Ecology, Syntaxonomy and Recruitment of Treeline Ecotone Vegetation in Rolwaling Himal, Nepal

Total Page:16

File Type:pdf, Size:1020Kb

Ecology, Syntaxonomy and Recruitment of Treeline Ecotone Vegetation in Rolwaling Himal, Nepal Ecology, syntaxonomy and recruitment of treeline ecotone vegetation in Rolwaling Himal, Nepal - Vegetation dynamics in response to climate change Cumulative Dissertation with the aim of achieving a doctoral degree at the Faculty of Mathematics, Informatics and Natural Sciences Department of Earth Sciences at Universität Hamburg Submitted by Birgit Bürzle from Illertissen, Germany Hamburg, 2020 Accepted as Dissertation at the Department of Earth Sciences Day of oral defense: 10.06.2020 Reviewers: Prof. Dr. Udo Schickhoff Prof. Dr. Jürgen Böhner Chair of the Subject Doctoral Committee: Prof. Dr. Dirk Gajewski Dean of Faculty of MIN: Prof. Dr. Heinrich Graener Für Paula Danksagung Die vorliegende Arbeit wäre ohne die vielfältige Hilfe und Unterstützung meiner Kollegen, Familie und Freunde nicht zustande gekommen. Euch allen gebührt mein herzlichster Dank. Besonders bedanken möchte ich mich bei Prof. Dr. Udo Schickhoff für das Vertrauen diese Arbeit zu schreiben, die inhaltlichen Freiheiten und die fachliche Hilfestellung, besonders aber für die Möglichkeit, die Schönheit und Faszination Nepals und des Himalayas kennen- lernen zu können. Prof. Dr. Jürgen Böhner danke ich für die Übernahme der Zweitbetreuung und die gute Zusammenarbeit innerhalb des TREELINE Projektes. Ich danke der Studienstif- tung des deutschen Volkes und der Stabsstelle Gleichstellung der Universität Hamburg für die umfängliche finanzielle Unterstützung. Für das angenehme und herzliche Arbeitsumfeld, die inspirierenden Diskussionen und die fachliche Unterstützung möchte ich mich bei der gesamten Physischen Geographie bedanken, insbesondere aber bei Niels Schwab, Alina Baranova, Maria Bobrowski, Marion Dohr, Franziska Hoppe, Elke Fischer, Johannes Weidinger und Julika Hellmold. Jens Oldeland danke ich für die statistische Beratung. Die langen Feldaufenthalte wären ohne die Unterstützung zahlreicher Helfer vor Ort nicht mögliche gewesen. Bedanken möchte ich mich insbesondere bei den Menschen aus Beding, die uns die Möglichkeit gegeben haben ‚ihren‘ Hang zu erforschen. Liebsten Dank an Lakpa und Tenzing Sherpa für die unbeschreibliche Gastfreundschaft, die Unterstützung im Gelände und die Hilfe in allen Lebenslagen. Danke an Yadu Sapkota für den zuverlässigen In- und Export der Untersuchungsgeräte und -proben. Ich möchte mich auch bei meinen Eltern Helene und Hans Bürzle bedanken. Danke für Euer Vertrauen und Euren bedingungslosen Rückhalt. Schließlich danke ich Stefan, für alles. Summary Mountains are characterized by a large diversity of plant species and plant communities over short horizontal and vertical distances, primarily corresponding to gradual changes of temper- ature. Specific zonations of vegetation types along elevational gradients are to be observed in mountains, with the most conspicuous change in mountain vegetation occurring at the alpine treeline ecotone, which represents the transition from closed forest to treeless alpine vegeta- tion. Rapid climate warming at high elevations is predicted to trigger extensive vegetation dynamics within treeline ecotones, primary related to recruitment processes. Vegetation dy- namics involve shifts in species distribution, community structure and treeline position. In the Himalayas, species richness as well as rates of climate change are among the highest on earth, yet studies addressing respective relationships are underrepresented in scientific research. The studies compiled in this thesis investigated the phytosociology and ecology of alpine treeline ecotone vegetation in the Nepalese Himalayas and analysed tree seedling establish- ment of dominating tree species as a critical component of the dynamics of spatial treeline position. All three parts of this work contribute to assessing vegetation dynamics in alpine treeline ecotones under climate warming conditions. During extensive field research in a near- natural treeline ecotone of Rolwaling Valley in east-central Nepal, we collected data on floris- tic composition and environmental conditions along three elevational transects. The micro- habitat characteristics of naturally germinated tree seedlings of Abies spectabilis, Betula utilis and Rhododendron campanulatum were recorded along the altitudinal gradient from subal- pine forests via treeline to alpine dwarf shrub heaths. By applying ordination methods and cluster analysis, we identified five communities belong- ing to two different classes: the Synotis alata – Abies spectabilis and Ribes glaciale – Abies spectabilis communities occupy the upper part of the subalpine forest zone, representing the uppermost forest stands below the treeline. Above the treeline, the mixed forest stands are replaced by the species-poor Boschniakia himalaica – Rhododendron campanulatum commu- nity, forming a dense krummholz belt. We assigned the forest and krummholz communities to the class Betula utilis – Abies spectabilis forests. In the alpine zone, two communities were classified: the species-poor Pedicularis cf. microcalyx – Rhododendron anthopogon commu- nity and the Anaphalis royleana – Rhododendron anthopogon community, which is character- ised by higher species richness of herbs and grasses. Both communities were assigned to the class Dasiphora arbuscula – Rhododendron anthopogon dwarf shrub heaths. The species composition of identified communities is related to an elevational gradient of deteriorating growth conditions, reflecting an increasingly unfavourable constellation of soil temperature, soil moisture and nitrogen supply and availability. i Our research on seedling establishment emphasises the importance of safe sites for successful tree regeneration in mountain environments. We found species-specific microhabitat prefer- ences for seedling establishment. While Abies spectabilis seedlings establish on ground that is covered with litter, Betula utilis and Rhododendron campanulatum seedlings primarily emerge on bryophyte mats. The microhabitat structure did not vary significantly in relation to different vegetation types encompassing the treeline ecotone. The majority of seedlings of all species grew close to at least one potentially protective element. Geomorphic elements and deadwood were the most important shelters for seedling establishment. The identified critical drivers for community differentiation and for tree seedling establish- ment - particularly soil temperature, water and nitrogen supply - are directly or indirectly re- lated to climatic conditions. Thus, we suggest distinct alterations to species distribution and treeline position in the Rolwaling treeline ecotone with climate warming. As growth condi- tions in high mountain ecosystems may substantially alter under contemporary climate change, the need for species-specific safe sites for tree recruitment to buffer potential ex- tremes will likely increase. This thesis provides novel findings on climate change-induced vegetation dynamics in Hima- layan treeline ecotones. The results on seedling establishment serve to enhance the existing knowledge on the prerequisites for successful seedling establishment and spatial alterations of treeline position. The classification of Rolwaling treeline ecotone vegetation also provides a suitable baseline for further phytosociological investigations and for the initiation of a long- term research approach to monitor the effects of climate warming on Himalayan mountain vegetation. This cumulative thesis is based on two peer-reviewed studies that have been published in two journals (see Appendix I for the abstracts and author contributions, and Appendix II for full articles): Study 1: ‘Phytosociology and ecology of treeline ecotone vegetation in Rolwaling Himal, Nepal’ Authors: Birgit Bürzle, Udo Schickhoff, Niels Schwab, Jens Oldeland, Michael Müller, Jür- gen Böhner, Ram Prasad Chaudhary, Thomas Scholten and Wolf Bernhard Dickoré Published in 2017 in Phytocoenologia 47:197–220 doi: 10.1127/phyto/2017/0130 ii Study 2: ‘Seedling recruitment and facilitation dependence on safe site characteristics in a Himalayan treeline ecotone’ Authors: Birgit Bürzle, Udo Schickhoff, Niels Schwab, Lina Marie Wernicke, Yanina Katharina Müller, Jürgen Böhner, Ram Prasad Chaudhary, Thomas Scholten and Jens Oldeland Published in 2017 in Plant Ecology 219:115–132 doi: 10.1007/s11258-017-0782-2 I contributed as a co-author to six additional studies that are closely linked to the objective of this thesis and thereby enhance our understanding on climate change-induced vegetation dy- namics in the Rolwaling treeline ecotone. Appendix III includes abstracts of these studies. iii Zusammenfassung Gebirge zeichnen sich durch eine hohe Vielfalt an Pflanzenarten und Pflanzengesellschaften auf kleinstem Raum aus, welche insbesondere auf den höhenabhängigen Temperaturgradien- ten zurückzuführen ist. Die Gebirgsvegetation ist gekennzeichnet durch eine charakteristische Abfolge von Vegetationstypen entlang des Höhengradienten. Am deutlichsten wird dieser Vegetationswechsel im alpinen Waldgrenzökoton. Dieses stellt den Übergang vom geschlos- senen Wald hin zur baumfreien, alpinen Vegetation dar. Aufgrund einer rasanten Klimaer- wärmung in den Höhenlagen von Gebirgen sind weitreichende Vegetationsveränderungen innerhalb des Ökotons, welche primär auf Verjüngungsprozessen basieren, zu erwarten. Die ablaufende Vegetationsdynamik zeigt sich in der Veränderung des Verbreitungsareals von Arten und des strukturellen Aufbaus von Pflanzengesellschaften, sowie in der Verschiebung der Waldgrenze. Der Himalaya gehört zu den Hotspots der globalen Artenvielfalt
Recommended publications
  • Dil Limbu.Pmd
    Nepal Journal of Science and Technology Vol. 13, No. 2 (2012) 87-96 A Checklist of Angiospermic Flora of Tinjure-Milke-Jaljale, Eastern Nepal Dilkumar Limbu1, Madan Koirala2 and Zhanhuan Shang3 1Central Campus of Technology Tribhuvan University, Hattisar, Dharan 2Central Department of Environmental Science Tribhuvan University, Kirtipur, Kathmandu 3International Centre for Tibetan Plateau Ecosystem Management Lanzhou University, China e-mail:[email protected] Abstract Tinjure–Milke–Jaljale (TMJ) area, the largest Rhododendron arboreum forest in the world, an emerging tourist area and located North-East part of Nepal. A total of 326 species belonging to 83 families and 219 genera of angiospermic plants have been documented from this area. The largest families are Ericaceae (36 species) and Asteraceae (22 genera). Similarly, the largest and dominant genus was Rhododendron (26 species) in the area. There were 178 herbs, 67 shrubs, 62 trees, 15 climbers and other 4 species of sub-alpine and temperate plants. The paper has attempted to list the plants with their habits and habitats. Key words: alpine, angiospermic flora, conservation, rhododendron Tinjure-Milke-Jaljale Introduction determines overall biodiversity and development The area of Tinjure-Milke-Jaljale (TMJ) falls under the activities. With the increasing altitude, temperature middle Himalaya ranging from 1700 m asl to 5000 m asl, is decreased and consequently different climatic and geographically lies between 2706’57" to 27030’28" zones within a sort vertical distance are found. The north latitude and 87019’46" to 87038’14" east precipitation varies from 1000 to 2400 mm, and the 2 longitude. It covers an area of more than 585 km of average is about 1650 mm over the TMJ region.
    [Show full text]
  • Feasibility Study of Kailash Sacred Landscape
    Kailash Sacred Landscape Conservation Initiative Feasability Assessment Report - Nepal Central Department of Botany Tribhuvan University, Kirtipur, Nepal June 2010 Contributors, Advisors, Consultants Core group contributors • Chaudhary, Ram P., Professor, Central Department of Botany, Tribhuvan University; National Coordinator, KSLCI-Nepal • Shrestha, Krishna K., Head, Central Department of Botany • Jha, Pramod K., Professor, Central Department of Botany • Bhatta, Kuber P., Consultant, Kailash Sacred Landscape Project, Nepal Contributors • Acharya, M., Department of Forest, Ministry of Forests and Soil Conservation (MFSC) • Bajracharya, B., International Centre for Integrated Mountain Development (ICIMOD) • Basnet, G., Independent Consultant, Environmental Anthropologist • Basnet, T., Tribhuvan University • Belbase, N., Legal expert • Bhatta, S., Department of National Park and Wildlife Conservation • Bhusal, Y. R. Secretary, Ministry of Forest and Soil Conservation • Das, A. N., Ministry of Forest and Soil Conservation • Ghimire, S. K., Tribhuvan University • Joshi, S. P., Ministry of Forest and Soil Conservation • Khanal, S., Independent Contributor • Maharjan, R., Department of Forest • Paudel, K. C., Department of Plant Resources • Rajbhandari, K.R., Expert, Plant Biodiversity • Rimal, S., Ministry of Forest and Soil Conservation • Sah, R.N., Department of Forest • Sharma, K., Department of Hydrology • Shrestha, S. M., Department of Forest • Siwakoti, M., Tribhuvan University • Upadhyaya, M.P., National Agricultural Research Council
    [Show full text]
  • Gori River Basin Substate BSAP
    A BIODIVERSITY LOG AND STRATEGY INPUT DOCUMENT FOR THE GORI RIVER BASIN WESTERN HIMALAYA ECOREGION DISTRICT PITHORAGARH, UTTARANCHAL A SUB-STATE PROCESS UNDER THE NATIONAL BIODIVERSITY STRATEGY AND ACTION PLAN INDIA BY FOUNDATION FOR ECOLOGICAL SECURITY MUNSIARI, DISTRICT PITHORAGARH, UTTARANCHAL 2003 SUBMITTED TO THE MINISTRY OF ENVIRONMENT AND FORESTS GOVERNMENT OF INDIA NEW DELHI CONTENTS FOREWORD ............................................................................................................ 4 The authoring institution. ........................................................................................................... 4 The scope. .................................................................................................................................. 5 A DESCRIPTION OF THE AREA ............................................................................... 9 The landscape............................................................................................................................. 9 The People ............................................................................................................................... 10 THE BIODIVERSITY OF THE GORI RIVER BASIN. ................................................ 15 A brief description of the biodiversity values. ......................................................................... 15 Habitat and community representation in flora. .......................................................................... 15 Species richness and life-form
    [Show full text]
  • Minshan Draft Factsheet 13Oct06.Indd
    Gift to the Earth 103, 25 October 2006 Gift to the Earth China: Sichuan and Gansu Provinces join efforts to preserve the giant panda and its habitat in the Minshan Landscape SUMMARY The 2004 Panda Survey concluded that 1,600 giant pandas survive in the wild. The pandas are scattered in 20 isolated populations in six major landscapes in southwestern China in the upper Yangtze River basin. Almost half these pandas are found in the Minshan landscape, shared by Sichuan and Gansu provinces. In a major development, the provincial governments of Sichuan and Gansu have each committed to establish new protected areas (PAs), linking corridors and co-managed areas to ensure all the pandas in Minshan are both protected and reconnected to ensure their long term health and survival. This represents the designation of almost 1,6 million hectares of panda habitat. Both provincial governments have also committed to establish PAs for other wildlife totaling an additional 900,000 hectares by 2010. WWF considers the giant panda as a ‘flagship’ species – a charismatic animal representative of the biologically rich temperate forest it WWF, the global conservation organization, recognizes these inhabits which also mobilizes support for conservation of the commitments by the two provincial governments as a Gift to larger landscape and its inhabitants. By conserving the giant panda the Earth – symbolizing a globally significant conservation and its habitat, many other species will also be conserved – including achievement and inspiring environmental leadership.
    [Show full text]
  • Biodiversity in Karnali Province: Current Status and Conservation
    Biodiversity in Karnali Province: Current Status and Conservation Karnali Province Government Ministry of Industry, Tourism, Forest and Environment Surkhet, Nepal Biodiversity in Karnali Province: Current Status and Conservation Karnali Province Government Ministry of Industry, Tourism, Forest and Environment Surkhet, Nepal Copyright: © 2020 Ministry of Industry, Tourism, Forest and Environment, Karnali Province Government, Surkhet, Nepal The views expressed in this publication do not necessarily reflect those of Ministry of Tourism, Forest and Environment, Karnali Province Government, Surkhet, Nepal Editors: Krishna Prasad Acharya, PhD and Prakash K. Paudel, PhD Technical Team: Achyut Tiwari, PhD, Jiban Poudel, PhD, Kiran Thapa Magar, Yogendra Poudel, Sher Bahadur Shrestha, Rajendra Basukala, Sher Bahadur Rokaya, Himalaya Saud, Niraj Shrestha, Tejendra Rawal Production Editors: Prakash Basnet and Anju Chaudhary Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Acharya, K. P., Paudel, P. K. (2020). Biodiversity in Karnali Province: Current Status and Conservation. Ministry of Industry, Tourism, Forest and Environment, Karnali Province Government, Surkhet, Nepal Cover photograph: Tibetan wild ass in Limi valley © Tashi R. Ghale Keywords: biodiversity, conservation, Karnali province, people-wildlife nexus, biodiversity profile Editors’ Note Gyau Khola Valley, Upper Humla © Geraldine Werhahn This book “Biodiversity in Karnali Province: Current Status and Conservation”, is prepared to consolidate existing knowledge about the state of biodiversity in Karnali province. The book presents interrelated dynamics of society, physical environment, flora and fauna that have implications for biodiversity conservation.
    [Show full text]
  • Clonal Architectures and Diversity Spatial Pattern of Different Ploidies
    Clonal architectures and diversity spatial pattern of different ploidies for Clintonia udensis in the Hualongshan Mountains Yue Gao1, Wei Han1, Lin Liu2, Hao Zhang1, En Zang1, GenLou Sun3, and Yiling Wang1 1Shanxi Normal University 2Ankang University 3Affiliation not available October 13, 2020 Abstract Clintonia udensis is a perennial herb possessing two cytotypes diploid (2n=14) and tetraploid (4n=28). In the Hualongshan Mountains, the diploid of C. udensis primarily grows in 2450 m areas on the south slopes, while the tetraploid grows mainly in 1900 m areas on the north slopes. So, this intra-polyploidy is regarded as an excellent material to study the origination, evolution and adaption of plant polyploidy. Through field investigations and molecular genotyping, we initially analyzed the bud bank spatial characteristics, clonal growth, and spatial genetic structure populations between the different ploidy of C. udensis. It found that the rhizome knot styles of C. udensis had zigzag, C, V, and Y models between the two cytotypes. There was no dominated clone present in the diploid or tetraploid. The clone architectures of two ploidies were both phalanxes. However, the number of rhizome knots, the number of buds of each rhizome knot, the ratio of rhizome branches, and average tetraploid clones were higher than that of the diploid. The diversity indices of the tetraploid, such as clone diversity index, genetic distribution uniformity, and genetic diversity index, were also slightly higher than that of the diploid. Thus, clonal reproduction differentiation and significant genetic variations occurred between the diploid and tetraploid of C. udensis. These two cytotypes, through seed reproduction and clonal growth, became a facultative clonal species and maintained its survival stability and reproduction.
    [Show full text]
  • CBD Strategy and Action Plan
    BIODIVERSITYCONSERVATIONACTIONPLAN 78 Priority Domestic Animal Species and Varieties (continued) Species Varieties Location Sheep Hu sheep Zhejiang Province Haixi Tibet sheep Qinghai Province Chicken Beijing You chicken Chinese Academy of Agriculture Sciences Xjaoshan chicken Zhejiang Province Xianju chicken Zbejiang Province Langshan chicken Jiangsu Province Chahua chicken Yunnan Province Gushi chicken Henan Province Duck Z-line of Peking duck Beijing Municipality Goose Shitou goose Guangdong Province Major Areas of Wild Species and Varieties of Crops Requiring Protection Wart-grained wild rice, Xima · Wild soybean, Longtan Lake · Amphicarpaea, Yaxian County, Township, Mengjiang County, area, Wube County, Anhui Hainan Province Yunnan Province Province · Huashan new wheat grass, Wart-grained, ordinary and ° Wild soybean, Xiongxian Huashan Mountain, Shaanxi medicinal wild rice, Yaxian County, Hebei Province Province County, Hainan Province · Wild soybean, Xinmiao · Wild primative Japanese Ordinary wild rice, Dongyuan Township, Yikezhao County, mulberry, wild shallot, Township, Dongxiang County, Inner Mongolia Yangtao, Shennongjia Moun- Jiangxi Province · Wild soybean, Guofu Town- tain, Hubei Province Ordinary wild rice, Hanguang ship, Keshan City, · Long spike mulberry, Xinshan Township, Yingde County, Heilongjiang Province District, Weifeng County, Guangdong Province · Wild soybean, Kenli County, Hubei Province Wild Dali tea and big tea tree, Shangdong Province ° Wild leek, Fubaoshan, Menghai County, Yunnan ° Amphicarpaea, (wild white
    [Show full text]
  • IAPT/IOPB Chromosome Data 18
    TAXON 63 (6) • December 2014: 1387–1393 Marhold (ed.) • IAPT/IOPB chromosome data 18 IOPB COLUMN Edited by Karol Marhold & Ilse Breitwieser IAPT/IOPB chromosome data 18 Edited by Karol Marhold DOI: http://dx.doi.org/10.12705/636.37 Patricia M. Aguilera,1* Humberto J. Debat,2 POACEAE Ysbelia Sánchez García,3 Dardo A. Martí1 & Mauro Grabiele1 Poa botryoides (Trin. ex Griseb.) Kom., 2n = 42; Russia, Zabaikalskii Krai, V. Chepinoga С659 (IRKU). 1 Instituto de Biología Subtropical (IBS-UNaM-CONICET), Setaria pumila (Poir.) Schult., 2n = 36; Russia, Irkutskaya Oblast’, Félix de Azara 1552, 3300 Posadas, Argentina I. Enushchenko C833 (IRKU). 2 Instituto de Patología Vegetal (IPAVE-CIAP-INTA), Camino 60 Setaria viridis (L.) P.Beauv., 2n = 18; Russia, Zabaikalskii Krai, Cuadras Km 5½, 5119 Córdoba, Argentina P. Lubogoschinksy С732 (IRKU). 3 Instituto Pedagógico de Caracas (IPC-UPEL, HFT), Av. Páez, Stipa krylovii Roshev., 2n = 44; Russia, Zabaikalskii Krai, V. Chepi- El Paraíso, 1020 Caracas, Venezuela noga & al. С815 (IRKU). * Author for correspondence: [email protected] RANUNCULACEAE All materials CHN; collector: YSG = Y. Sánchez García. Caltha palustris L., 2n = 32; Russia, Zabaikalskii Krai, V. Chepinoga C661 [Chepinoga & al. in Taxon 61: 890, E8. 2012; as “C. membra- This research was supported by Consejo Nacional de Investiga- nacea”]. ciones Científicas y Técnicas (CONICET-Argentina) from which M.G. Ranunculus turczaninovii (Luferov) Vorosch., 2n = 32; Russia, Zabai- and D.A.M are career members and P.M.A. is a postdoctoral fellow. kalskii Krai, A. Gnutikov & I. Enushchenko C377 (IRKU). Trollius asiaticus L., 2n = 16; Russia, Republic of Buryatia, V. Bely- SOLANACEAE aeva 75-125 (LE), V.
    [Show full text]
  • Evolution and Water Resources Utilization of the Yangtze River Evolution and Water Resources Utilization of the Yangtze River Jin Chen
    Jin Chen Evolution and Water Resources Utilization of the Yangtze River Evolution and Water Resources Utilization of the Yangtze River Jin Chen Evolution and Water Resources Utilization of the Yangtze River Jin Chen Changjiang Water Resources Commission Changjiang River Science Research Institute Wuhan, Hubei, China The edition is not for sale in the Mainland of China. Customers from the Mainland of China, please order the print book from: Changjiang Press (Wuhan) Co.,Ltd. ISBN 978-981-13-7871-3 ISBN 978-981-13-7872-0 (eBook) https://doi.org/10.1007/978-981-13-7872-0 © Changjiang Press (Wuhan) Co.,Ltd. & Springer Nature Singapore Pte Ltd. 2020 This work is subject to copyright. All rights are reserved by the Publishers, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publishers, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publishers nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • Chromosome Numbers and Polyploidy Events in Korean Non-Commelinids Monocots: a Contribution to Plant Systematics
    pISSN 1225-8318 − Korean J. Pl. Taxon. 48(4): 260 277 (2018) eISSN 2466-1546 https://doi.org/10.11110/kjpt.2018.48.4.260 Korean Journal of REVIEW Plant Taxonomy Chromosome numbers and polyploidy events in Korean non-commelinids monocots: A contribution to plant systematics Tae-Soo JANG* and Hanna WEISS-SCHNEEWEISS1 Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea 1Department of Botany and Biodiversity Research, University of Vienna, A-1030 Vienna, Austria (Received 4 June 2018; Revised 9 September 2018; Accepted 16 December 2018) ABSTRACT: The evolution of chromosome numbers and the karyotype structure is a prominent feature of plant genomes contributing to or at least accompanying plant diversification and eventually leading to speciation. Polyploidy, the multiplication of whole chromosome sets, is widespread and ploidy-level variation is frequent at all taxonomic levels, including species and populations, in angiosperms. Analyses of chromosome numbers and ploidy levels of 252 taxa of Korean non-commelinid monocots indicated that diploids (ca. 44%) and tet- raploids (ca. 14%) prevail, with fewer triploids (ca. 6%), pentaploids (ca. 2%), and hexaploids (ca. 4%) being found. The range of genome sizes of the analyzed taxa (0.3–44.5 pg/1C) falls well within that reported in the Plant DNA C-values database (0.061–152.33 pg/1C). Analyses of karyotype features in angiosperm often involve, in addition to chromosome numbers and genome sizes, mapping of selected repetitive DNAs in chro- mosomes. All of these data when interpreted in a phylogenetic context allow for the addressing of evolution- ary questions concerning the large-scale evolution of the genomes as well as the evolution of individual repeat types, especially ribosomal DNAs (5S and 35S rDNAs), and other tandem and dispersed repeats that can be identified in any plant genome at a relatively low cost using next-generation sequencing technologies.
    [Show full text]
  • Chinese-Mandarin
    CHINESE-MANDARIN River boats on the River Li, against the Xingping oldtown footbridge, with the Karst Mountains in the distance, Guangxi Province Flickr/Bernd Thaller DLIFLC DEFENSE LANGUAGE INSTITUTE FOREIGN LANGUAGE CENTER 2018 About Rapport Predeployment language familiarization is target language training in a cultural context, with the goal of improving mission effectiveness. It introduces service members to the basic phrases and vocabulary needed for everyday military tasks such as meet & greet (establishing rapport), commands, and questioning. Content is tailored to support deploying units of military police, civil affairs, and engineers. In 6–8 hours of self-paced training, Rapport familiarizes learners with conversational phrases and cultural traditions, as well as the geography and ethnic groups of the region. Learners hear the target language as it is spoken by a native speaker through 75–85 commonly encountered exchanges. Learners test their knowledge using assessment questions; Army personnel record their progress using ALMS and ATTRS. • Rapport is available online at the DLIFLC Rapport website http://rapport.dliflc.edu • Rapport is also available at AKO, DKO, NKO, and Joint Language University • Standalone hard copies of Rapport training, in CD format, are available for order through the DLIFLC Language Materials Distribution System (LMDS) http://www.dliflc.edu/resources/lmds/ DLIFLC 2 DEFENSE LANGUAGE INSTITUTE FOREIGN LANGUAGE CENTER CULTURAL ORIENTATION | Chinese-Mandarin About Rapport .............................................................................................................
    [Show full text]
  • Tailormade Tour Guide
    CHINA tailormade tour guide contents China brief Introduction & Climate map & Traditional Festival Explore China Top 10 Recommended Destinations Major Airport in China Top Airlines in China Train station in Major cities Type of train in China Top 10 Recommended Historic Attractions Top 10 Recommended Natural Beauties Top 10 Recommended beautiful Towns Top Minority Cities Most Popular Chinese Dishes China Currency and Exchange Info Electricity and Voltage Helpful Numbers Visa for China Flexible, Time-saving, Fast & Easy Tailor-making Procedure Novaland Tours Clients’ Photos China Brief Introduction China, officially the People's Republic of China (PRC), is a unitary sovereign state in East Asia and the world's most populous country, with a population of over 1.381 billion.Covering approximately 9.6 million square kilometers (3.7 million square miles), it is the world's second-largest state by land area and third- or fourth-largest by total area. Governed by the Communist Party of China, it exer- cises jurisdiction over 22 provinces, five autonomous regions,four direct-controlled municipalities (Beijing, Tianjin, Shanghai, and Chongqing) and the Special Administrative Regions Hong Kong and Macau, also claiming sovereignty over Taiwan. China is a great power and a major regional power within Asia, and has been characterized as a potential superpower. China emerged as one of the world's earliest civilizations in the fertile basin of the Yellow River in the North China Plain. For millennia, China's political system was based on hereditary monarchies, or dynasties, beginning with the semi-legendary Xia dynasty. Since then, China has then expanded, fractured, and re-unified numerous times.
    [Show full text]