Freshwater Ecosystems Versus Hydropower Development: Environmental Assessments and Conservation Measures in the Transboundary Amur River Basin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human-Nature Relationships in the Tungus Societies of Siberia and Northeast China Alexandra Lavrillier, Aurore Dumont, Donatas Brandišauskas
Human-nature relationships in the Tungus societies of Siberia and Northeast China Alexandra Lavrillier, Aurore Dumont, Donatas Brandišauskas To cite this version: Alexandra Lavrillier, Aurore Dumont, Donatas Brandišauskas. Human-nature relationships in the Tungus societies of Siberia and Northeast China. Études mongoles et sibériennes, centrasiatiques et tibétaines, Centre d’Etudes Mongoles & Sibériennes / École Pratique des Hautes Études, 2018, Human-environment relationships in Siberia and Northeast China. Knowledge, rituals, mobility and politics among the Tungus peoples, 49, pp.1-26. 10.4000/emscat.3088. halshs-02520251 HAL Id: halshs-02520251 https://halshs.archives-ouvertes.fr/halshs-02520251 Submitted on 26 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Études mongoles et sibériennes, centrasiatiques et tibétaines 49 | 2018 Human-environment relationships in Siberia and Northeast China. Knowledge, rituals, mobility and politics among the Tungus peoples, followed by Varia Human-nature relationships in the Tungus societies of Siberia -
Federal Register/Vol. 86, No. 162/Wednesday, August 25, 2021
Federal Register / Vol. 86, No. 162 / Wednesday, August 25, 2021 / Proposed Rules 47457 hypothecate, assign, transfer or encumber EXHIBIT A DEPARTMENT OF THE INTERIOR funds or assets in the Escrow Account except ESCROW AGREEMENT, dated ll by and in accordance with the terms of this Fish and Wildlife Service between (Customer) and (Escrow Agent). Agreement. 20. This Agreement is for the benefit of the Passenger Vessels Owned or Chartered 50 CFR Part 17 parties hereto and, accordingly, each and ANNEX 1 [Docket No. FWS–HQ–ES–2020–0100; every provision hereof shall be enforceable FF09E22000 FXES11180900000 212] by any or each or both of them. Additionally, RECOMPUTATION CERTIFICATE this Agreement shall be enforceable by the To: Federal Maritime Commission RIN 1018–BE92 Commission. However, this Agreement shall And To: (‘‘Bank’’) Endangered and Threatened Wildlife not be enforceable by any other party, person ll The undersigned, the Controller of and Plants; Endangered Species or entity whatsoever. hereby furnishes this Recomputation Status for Amur Sturgeon 21. (a) No amendments, modifications or Certificate pursuant to the terms of the other change in the terms of this Agreement Escrow Agreement dated ll, between the AGENCY: Fish and Wildlife Service, shall be effective for any purpose whatsoever Customer and (‘‘Bank’’). Terms herein shall Interior. unless agreed upon in writing by Escrow have the same definitions as those in such ACTION: Proposed rule. Agent and Customer and approved in writing Escrow Agreement and Federal Maritime by the Commission. Commission regulations. SUMMARY: We, the U.S. Fish and (b) No party hereto may assign its rights or I. -
(Hydropower) Technology in South African Narrow-Reef Hard-Rock Mines
The Southern African Institute of Mining and Metallurgy Platinum 2012 P. Fraser THE USE OF HIGH-PRESSURE, WATER-HYDRAULIC (HYDROPOWER) TECHNOLOGY IN SOUTH AFRICAN NARROW-REEF HARD-ROCK MINES P. Fraser Hydro Power Equipment (Pty) Ltd Abstract This paper examines the new water-hydraulic (hydropowered) drill rigs that have been developed and proven in the last decade primarily in tabular, shallow-dipping, narrow-reef hard-rock South African mines. These include drill rigs for flat-end tunnel development, narrow inclined raises and winzes, large inclines and declines and longhole-based developments such as ore passes and vent raises. The hydropower technology rigs offer advantages both in safety and performance over traditional compressed-air-powered, hand-held development, and are generally more cost-effective than imported oil electro-hydraulic drill rigs. Furthermore, hydropowered rigs are inherently energy-efficient. The benefits of hydropower are discussed and a ‘comprehensive development model’ is presented which demonstrates that ore-bodies can be accessed in significantly shorter times. ‘Localized’ half level hydropower systems are introduced and a range of ancillary equipment available is listed. Introduction According to Neville Nicolau, CEO of Anglo Platinum, ’Safety is our moral licence to operate’ and, ’if we don’t get our safety right, then you must expect society to take away our licence to operate, and then we would be responsible for closing mines and destroying work 1. While the long-term trend in the Fatal Injury Frequency Rate (FIFR) is downward, fatalities are not acceptable to any of the stakeholders in the mining industry or investor community. Safety is therefore a non-negotiable imperative. -
The Contribution of Hydropower Reservoirs to Flood Control in the Austrian Alps
Ilydrology in Mountainous Regions. II - Artificial Reservoirs; Water and Slopes (Proceedings of two Lausanne Symposia, August 1990). IAHS Publ. no. 194,1990. The contribution of hydropower reservoirs to flood control in the Austrian Alps W. PIRCHER Tiroler Wasserkraftwerke Aktiengesellschaft (TIWAG) Landhausplatz 2, A-6o2o Innsbruck, Austria ABSTRACT A considerable improvement to flood control is a significant - and free - additional utility accruing to the general public from the construction of hydropower storage reservoirs. By way of illustration, the author presents a comparative study on the basis of a number of flood events in valleys influenced by storage power plants. INTRODUCTION Austria has approximately thirty major storage reservoirs built by hy dropower companies and operated on a seasonal basis. Since they tend to be located at high altitudes, total stored energy from a combined active storage of 1.3oo hm^ is over 3.5oo GWh for winter and peak power generation, and this forms the backbone of electricity generation in Austria. Taking into account also the smaller reservoirs for daily and weekly storage, approximately 31% of the country's present annual total hydroelectric generation of 34.ooo GWh is controlled by reservoir sto rage, with the high degree of control and flexibility this offers. The primary goal in the construction of all storage power schemes in Austria, and the only source of subsequent earnings for the hydro- power companies, is of course electricity generation, but such schemes also involve a whole series of additional utilities that accrue to the general public free of charge. As a rule, significant improvements in flood control are the most important of these spin-offs, although be nefits to the local infrastructure and tourism as well as a markable increase of flow during the winter period are not to be underestimated, either. -
Hydroelectric Power -- What Is It? It=S a Form of Energy … a Renewable Resource
INTRODUCTION Hydroelectric Power -- what is it? It=s a form of energy … a renewable resource. Hydropower provides about 96 percent of the renewable energy in the United States. Other renewable resources include geothermal, wave power, tidal power, wind power, and solar power. Hydroelectric powerplants do not use up resources to create electricity nor do they pollute the air, land, or water, as other powerplants may. Hydroelectric power has played an important part in the development of this Nation's electric power industry. Both small and large hydroelectric power developments were instrumental in the early expansion of the electric power industry. Hydroelectric power comes from flowing water … winter and spring runoff from mountain streams and clear lakes. Water, when it is falling by the force of gravity, can be used to turn turbines and generators that produce electricity. Hydroelectric power is important to our Nation. Growing populations and modern technologies require vast amounts of electricity for creating, building, and expanding. In the 1920's, hydroelectric plants supplied as much as 40 percent of the electric energy produced. Although the amount of energy produced by this means has steadily increased, the amount produced by other types of powerplants has increased at a faster rate and hydroelectric power presently supplies about 10 percent of the electrical generating capacity of the United States. Hydropower is an essential contributor in the national power grid because of its ability to respond quickly to rapidly varying loads or system disturbances, which base load plants with steam systems powered by combustion or nuclear processes cannot accommodate. Reclamation=s 58 powerplants throughout the Western United States produce an average of 42 billion kWh (kilowatt-hours) per year, enough to meet the residential needs of more than 14 million people. -
A Case Study in the Dudh Koshi Basin of Nepal
water Article Hydropower Potential of Run of River Schemes in the Himalayas under Climate Change: A Case Study in the Dudh Koshi Basin of Nepal Daniele Bocchiola 1,2,* , Mattia Manara 1 and Riccardo Mereu 3 1 Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, L. da Vinci 32, 20133 Milano, Italy; [email protected] 2 EVK2CNR Committee of Italy, S. Bernardino 145, 24122 Bergamo, Italy 3 Department of Energy Engineering (DENG), Politecnico di Milano, Campus-Bovisa, Lambruschini, 4a, 20156 Milano, Italy; [email protected] * Correspondence: [email protected] Received: 20 July 2020; Accepted: 16 September 2020; Published: 19 September 2020 Abstract: In spite of the very large hydropower potential given from the melting snow and ice of Himalayas, Nepal’s population has little hydropower production. The high use of fossil fuels and biomasses results in measurable air pollution, even in the mountain areas. Hydropower planning and implementation, in the face of the changing climate, is therefore paramount important. We focus here on Nepal, and particularly on the Dudh Koshi river basin, with a population of ca. 170,000 people, within an area with large potential for hydropower production. Our main objectives are to (i) preliminarily design a local hydropower grid based on a distributed run of river ROR scheme, and (ii) verify the resilience of the grid against modified hydrology under perspective climate change, until the end of the century. To do so, we set up and tune the Poli-Hydro semi-distributed glacio-hydrological model, mimicking the complex hydrology of the area. We then modify a state of the art algorithm to develop and exploit a heuristic, resource-demand based model, called Poli-ROR. -
Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics
energies Article Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics Vasileios Kitsikoudis 1,*, Pierre Archambeau 1 , Benjamin Dewals 1, Estanislao Pujades 2, Philippe Orban 3, Alain Dassargues 3 , Michel Pirotton 1 and Sebastien Erpicum 1 1 Hydraulics in Environmental and Civil Engineering, Urban and Environmental Engineering Research Unit, Liege University, 4000 Liege, Belgium; [email protected] (P.A.); [email protected] (B.D.); [email protected] (M.P.); [email protected] (S.E.) 2 Department of Computational Hydrosystems, UFZ—Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany; [email protected] 3 Hydrogeology and Environmental Geology, Urban and Environmental Engineering Research Unit, Liege University, 4000 Liege, Belgium; [email protected] (P.O.); [email protected] (A.D.) * Correspondence: [email protected] or [email protected]; Tel.: +32-478-112388 Received: 22 April 2020; Accepted: 6 July 2020; Published: 8 July 2020 Abstract: The intermittent nature of most renewable energy sources requires their coupling with an energy storage system, with pumped storage hydropower (PSH) being one popular option. However, PSH cannot always be constructed due to topographic, environmental, and societal constraints, among others. Underground pumped storage hydropower (UPSH) has recently gained popularity as a viable alternative and may utilize abandoned mines for the construction of the lower reservoir in the underground. Such underground mines may have complex geometries and the injection/pumping of large volumes of water with high discharge could lead to uneven water level distribution over the underground reservoir subparts. This can temporarily influence the head difference between the upper and lower reservoirs of the UPSH, thus affecting the efficiency of the plant or inducing structural stability problems. -
Hydropower Technologies Program — Harnessing America’S Abundant Natural Resources for Clean Power Generation
U.S. Department of Energy — Energy Efficiency and Renewable Energy Wind & Hydropower Technologies Program — Harnessing America’s abundant natural resources for clean power generation. Contents Hydropower Today ......................................... 1 Enhancing Generation and Environmental Performance ......... 6 Large Turbine Field-Testing ............................... 9 Providing Safe Passage for Fish ........................... 9 Improving Mitigation Practices .......................... 11 From the Laboratories to the Hydropower Communities ..... 12 Hydropower Tomorrow .................................... 14 Developing the Next Generation of Hydropower ............ 15 Integrating Wind and Hydropower Technologies ............ 16 Optimizing Project Operations ........................... 17 The Federal Wind and Hydropower Technologies Program ..... 19 Mission and Goals ...................................... 20 2003 Hydropower Research Highlights Alden Research Center completes prototype turbine tests at their facility in Holden, MA . 9 Laboratories form partnerships to develop and test new sensor arrays and computer models . 10 DOE hosts Workshop on Turbulence at Hydroelectric Power Plants in Atlanta . 11 New retrofit aeration system designed to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri . 11 Low head/low power resource assessments completed for conventional turbines, unconventional systems, and micro hydropower . 15 Wind and hydropower integration activities in 2003 aim to identify potential sites and partners . 17 Cover photo: To harness undeveloped hydropower resources without using a dam as part of the system that produces electricity, researchers are developing technologies that extract energy from free flowing water sources like this stream in West Virginia. ii HYDROPOWER TODAY Water power — it can cut deep canyons, chisel majestic mountains, quench parched lands, and transport tons — and it can generate enough electricity to light up millions of homes and businesses around the world. -
Trans-Baykal (Rusya) Bölgesi'nin Coğrafyasi
International Journal of Geography and Geography Education (IGGE) To Cite This Article: Can, R. R. (2021). Geography of the Trans-Baykal (Russia) region. International Journal of Geography and Geography Education (IGGE), 43, 365-385. Submitted: October 07, 2020 Revised: November 01, 2020 Accepted: November 16, 2020 GEOGRAPHY OF THE TRANS-BAYKAL (RUSSIA) REGION Trans-Baykal (Rusya) Bölgesi’nin Coğrafyası Reyhan Rafet CAN1 Öz Zabaykalskiy Kray (Bölge) olarak isimlendirilen saha adını Rus kâşiflerin ilk kez 1640’ta karşılaştıkları Daur halkından alır. Rusçada Zabaykalye, Balkal Gölü’nün doğusu anlamına gelir. Trans-Baykal Bölgesi, Sibirya'nın en güneydoğusunda, doğu Trans-Baykal'ın neredeyse tüm bölgesini işgal eder. Bölge şiddetli iklim koşulları; birçok mineral ve hammadde kaynağı; ormanların ve tarım arazilerinin varlığı ile karakterize edilir. Rusya Federasyonu'nun Uzakdoğu Federal Bölgesi’nin bir parçası olan on bir kurucu kuruluşu arasında bölge, alan açısından altıncı, nüfus açısından dördüncü, bölgesel ürün üretimi açısından (GRP) altıncı sıradadır. Bölge topraklarından geçen Trans-Sibirya Demiryolu yalnızca Uzak Doğu ile Rusya'nın batı bölgeleri arasında bir ulaşım bağlantısı değil, aynı zamanda Avrasya geçişini sağlayan küresel altyapının da bir parçasıdır. Bölgenin üretim yapısında sanayi, tarım ve ulaşım yüksek bir paya sahiptir. Bu çalışmada Trans-Baykal Bölgesi’nin fiziki, beşeri ve ekonomik coğrafya özellikleri ele alınmıştır. Trans-Baykal Bölgesinin coğrafi özelliklerinin yanı sıra, ekonomik ve kültürel yapısını incelenmiştir. Bu kapsamda konu ile ilgili kurumsal raporlardan ve alan araştırmalarından yararlanılmıştır. Bu çalışma sonucunda 350 yıldan beri Rus gelenek, kültür ve yaşam tarzının devam ettiği, farklı etnik grupların toplumsal birliği sağladığı, yer altı kaynaklarının bölge ekonomisi için yüzyıllardır olduğu gibi günümüzde de önem arz ettiği, coğrafyasının halkın yaşam şeklini belirdiği sonucuna varılmıştır. -
The Human Threat to River Ecosystems at the Watershed Scale: an Ecological Security Assessment of the Songhua River Basin, Northeast China
water Article The Human Threat to River Ecosystems at the Watershed Scale: An Ecological Security Assessment of the Songhua River Basin, Northeast China Yuan Shen 1,2, Huiming Cao 1, Mingfang Tang 1 and Hongbing Deng 1,* 1 State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; [email protected] (Y.S.); [email protected] (H.C.); [email protected] (M.T.) 2 University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected]; Tel.: +86-10-6284-9112 Academic Editor: Sharon B. Megdal Received: 6 December 2016; Accepted: 13 March 2017; Published: 16 March 2017 Abstract: Human disturbances impact river basins by reducing the quality of, and services provided by, aquatic ecosystems. Conducting quantitative assessments of ecological security at the watershed scale is important for enhancing the water quality of river basins and promoting environmental management. In this study, China’s Songhua River Basin was divided into 204 assessment units by combining watershed and administrative boundaries. Ten human threat factors were identified based on their significant influence on the river ecosystem. A modified ecological threat index was used to synthetically evaluate the ecological security, where frequency was weighted by flow length from the grids to the main rivers, while severity was weighted by the potential hazard of the factors on variables of river ecosystem integrity. The results showed that individual factors related to urbanization, agricultural development and facility construction presented different spatial distribution characteristics. At the center of the plain area, the provincial capital cities posed the highest level of threat, as did the municipal districts of prefecture-level cities. -
Can Hydropower Still Be Considered a Clean Energy Source? Compelling Evidence from a Middle-Sized Hydropower Station in China
sustainability Article Can Hydropower Still Be Considered a Clean Energy Source? Compelling Evidence from a Middle-Sized Hydropower Station in China Xuerong Li 1, Faliang Gui 2,* and Qingpeng Li 3 1 Jiangxi Engineering Research Centre of Water Engineering Safety and Resources Efficient Utilization, Nanchang Institute of Technology, Nanchang 330099, China 2 Scientific Research Office, Nanchang Institute of Technology, Nanchang 330099, China 3 State Grid Nanchang Electric Power Supply Company, Nanchang 330012, China * Correspondence: [email protected]; Tel.: +86-791-88125948 Received: 5 July 2019; Accepted: 4 August 2019; Published: 7 August 2019 Abstract: The development of clean energy is of great importance in alleviating both the energy crisis and environmental pollution resulting from rapid global economic growth. Hydroelectric generation is considered climate benign, as it neither requires fossil carbon to produce energy nor emits large amounts of greenhouse gases (GHG), unlike conventional energy generation techniques such as coal and oil power plants. However, dams and their associated reservoirs are not entirely GHG-neutral and their classification as a clean source of energy requires further investigation. This study evaluated the environmental impact of the Xiajiang hydropower station based on life cycle assessment (LCA) according to the 2006 Intergovernmental Panel on Climate Change (IPCC) guidelines, focusing specifically on GHG emissions after the submersion of the reservoir. Results reveal that although hydropower is not as clean as we thought, it is still an absolute “low emissions” power type in China. The amount of GHG emissions produced by this station is 3.72 million tons with an emissions coefficient of 32.63 g CO2eq/kWh. -
Detection of Sensitive Soil Properties Related to Non-Point Phosphorus
Ecological Indicators 60 (2016) 483–494 Contents lists available at ScienceDirect Ecological Indicators j ournal homepage: www.elsevier.com/locate/ecolind Detection of sensitive soil properties related to non-point phosphorus pollution by integrated models of SEDD and PLOAD a,b,∗ c a a,d Chen Lin , Zhipeng Wu , Ronghua Ma , Zhihu Su a Key Laboratory of Watershed Geographic Sciences, Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China b State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China c School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210046, China d College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province 321004, China a r a t i c l e i n f o b s t r a c t Article history: Effectively identifying soil properties in relation to non-point source (NPS) phosphorus pollution is impor- Received 2 March 2015 tant for NPS pollution management. Previous studies have focused on particulate P loads in relation to Received in revised form 7 July 2015 agricultural non-point source pollution. In areas undergoing rapid urbanization, dissolved P loads may be Accepted 26 July 2015 important with respect to conditions of surface infiltration and rainfall runoff. The present study devel- oped an integrated model for the analysis of both dissolved P and particulate P loads, applied to the Keywords: 2 Meiliang Bay watershed, Taihu Lake, China. The results showed that NPS P loads up to 15 kg/km were Non-point source pollution 2 present, with particulate P loads up to 13 kg/km .