allows water, oxygen and carbon dioxide to pass in out They are found in both plant and which are the instructions for all the activities in your of plant cell. animal cells. In a cell they can be found cell and body. floating around in the cytoplasm or attached to the endoplasmic reticulum. Chloroplast Cytoplasm Endoplasmic Reticulum Nickname: Oven Nickname: Gel Nickname: Highway Chloroplasts are oval structures that that contain a green Cytoplasm is the gel like fluid inside a The endoplasmic reticulum (ER) is the transportation pigment called chlorophyll. This allows plants to make cell. The organelles are floating around in center for the cell. The ER is like the conveyor belt, you their own food through the process of photosynthesis. this fluid. would see at a supermarket, except instead of moving your groceries it moves proteins from one part of the cell Chloroplasts are necessary for photosynthesis, the food to another. The Endoplasmic Reticulum looks like a making process, to occur. -
Independent Research Resources Demonstrations/Simulations
Independent Research Resources Independent Generation of Research (IGoR) - IGoR provides a platform for people to pool their knowledge, resources, time, and creativity so that everyone can pursue their own scientific curiosity. Virginia Junior Academy of Science Resource Library - Extensive collection of open-access resources for students in Biology & Medicine, Botany, Ecology, Environmental Sciences, Chemistry, Engineering and Physics The Society for Science and the Public Science Project Resources - A catalog of science resources that can support your quest to learn and do science Science Buddies - Ideas for science projects Teacher resources National Center for Science Education Scientist in the Classroom - Platform allows teachers to request classroom visits from scientists Genetics Education Outreach Network (GEON) - Network of genetics professionals HHMI BioInteractive Data Points - Explore and interpret primary data from published research Biotech in a Box Loan Kits - Shipped to your school from Fralin Life Sciences Institute at Virginia Tech Demonstrations/Simulations Genetic Science Learning Center- Simulations, videos and interactive activities that explore genetics, cell biology, neuroscience, ecology and health Remotely Accessible Instruments for Nanotechnology (RAIN) - Access and control nanoinstruments over the Internet in real-time with the assistance of an experienced engineer PhET Simulations - Interactive STEM simulations for all grade levels HHMI BioInteractive Interactive Media - Recommendations: Virus Explorer; Exploring