South African Renewable Energy Market and Opportunity for Swiss Companies

Total Page:16

File Type:pdf, Size:1020Kb

South African Renewable Energy Market and Opportunity for Swiss Companies Market and Opportunity for Swiss Companies SOUTH AFRICAN RENEWABLE ENERGY OFFICIAL PROGRAM SOUTH AFRICAN RENEWABLE ENERGY MARKET AND OPPORTUNITY FOR SWISS COMPANIES Date: September 2015 Language: English Number of pages: 76 Author: Swiss Business Hub Southern Africa (SBHSA) and SUDEO International Business Consultants Other sectorial Reports: Are you interested in other Reports for other sectors and countries? Please find more Reports here: s-ge.com/reports Strictly Confidential for use by SBHSA This Project Report is the Property of: The Swiss Business Hub Southern Africa (SBHSA) and SUDEO International Business Consultants Unauthorised circulation, distribution, reproduction, presentation and modification of the content presented in this Project Report is prohibited, unless under written consent from SBHSA and/or SUDEO International Business Consultants DISCLAIMER This Project Report has been prepared using market, network referenced and proprietary information of The Swiss Business Hub Southern Africa (SBHSA) and SUDEO International Business Consultants. The SBHSA and SUDEO International Business Consultants will not be liable for any damage, including lost profits, lost savings, lost retained earnings or any other incidental or consequential damages arising out of the use or inability to use the information and will not be liable or held responsible for the content and/or any subsequent changes and/or market developments which may present influential material and substantive changes to the content and potential market and business opportunities contained in this Draft Final Project Report. By using the information contained in this Draft Final Project report, you explicitly agree that the exclusions and limitations of liability set out in this disclaimer are fully understood and are reasonable. If you do not think that the exclusions and limitations of this disclaimer are reasonable, you must not use any of the information contained in this Draft Final Project Report. Contents 7.1. Subsector Overview ____________________ 63 FOREWORD __________________________________ 9 7.2. Potential Business Opportunities ___________ 67 1. EXECUTIVE SUMMARY _________________ 10 8. SA RENEWABLE ENERGY MARKET ENTRY 2. INTRODUCTION _______________________ 17 MODES ______________________________ 69 8.1. Market Entry Modes to access Supply Opportunities69 3. BACKGROUND ________________________ 20 8.2. Market Entry Modes to access Investment 3.1. Renewable Energy in the global context ______ 20 Opportunities ________________________ 70 3.2. The Integrated Energy Plan (IEP) (up-to 2050) _ 24 3.3. The Integrated Resource Plan (IRP) for Electricity 9. PROFESSIONAL SA RE MARKET (2010-2030) _________________________ 30 PENETRATION SUPPORT PACKAGES ____ 71 3.4. Supply Side Initiative - Renewable Energy 9.1. Detailed Market Study ___________________ 71 Independent Power Producer Procurement 9.2. Identification of aligned Business Partners _____ 71 Programme (REIPPPP) _________________ 31 9.3. Business Interaction Support ______________ 71 3.5. Supply Side Initiative - Small Projects IPP 9.4. Business Development Support _____________ 71 Procurement Programme (SPIPPPP) ________ 33 10. CONCLUSION _________________________ 72 3.6. Renewable Energy Demand Side Initiatives ____ 35 REFERENCES _______________________________ 73 4. PHOTOVOLTAIC SUBSECTOR ___________ 37 4.1. Subsector Overview ____________________ 37 4.2. Potential Business Opportunities ___________ 45 5. CONCENTRATED SOLAR POWER SUBSECTOR __________________________ 47 5.1. Subsector Overview ____________________ 47 5.2. Potential Business Opportunities ___________ 51 6. ONSHORE WIND SUBSECTOR ___________ 54 6.1. Subsector Overview ____________________ 54 6.2. Potential Business Opportunities ___________ 59 7. SMALL HYDRO SUBSECTOR ____________ 63 List of tables and figures Table 1: Global Renewable Energy technology power capacity (2013) ............................................................................................. 21 Table 2: IEP target test cases ............................................................................................................................................................. 28 Table 3: REIPPPP Allocations (2011-2013) ...................................................................................................................................... 33 Table 4: REIPPP Bid Window Three Foreign Investment ............................................................................................................... 33 Table 5: Annual incoming shortwave radiation .................................................................................................................................37 Table 6: South African PV market segment characteristics and dynamics ..................................................................................... 38 Table 7: Scenarios of Projected South Africa PV Market Growth (2030 and 2050) ....................................................................... 39 Table 8: Solar Photovoltaic REIPPPP Allocations ............................................................................................................................ 40 Table 9: Solar Photovoltaic REIPPPP Preferred Bidders Salient Terms ......................................................................................... 40 Table 10: Solar Photovoltaic REIPPPP Preferred Bidders Economic Development ........................................................................ 41 Table 11: REIPPPP PV projects awarded ........................................................................................................................................... 42 Table 12: Known Commercial and Industrial Projects Built in 2010, 2011 and 2012 ..................................................................... 44 Table 13: Annual incoming shortwave radiation .............................................................................................................................. 47 Table 14: Concentrated Solar Power REIPPPP Allocations ............................................................................................................. 49 Table 15: Concentrated Solar Power REIPPPP Preferred Bidders Salient Terms ........................................................................... 49 Table 16: Concentrated Solar Power REIPPPP Preferred Bidders Economic Development .......................................................... 50 Table 17: REIPPPP CSP projects awarded ........................................................................................................................................ 50 Table 18: Onshore Wind REIPPPP Allocations ................................................................................................................................ 56 Table 19: Onshore Wind Preferred Bidders Salient Terms ............................................................................................................... 57 Table 20: Onshore Wind REIPPPP Preferred Bidders Economic Development ............................................................................. 57 Table 21: REIPPPP Onshore Wind projects awarded ....................................................................................................................... 58 Table 22: Small Hydro REIPPPP Allocations ................................................................................................................................... 65 Table 23: Small Hydro Preferred Bidders Salient Terms ................................................................................................................. 65 Table 24: Small Hydro REIPPPP Preferred Bidders Economic Development ................................................................................ 66 Table 25: REIPPPP Small Hydro projects awarded .......................................................................................................................... 66 Figure 1: Tracking Carbon Emissions Globally .................................................................................................................................. 18 Figure 2: Estimated Renewable Energy share of global electricity production (End 2013) ........................................................... 20 Figure 3: Global Renewable Energy technology power capacity (GW) (2013) ................................................................................ 22 Figure 4: Solar PV Total Global Capacity (2004-2013) .................................................................................................................... 22 Figure 5: Concentrating Solar Thermal Power Capacity, by region (2004-2013) ........................................................................... 23 Figure 6: Wind Power Total World Capacity (2000-2013) .............................................................................................................. 23 Figure 7: IEP Final Energy Demand (2010-2050)............................................................................................................................ 25 Figure 8: IEP Final Energy Demand by Energy Carrier (2010-2050) ............................................................................................. 26 Figure 9: IEP Electricity Generation Capacity by Technology Type (2050) .................................................................................... 29 Figure 10: IRP New Build and Committed Electricity Generation Options (2010-2030)
Recommended publications
  • Environmental Impact Assessment
    Environmental Impact Assessment Study for the proposed Concentrated Solar Power Plant (Parabolic Trough) on the farm Sand Draai 391, Northern Cape – Environmental Scoping Report A Report for Solafrica 14/12/16/3/3/3/203 – Parabolic Trough DOCUMENT DESCRIPTION Client: Solafrica Energy (Pty) Ltd Project Name: Environmental Impact Assessment Study for the proposed Concentrated Solar Power Plant (Parabolic Trough) on the farm Sand Draai 391, Northern Cape Royal HaskoningDHV Reference Number: T01.JNB.000565 Authority Reference Number: 14/12/16/3/3/3/203 – Parabolic Trough Compiled by: Johan Blignaut Date: July 2015 Location: Woodmead Review: Prashika Reddy & Malcolm Roods Approval: Malcolm Roods _____________________________ Signature © Royal HaskoningDHV All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, without the written permission from Royal HaskoningDHV. Table of Contents 1 INTRODUCTION ........................................................................................................................................... 1 1.1 Background ............................................................................................................................................ 1 1.2 Need and Desirability ............................................................................................................................. 1 1.2.1 Renewable Energy Independent Power Producers Programme (REIPPPP) and Integrated Resource Plan (2010) ....................................................................................................................
    [Show full text]
  • Analysis of New International Interconnectors to the South African Power System
    Analysis of new international interconnectors to the South African power system 08-01-2016 1 2 Table of contents Key findings .......................................................................................................... 4 Introduction .......................................................................................................... 6 The South African power system ........................................................................... 7 Methodology and scenarios ................................................................................... 9 Scenarios .............................................................................................................. 11 Reference scenario ............................................................................................... 11 Hydro import scenarios ........................................................................................ 12 Value of interconnectors ...................................................................................... 13 Main results and conclusions ............................................................................... 15 Economic consequences for the system .............................................................. 17 Value of increasing interconnector capacity internally in South Africa ............... 19 Conclusion ............................................................................................................ 20 Detailed results of the scenario analysis ..............................................................
    [Show full text]
  • REIPPP Projects
    REIPPP Projects Window 1 Projects Net capacity Technology Project Location Technology Developer Contractor Status MW supplier Klipheuwel – Dassiefontein Group 5, Dassiesklip Wind Energy Facility Caledon, WC Wind 26,2 Sinovel Operational Wind Energy fFcility Iberdrola MetroWind Van Stadens Wind Port Elizabeth, EC Wind 26,2 MetroWind Sinovel Basil Read Operational Farm Hopefield Wind Farm Hopefield, WC Wind 65,4 Umoya Energy Vestas Vestas Operational Noblesfontein Noblesfontein, NC Wind 72,8 Coria (PKF) Investments 28 Vestas Vestas Operational Red Cap Kouga Wind Farm – Port Elizabeth, EC Wind 77,6 Red Cap Kouga Wind Farm Nordex Nordex Operational Oyster Bay Dorper Wind Farm Stormberg, EC Wind 97,0 Dorper Wind Farm Nordex Nordex Operational South Africa Mainstream Jeffreys Bay Jeffereys Bay, EC Wind 133,9 Siemens Siemens Operational Renewable Power Jeffreys Bay African Clean Energy Cookhouse Wind Farm Cookhouse, EC Wind 135,0 Suzlon Suzlon Operational Developments Khi Solar One Upington, NC Solar CSP 50,0 Khi Dolar One Consortium Abengoa Abengoa Construction KaXu Solar One Pofadder, NC Solar CSP 100,0 KaXu Solar One Consortium Abengoa Abengoa Operational SlimSun Swartland Solar Park Swartland, WC Solar PV 5,0 SlimSun BYD Solar Juwi, Hatch Operational RustMo1 Solar Farm Rustenburg, NWP Solar PV 6,8 RustMo1 Solar Farm BYD Solar Juwi Operational Mulilo Renewable Energy Solar De Aar, NC Solar PV 9,7 Gestamp Mulilo Consortium Trina Solar Gestamp, ABB Operational PV De Aar Konkoonsies Solar Pofadder, NC Solar PV 9,7 Limarco 77 BYD Solar Juwi Operational
    [Show full text]
  • The Developing Energy Landscape in South Africa: Technical Report
    The developing energy landscape in South Africa: Technical Report RESEARCH REPORT SERIES RESEARCH REPORT The developing energy landscape in South Africa: Technical Report OCTOBER 2017 Energy Research Centre, CSIR, and IFPRI The developing energy landscape in South Africa: Technical Report Suggested citation for this report: ERC, CSIR and IFPRI. 2017. The developing energy landscape in South Africa: Technical Report. Energy Research Centre, University of Cape Town October 2017. Authors: ERC: Gregory Ireland, Faaiqa Hartley, Bruno Merven, Jesse Burton, Fadiel Ahjum, Bryce McCall and Tara Caetano. CSIR: Jarrad Wright IFPRI: Channing Arndt Energy Research Centre University of Cape Town Private Bag X3 Rondebosch 7701 South Africa Tel: +27 (0)21 650 2521 Fax: +27 (0)21 650 2830 Email: [email protected] Website: www.erc.uct.ac.za Energy Research Centre, CSIR, and IFPRI The developing energy landscape in South Africa: Technical Report Contents Executive summary ............................................................................................................ 4 1. Introduction ................................................................................................................. 6 2. Global renewable technology trends ......................................................................... 9 2.1 The implications for climate change mitigation .................................................................... 12 3. South African Energy Context ...............................................................................
    [Show full text]
  • Optimising the Concentrating Solar Power Potential in South Africa Through an Improved GIS Analysis
    energies Article Optimising the Concentrating Solar Power Potential in South Africa through an Improved GIS Analysis Dries. Frank Duvenhage 1,* , Alan C. Brent 1,2 , William H.L. Stafford 1,3 and Dean Van Den Heever 4 1 Engineering Management and Sustainable Systems, Department of Industrial Engineering, the Solar Thermal Energy Research Group and the Centre for Renewable and Sustainable Energy Studies, Stellenbosch University, Stellenbosch 7602, South Africa; [email protected] (A.C.B.); wstaff[email protected] (W.H.L.S.) 2 Sustainable Energy Systems, School of Engineering and Computer Science, Victoria University of Wellington, Wellington 6140, New Zealand 3 Green Economy Solutions, Natural Resources and the Environment, Council for Scientific and Industrial Research, Stellenbosch 7600, South Africa 4 Legal Drone Solutions, Stellenbosch 7600, South Africa; [email protected] * Correspondence: [email protected] Received: 11 May 2020; Accepted: 16 June 2020; Published: 23 June 2020 Abstract: Renewable Energy Technologies are rapidly gaining uptake in South Africa, already having more than 3900 MW operational wind, solar PV, Concentrating Solar Power (CSP) and biogas capacity. CSP has the potential to become a leading Renewable Energy Technology, as it is the only one inherently equipped with the facility for large-scale thermal energy storage for increased dispatchability. There are many studies that aim to determine the potential for CSP development in certain regions or countries. South Africa has a high solar irradiation resource by global standards, but few studies have been carried out to determine the potential for CSP. One such study was conducted in 2009, prior to any CSP plants having been built in South Africa.
    [Show full text]
  • Advances in Concentrating Solar Thermal Research and Technology Related Titles
    Advances in Concentrating Solar Thermal Research and Technology Related titles Performance and Durability Assessment: Optical Materials for Solar Thermal Systems (ISBN 978-0-08-044401-7) Solar Energy Engineering 2e (ISBN 978-0-12-397270-5) Concentrating Solar Power Technology (ISBN 978-1-84569-769-3) Woodhead Publishing Series in Energy Advances in Concentrating Solar Thermal Research and Technology Edited by Manuel J. Blanco Lourdes Ramirez Santigosa AMSTERDAM • BOSTON • HEIDELBERG LONDON • NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Woodhead Publishing is an imprint of Elsevier Woodhead Publishing is an imprint of Elsevier The Officers’ Mess Business Centre, Royston Road, Duxford, CB22 4QH, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, OX5 1GB, United Kingdom Copyright © 2017 Elsevier Ltd. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.
    [Show full text]
  • The Case of Bokpoort CSP Plant in South Africa
    Dispatchable Solar Energy 24/7 – The Case of Bokpoort CSP plant in South Africa Nandu Bhula Deputy Managing Director (Southern Africa) At A Glance We develop power and desalination water plants In over a decade we have become the second largest power & water developer in the GCC region, and a name to contend with internationally. We have achieved this by developing, investing in and operating a world-class 2004 portfolio... Saudi Arabia 58 37.7+ 5.8 Assets* GW Power* Mm3 per day Desalinated Water* 2008 – 2010 Oman 12 $59+ bn 21.5% Jordan Countries USD of Assets Portfolio in Renewable Under Energy based on Management** Share of project cost 2012 – 2014 3,500+ 30+ ~60% Morocco Employees Nationalities Local South Africa Employment Turkey in projects * Figures inclusive of advanced development projects ** There is another $10.5 bn of projects in advanced development DEVELOP INVEST OPERATE 2015 – UAE We win bids as lead developer, While taking significant, We operate and maintain our by partnering with the best and long-term stakes in all our plants plants to the highest global Egypt focusing on cost leadership. standards Vietnam 15/12/2020 CSP – Status across the Globe •CSP technology implemented in 23 countries 30 000 across the globe 25 000 20 000 •Over 6,000MW in operation 15 000 10 000 •Over 3,500MW in construction 5 000 - •Almost 25,000MW planned or in development Planned CSP Under Operational stages Projects Construction Source: https://solargis.com/maps-and-gis-data/overview/ 15/12/2020 ACWA Power CSP’s in MENA Region 150MW 950MW – (3 x 200MW CSP Trough, 1 x - Tower CSP+PV Hybrid 100MW CSP Tower & 250MW PV) 200MW - Trough 160MW - Trough 510MW – CSP Complex 15/12/2020 South African Renewable Energy IPP Program (REIPPP) • Started in 2011, the REIPPP is widely recognized as one of the most successful renewable energy procurement models in the world.
    [Show full text]
  • Renewable Energy Choices and Their Water Requirements in South Africa
    Journal of Energy in Southern Africa 26(4): 80–92 DOI: http://dx.doi.org/10.17159/2413-3051/2014/v25i4a2241 Renewable energy choices and their water requirements in South Africa Debbie Sparks Amos Madhlopa Samantha Keen Mascha Moorlach Anthony Dane Pieter Krog Thuli Dlamini Energy Research Centre, University of Cape Town, Cape Town, South Africa Abstract tive of this study was to investigate and review South Africa is an arid country, where water supply renewable energy choices and water requirements is often obtained from a distant source. There is in South Africa. Data were acquired through a com- increasing pressure on the limited water resources bination of a desktop study and expert interviews. due to economic and population growth, with a Water withdrawal and consumption levels at a given concomitant increase in the energy requirement for stage of energy production were investigated. Most water production. This problem will be exacerbated of the data was collected from secondary sources. by the onset of climate change. Recently, there have Results show that there is limited data on all aspects been concerns about negative impacts arising from of water usage in the production chain of energy, the exploitation of energy resources. In particular, accounting in part for the significant variations in the burning of fossil fuels is significantly contributing the values of water intensity that are reported in the to climate change through the emission of carbon literature. It is vital to take into account all aspects of dioxide, a major greenhouse gas. In addition, fossil the energy life cycle to enable isolation of stages fuels are being depleted, and contributing to where significant amounts of water are used.
    [Show full text]
  • China's Involvement in South Africa's Wind and Solar PV Industries
    WORKING PAPER NO. 15 NOV 2017 China's involvement in South Africa's wind and solar PV industries Lucy Baker and Wei Shen sais-cari.org WORKING PAPER SERIES NO. 15 | NOVEMBER 2017: “China's involvement in South Africa's wind and solar PV industries” by Lucy Baker and Wei Shen TO CITE THIS PAPER: Baker, Lucy and Wei Shen. 2017. China's Involvement in South Africa's Wind and Solar PV Industries. Working Paper No. 2017/15. China-Africa Research Initiative, School of Advanced International Studies, Johns Hopkins University, Washington, DC. Retrieved from http://www.sais-cari.org/publications. CORRESPONDING AUTHOR: Lucy Baker Email: [email protected] ACKNOWLEDGMENTS: We gratefully acknowledge funding from the China Africa Research Initiative at Johns Hopkins University’s School of Advanced International Studies (SAIS- CARI), which enabled us to undertake the field research for this report. Further support for this research was provided by the Engineering and Physical Sciences Research Council for the Centre for Innovation and Energy Demand, Science Policy Research Unit, University of Sussex (grant number: EP/K011790/1), and Green Transformation Cluster, Institute of Development Studies. Thank you to all the research participants in China and South Africa who are not cited by name for reasons of confidentiality. Finally, thank you to colleagues at the Energy Research Centre, University of Cape Town for all help and advice. NOTE: The papers in this Working Paper series have undergone only limited review and may be updated, corrected or withdrawn. Please contact the corresponding author directly with comments or questions about this paper.
    [Show full text]
  • South African Country Case Study
    Energy provision for the urban poor: South African country case study NOMAWETHU QASE WITH WENDY ANNECKE DRAFT FINAL REPORT January 1999 ENERGY & DEVELOPMENT RESEARCH CENTRE University of Cape Town . Energy provision for the urban poor country case study: South Africa i ABBREVIATIONS DBSA – Development Bank of Southern Africa DFID – Department of International Development, UK FINESSE – Financing Energy Services for Small-Scale Energy Users IT – Intermediate Technology LNG – Lwandle Negotiating Group LPG – liquefied petroleum gas NER – National Electricity Regulator RDP – Reconstruction and Development Programme SADC – Southern African Development Community SALDRU – Southern African Labour and Development Research Unit SANCO – South African National Civics Organisation SWH – solar water heater SWH – solar water heater UNDP – United Nations Development Programme USAID – United States Agency for International Development VAT – value-added tax ENERGY & DEVELOPMENT RESEARCH CENTRE. Energy provision for the urban poor country case study: South Africa ii EXECUTIVE SUMMARY Urban poverty is a severe and growing problem in South Africa. The rate of urbanisation is increasing and the new democratic government and local authorities are struggling with a lack of capacity and inadequate funds to address the historic backlog of housing and services, health and education for the 50% of the population who are poor and currently without these facilities. The liberalisation of the economy and opening up of the previously closed and protected markets has seen the number of unemployed increasing while the population continues to grow. South Africa has a relatively strong industrial base and has Eskom, the world’s fifth largest electricity utility. Eskom generates electricity largely from the country’s substantial coal reserves.
    [Show full text]
  • SADC Renewable Energy and Energy Efficiency Status Report 2015
    SADC RENEWABLE ENERGY AND ENERGY EFFICIENCY STATUS REPORT 2015 PARTNER ORGANISATIONS REN21 is the global renewable energy policy multi-stakeholder network that connects a wide range of key actors. REN21’s goal is to facilitate knowledge exchange, policy development and joint actions towards a rapid global transition to renewable energy. REN21 brings together governments, non-governmental organisations, research and academic institutions, international organisations and industry to learn from one another and build on successes that advance renewable energy. To assist policy decision making, REN21 provides high-quality information, catalyses discussion and debate and supports the development of thematic networks. UNIDO is the specialized agency of the United Nations that promotes industrial development for poverty reduction, inclusive globalization and environmental sustainability. The mandate of the United Nations Industrial Development Organization (UNIDO) is to promote and accelerate inclusive and sustainable industrial development in developing countries and economies in transition. The Organization is recognized as a specialized and efficient provider of key services meeting the interlinked challenges of reducing poverty through productive activities, integrating developing countries in global trade through trade capacity-building, fostering environmental sustainability in industry and improving access to clean energy. The SADC Treaty was signed to establish SADC as the successor to the Southern African Coordination Conference (SADCC). This Treaty sets out the main objectives of SADC: to achieve development and economic growth, alleviate poverty, enhance the standard and quality of life of the peoples of Southern Africa and support the socially disadvantaged through regional integration. These objectives are to be achieved through increased regional integration, built on democratic principles, and equitable and sustainable development.
    [Show full text]
  • Impofu East Wind Farm Red Cap Impofu East (Pty) Ltd
    Impofu East Wind Farm Red Cap Impofu East (Pty) Ltd Avifaunal scoping study September 2018 REPORT REVIEW & TRACKING Document title Impofu East Wind Farm- Avifaunal Scoping study Client name Kim White Aurecon Status Draft report-for client Issue date September 2018 Lead author Jon Smallie – SACNASP 400020/06 Internal review Luke Strugnell – SACNASP 400181/09 WildSkies Ecological Services (Pty) Ltd 36 Utrecht Avenue, East London, 5241 Jon Smallie E: [email protected] C: 082 444 8919 F: 086 615 5654 2 EXECUTIVE SUMMARY Red Cap Energy (Pty) Ltd successfully developed the 80 MW Kouga Wind Farm and the 111 MW Gibson Bay Wind Farm in the Kouga Local Municipality, Eastern Cape, South Africa. This area lies on a section of coastal plain in close proximity to the ocean on either side which results in excellent wind conditions and low levels of turbulence, making it ideal for wind farm development. Red Cap has now signed option agreements on approximately 15 500 ha of new undeveloped private farmland, known as the “Impofu Wind Farms” Project. The 3 wind farms will ultimately consist of up to a maximum total of 120 turbines and associated infrastructure and will connect to the grid close to Port Elizabeth. The Impofu East Wind Farm, the subject of this report, consists of up to 41 turbines. We have conducted an initial assessment of the site, a screening assessment and a full (four seasons) pre-construction bird monitoring programme on site. The most important of our findings are as follows: We make the following conclusions regarding the avifaunal community and potential impacts of the Impofu East Wind Farm: » We classified nine species as top most priority for this assessment: Denham’s Bustard, White- bellied Korhaan, Blue Crane, Black Harrier, African Marsh-Harrier, Martial Eagle, African Fish- Eagle, Jackal Buzzard and White Stork.
    [Show full text]