Songhua River Basin Water Pollution Control and Management Project

Total Page:16

File Type:pdf, Size:1020Kb

Songhua River Basin Water Pollution Control and Management Project Environmental Assessment Report Summary Environmental Impact Assessment Project Number: 40665 July 2008 People’s Republic of China: Songhua River Basin Water Pollution Control and Management Project Prepared by the Heilongjiang and Jilin provincial governments for the Asian Development Bank (ADB) The summary environmental impact assessment is a document of the borrower. The views expressed herein do not necessarily represent those of ADB’s Board of Directors, Management, or staff, and may be preliminary in nature. CURRENCY EQUIVALENTS (as of 3 July 2008) Currency Unit – Yuan (CNY) CNY1.00 = $0.1456 $1.00 = CNY6.8666 ABBREVIATIONS ADB – Asian Development Bank BOD – biological oxygen demand COD – chemical oxygen demand EA – executing agency EIA – environmental impact assessment EMP – environmental management plan EMU – environmental management unit EPB – environmental protection bureau ESC – environmental supervision company FYP – five-year plan HEPB – Heilongjiang Environmental Protection Bureau HPG – Heilongjiang provincial government HPMO – Heilongjiang project management office IA – implementing agency IEM – independent environmental monitor JEPB – Jilin Environmental Protection Bureau JPG – Jilin provincial government JPMO – Jilin project management office MEMC – municipal environmental monitoring center MEPB – municipal environmental protection bureau NH3-N – ammonia nitrogen PLG – project leading group PMO – project management office PPMS – project performance management system PPTA – project preparatory technical assistance PRC – People’s Republic of China SEIA – summary environmental impact assessment SEPA – State Environmental Protection Administration SO2 – sulfur dioxide SRB – Songhua River Basin SRBPCMP – Songhua River Basin Pollution Prevention and Control Master Plan (2006–2010) SS – suspended solids SWM – solid waste management TP – total phosphor TSP – total suspended particulates WWTP – wastewater treatment plant WEIGHTS AND MEASURES ‰ – per mill (per thousand) ha – hectare km – kilometer km2 – square kilometer m – meter m2 – square meter m3 – cubic meter m3/a – cubic meters per annum m3/d – cubic meters per day mg/l – milligrams per liter mg/m3 – milligrams per cubic meter mm – millimeter m/s – meters per second mu – unit of land area equal to 1/15 ha or 667 m2 t/a – tons per annum t/d – tons per day NOTE In the report, “$” refers to US dollars. CONTENTS Page MAPS I. INTRODUCTION 1 II. DESCRIPTION OF THE PROJECT 1 III. DESCRIPTION OF THE ENVIRONMENT 8 A. Physical Environment 8 B. Ecological Resources 10 C. Water Quality and Pollution 11 D. Socioeconomic Conditions 12 IV. ANALYSIS OF ALTERNATIVES 14 A. With- and Without-Project Scenarios 14 B. Project Alternatives 15 V. ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES 17 A. Sector Impact 17 B. Potential Impact and Mitigation Measures during the Design Phase 18 C. Potential Impact and Mitigation Measures during Construction 19 D. Potential Impact and Mitigation Measures during Operations 21 E. Positive Impact and Environmental Benefits 24 F. Land Acquisition and Resettlement 25 VI. ECONOMIC ASSESSMENT 25 A. Environmental Protection Investments 25 B. Environmental Benefits 26 VII. ENVIRONMENTAL MANAGEMENT PLAN 26 A. Objectives 26 B. Mitigation Measures 26 C. Implementing Organization and Responsibilities 26 D. Inspection, Monitoring, and Reporting Arrangements 27 E. Feedback and Adjustment Mechanism 28 VIII. PUBLIC CONSULTATIONS AND DISCLOSURE 28 A. Public Consultations Completed So Far 28 B. Future Public Participation Plan 28 IX. CONCLUSION 29 A. Benefits 29 B. Project Risks and Mitigation 29 C. Overall Conclusion 30 D. Follow-up Monitoring and Environmental Management Requirements 30 APPENDIXES 1. Environmental Management Plan (Heilongjiang Component) 2. Environmental Management Plan (Jilin Component) I. INTRODUCTION 1. This summary environmental impact assessment (SEIA) was prepared for the proposed Songhua River Basin Water Pollution Control and Management Project in the People’s Republic of China (PRC), under a project preparatory technical assistance (PPTA) from the Asian Development Bank (ADB).1 Covering Heilongjiang Province and Jilin Province, which account for 85% of the Songhua River Basin (SRB), the Project comprises two components with 28 subprojects. The Heilongjiang component has 13 subprojects in water supply and wastewater treatment, and the Jilin component has 15 subprojects in wastewater treatment, solid waste management (SWM), and river improvement. Map 1 shows the location of Heilongjiang and Jilin provinces in the PRC. Map 2 is a topographic map of the SRB. The locations of the subprojects under the Heilongjiang component are shown in Map 3, and those under the Jilin component are presented in Map 4. 2. The Project is classified as category A by ADB for the purpose of environmental assessment. This SEIA is based on the environmental impact assessment (EIA) reports in the Chinese language that have been prepared by certified EIA institutes in compliance with the relevant laws, regulations, and guidelines of the PRC. The review and approval authority for the EIA reports, including the environmental management plans (EMPs), is the provincial environmental protection bureau. The PPTA consultants have provided advice to the EIA institutes and the implementing agencies (IAs) in upgrading the domestic EIA reports to fully meet the PRC’s Environmental Impact Assessment Law (2003)2 and relevant regulations, and ADB’s policy requirements as stipulated in its Environment Policy (2002) and Environmental Assessment Guidelines (2003). 3. The SEIA consists of three documents. The main report contains nine chapters covering: (i) the background of the Project, (ii) a description of the Project, (iii) a description of the environmental setting, (iv) an analysis of alternatives, (v) a summary of the anticipated environmental impact and proposed mitigation measures, (vi) an economic assessment, (vii) the environmental management plan, (viii) the results of information disclosure activities and public consultations, and (ix) conclusions. An EMP has been prepared for each of the two components. The EMPs contain detailed discussions of potential impact and mitigation measures, environmental monitoring and inspection, public consultations, implementation responsibilities, reporting and supervision, institutional strengthening and training, environmental protection investment, and mechanism for feedback and adjustment. 4. The Executing Agencies (EAs) for the Project, the Heilongjiang provincial government (HPG) and the Jilin provincial government (JPG), were fully consulted during the preparation of the EIA reports and the SEIA. They were advised that the SEIA is a document prepared for the HPG and JPG for submission to ADB. The HPG and the JPG will therefore be responsible for implementing the public consultation program, the environmental monitoring program, and the EMP in their respective provinces. II. DESCRIPTION OF THE PROJECT 5. Demand for urban infrastructure in the PRC is rising with increasing urbanization, and more than half the population is expected to live in cities by 2030. The Government’s 1 ADB. 2007. Technical Assistance to the People’s Republic of China for the Songhua River Basin Water Pollution Control and Management Project (for $1.3 million, approved on 28 September). Manila. 2 PRC. 2003. PRC Environmental Impact Assessment Law. Beijing. 2 11th Five-Year Plan (FYP) 2006–2010 focuses on continued urbanization and the development of large, medium, and small cities and towns. Rapid urbanization in the PRC has taken a severe toll on the environment, and has also challenged the capacity of local governments to promote good governance, effective planning and management, sustainable financing, and timely delivery of public services. While significant progress has been made in building urban infrastructure over the past two decades, the infrastructure tends to be concentrated in the more highly developed eastern and southern coastal plains. The expansion and upgrading of public services has not kept pace with rapid industrial growth. The rural migration to urban centers now taking place in the inland regions, in response to government policies to promote economic development and job creation in these areas, is putting further strain on urban infrastructure and services. 6. Cities in the north and west and around the SRB are experiencing widespread pollution from the discharge of untreated wastewater and improper management of solid waste. Shortages of safe drinking water are also common, particularly in the northern part of the PRC. The Government has classified more than 108 cities as having serious water problems and 60 as being critically short of water. Municipal wastewater is a major contributor to the pollution of the PRC’s rivers and lakes, with the most severe pollution impact in the northern region of the PRC. Only about 40% of urban wastewater in the PRC is treated, and the rest is discharged untreated into rivers and lakes. Cities and towns in Heilongjiang and Jilin provinces must overcome widespread environmental degradation while meeting increasing demand for public services, to ensure that their economic development is sustainable. 7. The SRB is the third-largest river basin in the PRC after the Yangtze and Yellow rivers. It has an area of 557,000 square kilometers (km2) and a population of 62 million. Major cities such as Changchun and Harbin and the PRC’s largest oil fields are located in the SRB. Agriculture is well
Recommended publications
  • The Human Threat to River Ecosystems at the Watershed Scale: an Ecological Security Assessment of the Songhua River Basin, Northeast China
    water Article The Human Threat to River Ecosystems at the Watershed Scale: An Ecological Security Assessment of the Songhua River Basin, Northeast China Yuan Shen 1,2, Huiming Cao 1, Mingfang Tang 1 and Hongbing Deng 1,* 1 State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; [email protected] (Y.S.); [email protected] (H.C.); [email protected] (M.T.) 2 University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected]; Tel.: +86-10-6284-9112 Academic Editor: Sharon B. Megdal Received: 6 December 2016; Accepted: 13 March 2017; Published: 16 March 2017 Abstract: Human disturbances impact river basins by reducing the quality of, and services provided by, aquatic ecosystems. Conducting quantitative assessments of ecological security at the watershed scale is important for enhancing the water quality of river basins and promoting environmental management. In this study, China’s Songhua River Basin was divided into 204 assessment units by combining watershed and administrative boundaries. Ten human threat factors were identified based on their significant influence on the river ecosystem. A modified ecological threat index was used to synthetically evaluate the ecological security, where frequency was weighted by flow length from the grids to the main rivers, while severity was weighted by the potential hazard of the factors on variables of river ecosystem integrity. The results showed that individual factors related to urbanization, agricultural development and facility construction presented different spatial distribution characteristics. At the center of the plain area, the provincial capital cities posed the highest level of threat, as did the municipal districts of prefecture-level cities.
    [Show full text]
  • Detection of Sensitive Soil Properties Related to Non-Point Phosphorus
    Ecological Indicators 60 (2016) 483–494 Contents lists available at ScienceDirect Ecological Indicators j ournal homepage: www.elsevier.com/locate/ecolind Detection of sensitive soil properties related to non-point phosphorus pollution by integrated models of SEDD and PLOAD a,b,∗ c a a,d Chen Lin , Zhipeng Wu , Ronghua Ma , Zhihu Su a Key Laboratory of Watershed Geographic Sciences, Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China b State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China c School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210046, China d College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province 321004, China a r a t i c l e i n f o b s t r a c t Article history: Effectively identifying soil properties in relation to non-point source (NPS) phosphorus pollution is impor- Received 2 March 2015 tant for NPS pollution management. Previous studies have focused on particulate P loads in relation to Received in revised form 7 July 2015 agricultural non-point source pollution. In areas undergoing rapid urbanization, dissolved P loads may be Accepted 26 July 2015 important with respect to conditions of surface infiltration and rainfall runoff. The present study devel- oped an integrated model for the analysis of both dissolved P and particulate P loads, applied to the Keywords: 2 Meiliang Bay watershed, Taihu Lake, China. The results showed that NPS P loads up to 15 kg/km were Non-point source pollution 2 present, with particulate P loads up to 13 kg/km .
    [Show full text]
  • Ancient Cities & Yangtze River Discovery [17 Days]
    Ancient Cities & Yangtze River Discovery [17 Days] This cultural tour takes you to discover many ancient cities throughout China and experience of ancient temples, streets, exquisite classical gardens and magnificent imperial gardens and Palaces, museums, Giant Panda as well as working canals and beautiful fresh water lakes. Your luxury Yangtze River cruise trip is a Perfect option to understand the civilizations of Yangtze while enjoying the scenic view of Three Gorges. Day 01: Australia-Beijing Enjoy your morning flight to Beijing. Welcome to Beijing! On arrival, you will be welcomed by the local tour guide who will check you in for 3 nights at Novotel Peace or similar. Day 02: Beijing (B,L,SD) Breakfast in the hotel. Highlights today includes the tour to the Tiananmen Square, the largest city centre square of its kind in China; the Forbidden City, where thousands of palaces and spellbinding treasures of art works will give you imagination of the royal life of Chinese emperors and concubines. Afternoon, tour to the incomparable Summer Palace. In the evening a feast of Peking duck. Acrobatic show is provided for the evening entertainment. Day 03: Beijing (B,L) Breakfast in the hotel. Day excursion to the Great Wall, one of the world wonders. As you will climb to the top of the Great Wall, we advise you to wear comfortable walking shoes. Afternoon, tour to the famous Ming Tombs. Then, return to Beijing for free time shopping and walking in the famous Wangfujing Street, which is regarded as the First Street in China. Day 04: Beijing-Xi’an (B,L,D) Tour to the Temple of Heaven, the focus of this complex is the famed Hall of Prayer for a Good Harvest, a round edifice constructed of wood only without a single nail.
    [Show full text]
  • Full Implementation of the River Chief System in China: Outcome and Weakness
    sustainability Article Full Implementation of the River Chief System in China: Outcome and Weakness Yinghong Li 1, Jiaxin Tong 2 and Longfei Wang 2,* 1 School of Marxism, Hohai University, Nanjing 210098, China; [email protected] 2 Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; [email protected] * Correspondence: [email protected] Received: 31 March 2020; Accepted: 1 May 2020; Published: 6 May 2020 Abstract: Despite having explored various modes of water management over the past three decades, the water crisis persists and the Chinese government has been required to revolutionize river management from the top down. The River Chief System (RCS), which evolved from small scale, local efforts to manage rivers starting in 2007, is an innovative system that coordinates between existing ‘fragmented’ river/lake management and pollution control systems, to clearly define the responsibilities of all concerned departments. The system was promoted from an emergent policy to nationwide action in 2016, and ever since, has undergone steady development. We have analyzed recent developments in the system from the perspectives of functional expansion, implementation strategies, legislative processes, and public outreach after the full implementation of the RCS. By collecting data over the past several years, the changes in the water quality of representative watersheds in China were evaluated to assess the outcomes of RCS implementation. Finally, a summary of the weaknesses and outstanding problems of the system is presented, putting forward a multi-channel strategy for the long-term stability and effectiveness of river/lake chiefs, and promoting the RCS as a suitable solution to the collaborative and jurisdictional issues in water management in China.
    [Show full text]
  • Water Pollution and Health Impact in China: a Mini Review Wen-Qing Lu*, Shao-Hua Xie, Wen-Shan Zhou, Shao-Hui Zhang, Ai-Lin Liu
    Open Environmental Sciences, 2008, 2, 1-5 1 Open Access Water Pollution and Health Impact in China: A Mini Review Wen-Qing Lu*, Shao-Hua Xie, Wen-Shan Zhou, Shao-Hui Zhang, Ai-Lin Liu Department of Occupational and Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China Abstract: For the last 20-odd years in China, an economic boom has resulted in severe environmental pollution; water pollution, particularly, is of great concern. It has been reported that pollution in China’s overall surface water is rated me- dium. The water quality of groundwater, lakes and reservoirs has deteriorated. Consequently, such a general distribution of water pollution has posed a grave threat to public health in China. The health impact of water pollution has been docu- mented in the last several decades; these documents are reviewed in this paper on several outstanding aspects, including chronic mercurialism, arsenism, cancers related to microcystins, health problems caused by organic pollutants and water pollution accidents as well. Indubitably, water pollution and its health impact remain enormous challenges in China. Keywords: Water pollution, health impact, public health. In the last 20-odd years, there has been a boom in eco- induced water shortage have been the two biggest factors nomic development in China. However, a side effect that has restricting sustainable development in China. resulted in is the increased severity of environmental pollu- Water Pollution tion. Water pollution, especially, poses a grave threat to pub- lic health. The security of drinking water is not satisfactory.
    [Show full text]
  • The World Bank
    Uocument of The World Bank FOR OFFICIAL USE ONLY Public Disclosure Authorized Report No. 11040-A STAFF APPRAISAL REPORT Public Disclosure Authorized CHINA CHANGCCUNWATER SUPPLY AND ENVIRONMENTALPROJECT DECEMBER30, 1992 Public Disclosure Authorized MITCOFICHE COPY heport No.:11040-CHA Type: (OAR) Titie: CHANGCHUN WATER SUIPPLY AND) ENV Autthor: PIETVELD, C Ext.:82924 Room:F8059 Dept.:ASTIN Environment, %uman Resources and Urban Development Operations Division Country Department II Public Disclosure Authorized East Asia and Pacific Regional Office This docunent hs a resMtded distibuto and may be uad by ripiens only in the perfonmnce of their offid dutie Its contens may not otheise be dbcosed without Word Bank autoization. CURRENCY EQUIVALENTS (As of June 1992) CurrencyName = Renminbi(RMB) Currency Unit = Yuan (Y) $1.00 =Y 5.48 Y 1.00 = $0.18 WEIGHTS AND MEASURES 1 millimeter(mm) = 0.0939 Inches (in) 1 meter (m) = 3.2808 feet (ft) I squaremeter (m: 2) = 10.7639square feet (ft) I cubicmeter (ml) = 35.3 cubicfeet 1 hectare(ha) = 10,000square meters 1 kilometer(Iam) = 0.62 miles(mi) 1 squarekilometer (1an) = 0.3861square mile (mtn) ACRONYNS AND ABBREVIATIONS CIDA CanadianInternational Development Agency CMC ChinaNational Machinery Import and ExportCorporation CSC ChangchunSewerage Company CWSC ChangchunWater Supply Company CWRC CbangchunWater Resources Company EPB EnvironmentalProtecion Buream HLLG High-LevelLeadership Group lcd Litersper capitaper day MOC Ministryof Construction MOWC Ministryof WaterConservancy NEPA NationalEnviromnental Protection
    [Show full text]
  • Inventory of Environmental Work in China
    INVENTORY OF ENVIRONMENTAL WORK IN CHINA In this fifth issue of the China Environment Series, the Inventory of Environmental Work in China has been updated and we made extra effort to add many new groups, especially in the Chinese organization section. To better highlight the growing number of U.S. universities and professional associations active in China we have created a separate section. In the past inventories we have gathered information from U.S. government agencies; from this year forward we will be inventorying the work done by other governments as well. This inventory aims to paint a clearer picture of the patterns of aid and investment in environmental protection and energy-efficiency projects in the People’s Republic of China. We highlight a total of 118 organizations and agencies in this inventory and provide information on 359 projects. The five categories of the inventory are listed below: Part I (p. 138): United States Government Activities (15 agencies/organizations, 103 projects) Part II (p. 163): U.S. and International NGO Activities (33 organizations, 91 projects) Part III (p. 190): U.S. Universities and Professional Association Activities (9 institutions, 27 projects) Part IV (p. 196): Chinese and Hong Kong NGO and GONGO Activities (50 organizations, 61 projects) Part V (p. 212): Bilateral Government Activities (11 agencies/organizations, 77 projects) Since we have expanded the inventory, even more people than last year contributed to the creation of this inventory. We are grateful to all of those in U.S. government agencies, international and Chinese nongovernmental organizations, universities, as well as representatives in foreign embassies who generously gave their time to compile and summarize the information their organizations and agencies undertake in China.
    [Show full text]
  • Coal, Water, and Grasslands in the Three Norths
    Coal, Water, and Grasslands in the Three Norths August 2019 The Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH a non-profit, federally owned enterprise, implementing international cooperation projects and measures in the field of sustainable development on behalf of the German Government, as well as other national and international clients. The German Energy Transition Expertise for China Project, which is funded and commissioned by the German Federal Ministry for Economic Affairs and Energy (BMWi), supports the sustainable development of the Chinese energy sector by transferring knowledge and experiences of German energy transition (Energiewende) experts to its partner organisation in China: the China National Renewable Energy Centre (CNREC), a Chinese think tank for advising the National Energy Administration (NEA) on renewable energy policies and the general process of energy transition. CNREC is a part of Energy Research Institute (ERI) of National Development and Reform Commission (NDRC). Contact: Anders Hove Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH China Tayuan Diplomatic Office Building 1-15-1 No. 14, Liangmahe Nanlu, Chaoyang District Beijing 100600 PRC [email protected] www.giz.de/china Table of Contents Executive summary 1 1. The Three Norths region features high water-stress, high coal use, and abundant grasslands 3 1.1 The Three Norths is China’s main base for coal production, coal power and coal chemicals 3 1.2 The Three Norths faces high water stress 6 1.3 Water consumption of the coal industry and irrigation of grassland relatively low 7 1.4 Grassland area and productivity showed several trends during 1980-2015 9 2.
    [Show full text]
  • Quantifying Contributions of Climate Change and Local Human Activities to Runoff Decline in the Second Songhua River Basin
    water Article Quantifying Contributions of Climate Change and Local Human Activities to Runoff Decline in the Second Songhua River Basin Bao Shanshan 1 , Yang Wei 1, Wang Xiaojun 2,3 and Li Hongyan 1,* 1 Key Laboratory of Groundwater Resources and Environment, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; [email protected] (B.S.); [email protected] (Y.W.) 2 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; [email protected] 3 Research Center for Climate Change, Ministry of Water Resources, Nanjing 210029, China * Correspondence: [email protected]; Tel.: +86-137-5625-7761 Received: 29 July 2020; Accepted: 15 September 2020; Published: 23 September 2020 Abstract: In the past several decades, climate change and human activities have influenced hydrological processes, and potentially caused more frequent and extensive flood and drought risks. Therefore, identification and quantification of the driving factors of runoff variation have become a hot research area. This paper used the trend analysis method to show that runoff had a significant downward trend during the past 60 years in the Second Songhua River Basin (SSRB) of Northeast China. The upper, middle, and lower streams of five hydrological stations were selected to analyze the breakpoint of the annual runoff in the past 60 years, and the breakpoints were used to divide the entire study period into two sub-periods (1956–1974 and 1975–2015). Using the water–energy coupling balance method based on Choudhury–Yang equation, the climatic and catchment landscape elasticity coefficient of the annual runoff change was estimated, and attribution analysis of the runoff change was carried out for the Fengman Reservoir and Fuyu stations in SSRB.
    [Show full text]
  • Research Article Thyroid-Disrupting Activities of Groundwater from A
    Hindawi Journal of Chemistry Volume 2020, Article ID 2437082, 9 pages https://doi.org/10.1155/2020/2437082 Research Article Thyroid-Disrupting Activities of Groundwater from a Riverbank Filtration System in Wuchang City, China: Seasonal Distribution and Human Health Risk Assessment Dongdong Kong,1 Hedan Liu,1 Yun Liu,2 Yafei Wang,1 and Jian Li 1 1Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China 2South China Institute of Environmental Science, MEE, No. 7 West Street, Yuancun, Guangzhou 510655, China Correspondence should be addressed to Jian Li; [email protected] Received 25 July 2019; Accepted 11 December 2019; Published 7 January 2020 Guest Editor: Lisa Yu Copyright © 2020 Dongdong Kong et al. )is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. )e recombinant thyroid hormone receptor (TR) gene yeast assay was used to evaluate thyroid disruption caused by groundwater from the riverbank filtration (RBF) system in Wuchang City, China. To investigate seasonal fluctuations, groundwater was collected during three seasons. Although no TR agonistic activity was found, many water samples exhibited TR antagonistic activity. )e bioassay-derived amiodarone hydrochloride (AH) equivalents ranged from 2.99 to 274.40 μg/L. Water samples collected from the riverbank filtration system during the dry season had higher TR antagonistic activity. All samples presented adverse 3,3′,5-triiodo-L-thyronine (T3) equivalent levels, ranging from − 2.00 to − 2.12 μg/kg.
    [Show full text]
  • 2012 International Conference on Modern Hydraulic Engineering
    2012 International Conference on Modern Hydraulic Engineering Procedia Engineering Volume 28 Nanjing, China 9-11 March 2012 ISBN: 978-1-62748-584-5 ISSN: 1877-7058 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 Some format issues inherent in the e-media version may also appear in this print version. Copyright© by Elsevier B.V. All rights reserved. Printed by Curran Associates, Inc. (2013) For permission requests, please contact Elsevier B.V. at the address below. Elsevier B.V. Radarweg 29 Amsterdam 1043 NX The Netherlands Phone: +31 20 485 3911 Fax: +31 20 485 2457 http://www.elsevierpublishingsolutions.com/contact.asp Additional copies of this publication are available from: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2634 Email: [email protected] Web: www.proceedings.com Available online at www.sciencedirect.com Procedia Engineering 28 (2012) iii–viii Contents Front Matter . 1 The Vibration of Pile Groups Embedded in a Layered Poroelastic Half Space Subjected to Harmonic Axial Loads by using Integral Equations Method J.-h. Li, M.-q. Xu, B. Xu, M.-f. Fu . 8 Dynamic Characteristics Analysis of an Oil Turbine B. Yan, X. Lai, J. Long, X. Huang, F. Hao . 12 Shuifu-Yibin Channel Regulation Affected by Unsteady Flow Released from Xiangjiba Hydropower Station Z.-h. Liu, A.-x. Ma, M.-x. Cao . 18 Investigation of Hydraulic Characteristics of a Volute-Type Discharge Passage based on CFD H. Zhu, R. Zhang, G. Luo, B. Zhang . 27 Water use Effi ciency and Physiological Responses of Oat under Alternate Partial Root-Zone Irrigation in the Semiarid Areas of Northeast China Y.
    [Show full text]
  • Freshwater Ecosystems Versus Hydropower Development: Environmental Assessments and Conservation Measures in the Transboundary Amur River Basin
    water Article Freshwater Ecosystems versus Hydropower Development: Environmental Assessments and Conservation Measures in the Transboundary Amur River Basin Eugene A. Simonov 1,2,* , Oxana I. Nikitina 3,* and Eugene G. Egidarev 3,4 1 Rivers without Boundaries International Coalition, Dalian 116650, China 2 Daursky Biosphere Reserve, 674480 Nizhny Tsasuchey, Russia 3 World Wide Fund for Nature (WWF-Russia), 109240 Moscow, Russia 4 Pacific Geographical Institute of the Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia * Correspondence: [email protected] (E.A.S.); [email protected] (O.I.N.) Received: 18 June 2019; Accepted: 25 July 2019; Published: 29 July 2019 Abstract: Hydropower development causes a multitude of negative effects on freshwater ecosystems, and to prevent and minimize possible damage, environmental impact assessments must be conducted and optimal management scenarios designed. This paper examines the impacts of both existing and proposed hydropower development on the transboundary Amur River basin shared by Russia, China, and Mongolia, including the effectiveness of different tools and measures to minimize damage. It demonstrates that the application of various assessment and conservation tools at the proper time and in the proper sequence is the key factor in mitigating and minimizing the environmental impacts of dams. The tools considered include basin-wide assessments of hydropower impacts, the creation of protected areas on rivers threatened by dam construction, and environmental flows. The results of this work show how the initial avoidance and mitigation of hydropower impacts at early planning stages are more productive than the application of any measures during and after dam construction, that the assessment of hydropower impacts must be performed at a basin level rather than be limited to a project implementation site, and that the full spectrum of possible development scenarios should be considered.
    [Show full text]