Table of Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Consequences of Spatially Differentiated Water Pollution Regulation in China
NBER WORKING PAPER SERIES THE CONSEQUENCES OF SPATIALLY DIFFERENTIATED WATER POLLUTION REGULATION IN CHINA Zhao Chen Matthew E. Kahn Yu Liu Zhi Wang Working Paper 22507 http://www.nber.org/papers/w22507 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 August 2016 We would like to thank seminar participants at Xiamen University, Shanghai Jiaotong University, Fudan-UC Young Scholars Conference 2015, Urban Economic Association 2015 Annual Meeting in Portland. We thank Matthew Norris for useful comments. Any remaining errors are our own. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research. NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications. © 2016 by Zhao Chen, Matthew E. Kahn, Yu Liu, and Zhi Wang. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source. The Consequences of Spatially Differentiated Water Pollution Regulation in China Zhao Chen, Matthew E. Kahn, Yu Liu, and Zhi Wang NBER Working Paper No. 22507 August 2016 JEL No. Q25,Q52 ABSTRACT China’s environmental regulators have sought to reduce the Yangtze River’s water pollution. We document that this regulatory effort has had two unintended consequences. First, the regulation’s spatial differential stringency has displaced economic activity upstream. As polluting activity agglomerates upstream, more Pigouvian damage is caused downstream. -
Nitrogen Contamination in the Yangtze River System, China
中国科技论文在线 http://www.paper.edu.cn Journal of Hazardous Materials A73Ž. 2000 107±113 www.elsevier.nlrlocaterjhazmat Nitrogen contamination in the Yangtze River system, China Chen Jingsheng ), Gao Xuemin, He Dawei, Xia Xinghui Department of Urban and EnÕironmental Science, Peking UniÕersity, Beijing 100871, People's Republic of China Received 29 July 1998; received in revised form 25 April 1999; accepted 2 October 1999 Abstract The data at 570 monitoring stations during 1990 were studied. The results indicate as follows: Ž.i the contents of nitrogen in the Yangtze mainstream has a raising trend from the upper reaches to the lower reaches;Ž. ii total nitrogen content at a lot of stations during the middle 1980s is 5±10 times more than that during the 1960s;Ž. iii seasonal variances of nitrogen content vary with watersheds; andŽ. iv the difference of nitrogen contamination level is related to the regional population and economic development. q 2000 Elsevier Science B.V. All rights reserved. Keywords: China; The Yangtze River; Nitrogen contamination 1. Introduction The Yangtze River is the largest river in China, and its mainstream is 6300-km long and drainage area is about 1.8=106 km2. The natural and economic conditions vary largely with regions. The degree of nitrogen contamination differs from one area to another. Since 1956, the Water Conservancy Ministry of China had set up more than 900 chemical monitoring stations in succession on 500 rivers all over the country. Within 1958±1990, a quantity of water-quality data, including nitrogen, was accumulated but nobody has studied them systematically. -
A Garrison in Time Saves Nine
1 A Garrison in Time Saves Nine: Frontier Administration and ‘Drawing In’ the Yafahan Orochen in Late Qing Heilongjiang Loretta E. Kim The University of Hong Kong [email protected] Abstract In 1882 the Qing dynasty government established the Xing’an garrison in Heilongjiang to counteract the impact of Russian exploration and territorial expansion into the region. The Xing’an garrison was only operative for twelve years before closing down. What may seem to be an unmitigated failure of military and civil administrative planning was in fact a decisive attempt to contend with the challenges of governing borderland people rather than merely shoring up physical territorial limits. The Xing’an garrison arose out of the need to “draw in” the Yafahan Orochen population, one that had developed close relations with Russians through trade and social interaction. This article demonstrates that while building a garrison did not achieve the intended goal of strengthening control over the Yafahan Orochen, it was one of several measures the Qing employed to shape the human frontier in this critical borderland. Keywords 1 2 Butha, Eight Banners, frontier administration, Heilongjiang, Orochen Introduction In 1882, the Heilongjiang general’s yamen began setting up a new garrison. This milestone was distinctive because 150 years had passed since the last two were established, which had brought the actual total of garrisons within Heilongjiang to six.. The new Xing’an garrison (Xing’an cheng 興安城) would not be the last one built before the end of the Qing dynasty (1644-1911) but it was notably short-lived, in operation for only twelve years before being dismantled. -
2012 Wildearth Guardians and Friends of Animals Petition to List
PETITION TO LIST Fifteen Species of Sturgeon UNDER THE U.S. ENDANGERED SPECIES ACT Submitted to the U.S. Secretary of Commerce, Acting through the National Oceanic and Atmospheric Administration and the National Marine Fisheries Service March 8, 2012 Petitioners WildEarth Guardians Friends of Animals 1536 Wynkoop Street, Suite 301 777 Post Road, Suite 205 Denver, Colorado 80202 Darien, Connecticut 06820 303.573.4898 203.656.1522 INTRODUCTION WildEarth Guardians and Friends of Animals hereby petitions the Secretary of Commerce, acting through the National Marine Fisheries Service (NMFS)1 and the National Oceanic and Atmospheric Administration (NOAA) (hereinafter referred as the Secretary), to list fifteen critically endangered sturgeon species as “threatened” or “endangered” under the Endangered Species Act (ESA) (16 U.S.C. § 1531 et seq.). The fifteen petitioned sturgeon species, grouped by geographic region, are: I. Western Europe (1) Acipenser naccarii (Adriatic Sturgeon) (2) Acipenser sturio (Atlantic Sturgeon/Baltic Sturgeon/Common Sturgeon) II. Caspian Sea/Black Sea/Sea of Azov (3) Acipenser gueldenstaedtii (Russian Sturgeon) (4) Acipenser nudiventris (Ship Sturgeon/Bastard Sturgeon/Fringebarbel Sturgeon/Spiny Sturgeon/Thorn Sturgeon) (5) Acipenser persicus (Persian Sturgeon) (6) Acipenser stellatus (Stellate Sturgeon/Star Sturgeon) III. Aral Sea and Tributaries (endemics) (7) Pseudoscaphirhynchus fedtschenkoi (Syr-darya Shovelnose Sturgeon/Syr Darya Sturgeon) (8) Pseudoscaphirhynchus hermanni (Dwarf Sturgeon/Little Amu-Darya Shovelnose/Little Shovelnose Sturgeon/Small Amu-dar Shovelnose Sturgeon) (9) Pseudoscaphirhynchus kaufmanni (False Shovelnose Sturgeon/Amu Darya Shovelnose Sturgeon/Amu Darya Sturgeon/Big Amu Darya Shovelnose/Large Amu-dar Shovelnose Sturgeon/Shovelfish) IV. Amur River Basin/Sea of Japan/Sea of Okhotsk (10) Acipenser mikadoi (Sakhalin Sturgeon) (11) Acipenser schrenckii (Amur Sturgeon) (12) Huso dauricus (Kaluga) V. -
Ancient Cities & Yangtze River Discovery [17 Days]
Ancient Cities & Yangtze River Discovery [17 Days] This cultural tour takes you to discover many ancient cities throughout China and experience of ancient temples, streets, exquisite classical gardens and magnificent imperial gardens and Palaces, museums, Giant Panda as well as working canals and beautiful fresh water lakes. Your luxury Yangtze River cruise trip is a Perfect option to understand the civilizations of Yangtze while enjoying the scenic view of Three Gorges. Day 01: Australia-Beijing Enjoy your morning flight to Beijing. Welcome to Beijing! On arrival, you will be welcomed by the local tour guide who will check you in for 3 nights at Novotel Peace or similar. Day 02: Beijing (B,L,SD) Breakfast in the hotel. Highlights today includes the tour to the Tiananmen Square, the largest city centre square of its kind in China; the Forbidden City, where thousands of palaces and spellbinding treasures of art works will give you imagination of the royal life of Chinese emperors and concubines. Afternoon, tour to the incomparable Summer Palace. In the evening a feast of Peking duck. Acrobatic show is provided for the evening entertainment. Day 03: Beijing (B,L) Breakfast in the hotel. Day excursion to the Great Wall, one of the world wonders. As you will climb to the top of the Great Wall, we advise you to wear comfortable walking shoes. Afternoon, tour to the famous Ming Tombs. Then, return to Beijing for free time shopping and walking in the famous Wangfujing Street, which is regarded as the First Street in China. Day 04: Beijing-Xi’an (B,L,D) Tour to the Temple of Heaven, the focus of this complex is the famed Hall of Prayer for a Good Harvest, a round edifice constructed of wood only without a single nail. -
Full Implementation of the River Chief System in China: Outcome and Weakness
sustainability Article Full Implementation of the River Chief System in China: Outcome and Weakness Yinghong Li 1, Jiaxin Tong 2 and Longfei Wang 2,* 1 School of Marxism, Hohai University, Nanjing 210098, China; [email protected] 2 Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; [email protected] * Correspondence: [email protected] Received: 31 March 2020; Accepted: 1 May 2020; Published: 6 May 2020 Abstract: Despite having explored various modes of water management over the past three decades, the water crisis persists and the Chinese government has been required to revolutionize river management from the top down. The River Chief System (RCS), which evolved from small scale, local efforts to manage rivers starting in 2007, is an innovative system that coordinates between existing ‘fragmented’ river/lake management and pollution control systems, to clearly define the responsibilities of all concerned departments. The system was promoted from an emergent policy to nationwide action in 2016, and ever since, has undergone steady development. We have analyzed recent developments in the system from the perspectives of functional expansion, implementation strategies, legislative processes, and public outreach after the full implementation of the RCS. By collecting data over the past several years, the changes in the water quality of representative watersheds in China were evaluated to assess the outcomes of RCS implementation. Finally, a summary of the weaknesses and outstanding problems of the system is presented, putting forward a multi-channel strategy for the long-term stability and effectiveness of river/lake chiefs, and promoting the RCS as a suitable solution to the collaborative and jurisdictional issues in water management in China. -
Earth-Science Reviews 197 (2019) 102900
Earth-Science Reviews 197 (2019) 102900 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev From the headwater to the delta: A synthesis of the basin-scale sediment load regime in the Changjiang River T ⁎ Leicheng Guoa,NiSub, , Ian Townenda,c, Zheng Bing Wanga,d,e, Chunyan Zhua,d, Xianye Wanga, Yuning Zhanga, Qing Hea a State Key Lab of Estuarine and Coastal Research, East China Normal University, Dongchuang Road 500, Shanghai 200241, China b State Key Lab of Marine Geology, Tongji University, Siping Road 1239, Shanghai 200090, China c School of Ocean and Earth Sciences, University of Southampton, Southampton, UK d Department of Hydraulic Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft 2600GA, the Netherlands e Marine and Coastal Systems Department, Deltares, Delft 2629HV, the Netherlands ARTICLE INFO ABSTRACT Keywords: Many large rivers in the world delivers decreasing sediment loads to coastal oceans owing to reductions in Sediment load sediment yield and disrupted sediment deliver. Understanding the sediment load regime is a prerequisite of Source-to-sink sediment management and fluvial and deltaic ecosystem restoration. This work examines sediment load changes Sediment starvation across the Changjiang River basin based on a long time series (1950–2017) of sediment load data stretching from Changjiang the headwater to the delta. We find that the sediment loads have decreased progressively throughout the basin at multiple time scales. The sediment loads have decreased by ~96% and ~74% at the outlets of the upper basin and entire basin, respectively, in 2006–2017 compared to 1950–1985. -
A Case Study for the Yangtze River Basin Yang
RESERVOIR DELINEATION AND CUMULATIVE IMPACTS ASSESSMENT IN LARGE RIVER BASINS: A CASE STUDY FOR THE YANGTZE RIVER BASIN YANG XIANKUN NATIONAL UNIVERSITY OF SINGAPORE 2014 RESERVOIR DELINEATION AND CUMULATIVE IMPACTS ASSESSMENT IN LARGE RIVER BASINS: A CASE STUDY FOR THE YANGTZE RIVER BASIN YANG XIANKUN (M.Sc. Wuhan University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHYLOSOPHY DEPARTMENT OF GEOGRAPHY NATIONAL UNIVERSITY OF SINGAPORE 2014 Declaration I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. ___________ ___________ Yang Xiankun 7 August, 2014 I Acknowledgements I would like to first thank my advisor, Professor Lu Xixi, for his intellectual support and attention to detail throughout this entire process. Without his inspirational and constant support, I would never have been able to finish my doctoral research. In addition, brainstorming and fleshing out ideas with my committee, Dr. Liew Soon Chin and Prof. David Higgitt, was invaluable. I appreciate the time they have taken to guide my work and have enjoyed all of the discussions over the years. Many thanks go to the faculty and staff of the Department of Geography, the Faculty of Arts and Social Sciences, and the National University of Singapore for their administrative and financial support. My thanks also go to my friends, including Lishan, Yingwei, Jinghan, Shaoda, Suraj, Trinh, Seonyoung, Swehlaing, Hongjuan, Linlin, Nick and Yikang, for the camaraderie and friendship over the past four years. -
Inventory of Environmental Work in China
INVENTORY OF ENVIRONMENTAL WORK IN CHINA In this fifth issue of the China Environment Series, the Inventory of Environmental Work in China has been updated and we made extra effort to add many new groups, especially in the Chinese organization section. To better highlight the growing number of U.S. universities and professional associations active in China we have created a separate section. In the past inventories we have gathered information from U.S. government agencies; from this year forward we will be inventorying the work done by other governments as well. This inventory aims to paint a clearer picture of the patterns of aid and investment in environmental protection and energy-efficiency projects in the People’s Republic of China. We highlight a total of 118 organizations and agencies in this inventory and provide information on 359 projects. The five categories of the inventory are listed below: Part I (p. 138): United States Government Activities (15 agencies/organizations, 103 projects) Part II (p. 163): U.S. and International NGO Activities (33 organizations, 91 projects) Part III (p. 190): U.S. Universities and Professional Association Activities (9 institutions, 27 projects) Part IV (p. 196): Chinese and Hong Kong NGO and GONGO Activities (50 organizations, 61 projects) Part V (p. 212): Bilateral Government Activities (11 agencies/organizations, 77 projects) Since we have expanded the inventory, even more people than last year contributed to the creation of this inventory. We are grateful to all of those in U.S. government agencies, international and Chinese nongovernmental organizations, universities, as well as representatives in foreign embassies who generously gave their time to compile and summarize the information their organizations and agencies undertake in China. -
Coal, Water, and Grasslands in the Three Norths
Coal, Water, and Grasslands in the Three Norths August 2019 The Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH a non-profit, federally owned enterprise, implementing international cooperation projects and measures in the field of sustainable development on behalf of the German Government, as well as other national and international clients. The German Energy Transition Expertise for China Project, which is funded and commissioned by the German Federal Ministry for Economic Affairs and Energy (BMWi), supports the sustainable development of the Chinese energy sector by transferring knowledge and experiences of German energy transition (Energiewende) experts to its partner organisation in China: the China National Renewable Energy Centre (CNREC), a Chinese think tank for advising the National Energy Administration (NEA) on renewable energy policies and the general process of energy transition. CNREC is a part of Energy Research Institute (ERI) of National Development and Reform Commission (NDRC). Contact: Anders Hove Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH China Tayuan Diplomatic Office Building 1-15-1 No. 14, Liangmahe Nanlu, Chaoyang District Beijing 100600 PRC [email protected] www.giz.de/china Table of Contents Executive summary 1 1. The Three Norths region features high water-stress, high coal use, and abundant grasslands 3 1.1 The Three Norths is China’s main base for coal production, coal power and coal chemicals 3 1.2 The Three Norths faces high water stress 6 1.3 Water consumption of the coal industry and irrigation of grassland relatively low 7 1.4 Grassland area and productivity showed several trends during 1980-2015 9 2. -
Aftermath of the 1998 Yangtze River Flood [Graduating Essay – FRST 497]
Forest and Flood: Aftermath of the 1998 Yangtze River Flood by XinZong You B.Sc., The University of British Columbia, 2012 A Graduating Essay Submitted to the Faculty of Forestry in Partial Fulfillment of the Requirement for the Degree of Bachelor of Science FRST 497 The University of British Columbia (Vancouver) 4/15/2012 Forest and Flood: Aftermath of the 1998 Yangtze River Flood [Graduating Essay – FRST 497] [XinZong You] April 15, 2012 ABSTRACT There has been a long debate over the effect of logging on flood events. The 1998 Yangtze River Flood sounded the alarm for Chinese Government to take actions to protect her environment for sustainable development and Chinese Government proposed strict logging ban after this disaster. Unexpectedly, these well-intentioned environmental policies received controversy criticism from the international community. The main reason behind this phenomenon is that the relationship between forest and flood is still unclear. Based on intense literature research, this paper uses Yangtze River Watershed as a specific example to explore the relationship between forests, floods, and the biophysical environment. Chinese Government’s policy taken after 1998 Yangtze River Flood will also be evaluated according to conclusions made regarding the relationship between logging and flood. KEYWORDS Forest, Flood, Yangtze River, Logging, China, Policy Page 1 of 35 TABLE OF CONTENTS ABSTRACT ..................................................................................................................................... -
Asia Geography Trivia Questions
ASIA GEOGRAPHY TRIVIA QUESTIONS ( www.TriviaChamp.com ) 1> What is the name of the tiny country located between India and China? a. Yemen b. Bahrain c. Bhutan d. Laos 2> What is the name of the tallest mountain on the Asian continent? a. Mount McKinley b. Mount Everest c. K2 d. Mount Fuji 3> Which county is home to Mount Fuji? a. Korea b. Vietnam c. Japan d. Tibet 4> What body of water lies between Japan and Korea? a. The Java Sea b. The Strait of Wanda Fuca c. Tsushima Strait d. The Suez Canal 5> In which body of water would you find Christmas Island? a. Bay of Bengal b. The Indian Ocean c. The Java Sea d. Bismarck Sea 6> Which range of mountains runs along the northern border of India? a. The Andes b. The Himalayan Mountains c. The Ural Mountains d. The Alps 7> What is the capital city of Nepal? a. Kabul b. Jakarta c. Kathmandu d. Vientiane 8> The famous city of Shanghai is located on which body of water? a. The Yellow River b. The Yangtze River c. The Tuo River d. The Aras River 9> Which river does not start in China? a. Ganges b. Yangtze c. Pearl d. Mekong 10> Which sea is located off the northern cost of Russia? a. The Timor Sea b. The Andaman Sea c. The Kara Sea d. The Philippine Sea 11> What is the largest Island in Asia? a. Borneo b. New Guinea c. Madagascar d. Hainan 12> Which of these Islands is owned by china? a.