Cyanobacterial Toxins
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Cyanobacterial Bioactive Molecules — an Overview of Their Toxic Properties
701 REVIEW / SYNTHE` SE Cyanobacterial bioactive molecules — an overview of their toxic properties Pranita Jaiswal, Pawan Kumar Singh, and Radha Prasanna Abstract: Allelopathic interactions involving cyanobacteria are being increasingly explored for the pharmaceutical and en- vironmental significance of the bioactive molecules. Among the toxic compounds produced by cyanobacteria, the biosyn- thetic pathways, regulatory mechanisms, and genes involved are well understood, in relation to biotoxins, whereas the cytotoxins are less investigated. A range of laboratory methods have been developed to detect and identify biotoxins in water as well as the causal organisms; these methods vary greatly in their degree of sophistication and the information they provide. Direct molecular probes are also available to detect and (or) differentiate toxic and nontoxic species from en- vironmental samples. This review collates the information available on the diverse types of toxic bioactive molecules pro- duced by cyanobacteria and provides pointers for effective exploitation of these biologically and industrially significant prokaryotes. Key words: cyanobacteria, bioactive molecules, cyanotoxins, NRP (non-ribosomal peptide), biocontrol agent. Re´sume´ : Les effets alle´lopathiques des cyoanobacte´ries sont de plus en explore´s pour identifier les mole´cules bioactives importantes d’un point de vue pharmaceutique ou environnemental. Parmi les compose´s toxiques produits par les cyano- bacte´ries, les biotoxines sont bien connues quant aux voies, aux me´canismes re´gulateurs et aux ge`nes implique´s dans leur biosynthe`se, alors que les cytotoxines sont moins e´tudie´es. Une varie´te´ de me´thodes de laboratoire ont e´te´ de´veloppe´es afin de de´tecter et d’identifier les biotoxines de l’eau et les agents qui en sont responsables; elles diffe`rent grandement quant a` leur degre´ de sophistication et a` l’information qu’elles ge´ne`rent. -
Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity
toxins Article Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity Massimo Picardo 1 , Oscar Núñez 2,3 and Marinella Farré 1,* 1 Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain; [email protected] 2 Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08034 Barcelona, Spain; [email protected] 3 Serra Húnter Professor, Generalitat de Catalunya, 08034 Barcelona, Spain * Correspondence: [email protected] Received: 5 October 2020; Accepted: 26 November 2020; Published: 28 November 2020 Abstract: This study presents the application of a suspect screening approach to screen a wide range of natural toxins, including mycotoxins, bacterial toxins, and plant toxins, in surface waters. The method is based on a generic solid-phase extraction procedure, using three sorbent phases in two cartridges that are connected in series, hence covering a wide range of polarities, followed by liquid chromatography coupled to high-resolution mass spectrometry. The acquisition was performed in the full-scan and data-dependent modes while working under positive and negative ionisation conditions. This method was applied in order to assess the natural toxins in the Ter River water reservoirs, which are used to produce drinking water for Barcelona city (Spain). The study was carried out during a period of seven months, covering the expected prior, during, and post-peak blooming periods of the natural toxins. Fifty-three (53) compounds were tentatively identified, and nine of these were confirmed and quantified. Phytotoxins were identified as the most frequent group of natural toxins in the water, particularly the alkaloids group. -
Advances in Anticancer Antibody-Drug Conjugates and Immunotoxins
Send Orders for Reprints to [email protected] Recent Patents on Anti-Cancer Drug Discovery, 2014, 9, 35-65 35 Advances in Anticancer Antibody-Drug Conjugates and Immunotoxins Franco Dosio1,*, Barbara Stella1, Sofia Cerioni1, Daniela Gastaldi2 and Silvia Arpicco1 1Dipartimento di Scienza e Tecnologia del Farmaco, University of Torino, Torino, I-10125, Italy; 2Dipartimento di Bio- tecnologie Molecolari e Scienze per la Salute, University of Torino, Torino, I-10125, Italy Received: December 13, 2012; Accepted: February 21, 2013; Revised: March 7, 2013 Abstract: Antibody-delivered drugs and toxins are poised to become important classes of cancer therapeutics. These bio- pharmaceuticals have potential in this field, as they can selectively direct highly potent cytotoxic agents to cancer cells that present tumor-associated surface markers, thereby minimizing systemic toxicity. The activity of some conjugates is of particular interest receiving increasing attention, thanks to very promising clinical trial results in hematologic cancers. Over twenty antibody-drug conjugates and eight immunotoxins in clinical trials as well as some recently approved drugs, support the maturity of this approach. This review focuses on recent advances in the development of these two classes of biopharmaceuticals: conventional toxins and anticancer drugs, together with their mechanisms of action. The processes of conjugation and purification, as reported in the literature and in several patents, are discussed and the most relevant results in clinical trials are listed. Innovative technologies and preliminary results on novel drugs and toxins, as reported in the literature and in recently-published patents (up to February 2013) are lastly examined. Keywords: Antibody drug conjugate, anticancer agents, auristatins immunotoxin, calicheamicins, cross-linkers, duocarmycins, maytansinoids. -
AMATOXIN MUSHROOM POISONING in NORTH AMERICA 2015-2016 by Michael W
VOLUME 57: 4 JULY-AUGUST 2017 www.namyco.org AMATOXIN MUSHROOM POISONING IN NORTH AMERICA 2015-2016 By Michael W. Beug: Chair, NAMA Toxicology Committee Assessing the degree of amatoxin mushroom poisoning in North America is very challenging. Understanding the potential for various treatment practices is even more daunting. Although I have been studying mushroom poisoning for 45 years now, my own views on potential best treatment practices are still evolving. While my training in enzyme kinetics helps me understand the literature about amatoxin poisoning treatments, my lack of medical training limits me. Fortunately, critical comments from six different medical doctors have been incorporated in this article. All six, each concerned about different aspects in early drafts, returned me to the peer reviewed scientific literature for additional reading. There remains no known specific antidote for amatoxin poisoning. There have not been any gold standard double-blind placebo controlled studies. There never can be. When dealing with a potentially deadly poisoning (where in many non-western countries the amatoxin fatality rate exceeds 50%) treating of half of all poisoning patients with a placebo would be unethical. Using amatoxins on large animals to test new treatments (theoretically a great alternative) has ethical constraints on the experimental design that would most likely obscure the answers researchers sought. We must thus make our best judgement based on analysis of past cases. Although that number is now large enough that we can make some good assumptions, differences of interpretation will continue. Nonetheless, we may be on the cusp of reaching some agreement. Towards that end, I have contacted several Poison Centers and NAMA will be working with the Centers for Disease Control (CDC). -
Occurrence of a Cyanobacterial Neurotoxin, Anatoxin-A, in New
OCCURRENCE OF THE CYANOBACTERIAL NEUROTOXIN, ANATOXIN-A, IN NEW YORK STATE WATERS by Xingye Yang A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy Degree State University of New York College of Environmental Science and Forestry Syracuse, New York January 2007 Approved: Faculty of Chemistry ---------------------------------------------- ------------------------------------------------ Gregory L. Boyer, Major Professor William Shields, Chairperson, Examination Committee ------------------------------------------------ ------------------------------------------------- John P. Hassett, Faculty Chair Dudley J. Raynal, Dean, Instruction and Graduate Studies UMI Number: 3290535 Copyright 2008 by Yang, Xingye All rights reserved. UMI Microform 3290535 Copyright 2008 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 Acknowledgements I would like to express my sincerest gratitude to Dr. Gregory L. Boyer, my major professor and academic advisor for his guidance, support, and assistance over the past years. He has provided me with invaluable knowledge and skills. I thank Dr. David J. Kieber for his advice and instrument support. I acknowledge Dr. John P. Hassett for his support on both my research and my career. I appreciate Dr. Francis X. Webster for his help on chemical characterization. I thank Dr. James P. Nakas for advice on my career development. Thanks are also due to Dr. William Shields for serving as chairman of this examination committee. I appreciate critical reviews and comments on the thesis from all the examiners on this committee. I would like to thank Dr. Israel Cabasso and Dr. -
Western Lake Erie Harmful Algal Blooms
Harmful Algal Bloom Research Initiative Thomas Bridgeman, PhD University of Toledo Nov 30, 2016 Toledo Water Crisis, August 2014 Algal toxin in treated Toledo water exceeded 1.0 ug/L limit recommended by the WHO ‘Do not drink’ advisory Aug 2-4 500,000 residents temporarily without potable water Lake Erie Water Intake Toledo Blade CBS News Ohio Department of Higher Education Response Major algal groups in Lakes Diatoms Greens Blue-greens (Cyanobacteria) Common Harmful “Algae” (Cyanobacteria) Anabaena Aphanizomenon Microcystis (Dolichospermum) Planktothrix Lyngbya Lyngbya wollei and Microcystis sp. D. Hartsen T. Crail Why are harmful algae harmful? Microcystis toxins Planktothrix toxins Microcystin (FDF) Anatoxin Lyngbyatoxin Aplysiatoxin Anabaena toxins Lyngbya toxins Microcystin Saxitoxin Cylindrospermopsin Lyngbyatoxin Anatoxin (VFDF) Aplysiatoxin Saxitoxin Aphanizomenon toxins Cylindrospermopsin Anatoxin Saxitoxin Freshwater HABs are increasing worldwide Lake Taihu, China Lake Winnipeg Baltic Sea Lake Erie and Grand Lake St. Marys 13-Year Record of HABs August 2002 August 2003 Microcystis HABs in Lake Erie Western Lake Erie Harmful Algal Blooms 40000 35000 Catastrophic 30000 25000 20000 15000 Unacceptable 10000 5000 (ml/m2/y) Biovolume Microcystis Microcystis Biovolume (ml/m2/y) Biovolume Microcystis Acceptable 0 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2011 bloom from the International Space Station 2003 Michalak et al. 2013 2014: Winds and water currents concentrated the bloom along the Ohio shore Toledo Water Intake Not a Lake Problem, it’s a LAND problem Ohio Drainage Not just a Northern Ohio Problem Cincinnati Water Intake (H. Raymond, OEPA) The Greening of Lake Erie (Eutrophication) • Between1920 and 1964 Lake Erie algae biomass increased nearly 6 fold. -
615.9Barref.Pdf
INDEX Abortifacient, abortifacients bees, wasps, and ants ginkgo, 492 aconite, 737 epinephrine, 963 ginseng, 500 barbados nut, 829 blister beetles goldenseal blister beetles, 972 cantharidin, 974 berberine, 506 blue cohosh, 395 buckeye hawthorn, 512 camphor, 407, 408 ~-escin, 884 hypericum extract, 602-603 cantharides, 974 calamus inky cap and coprine toxicity cantharidin, 974 ~-asarone, 405 coprine, 295 colocynth, 443 camphor, 409-411 ethanol, 296 common oleander, 847, 850 cascara, 416-417 isoxazole-containing mushrooms dogbane, 849-850 catechols, 682 and pantherina syndrome, mistletoe, 794 castor bean 298-302 nutmeg, 67 ricin, 719, 721 jequirity bean and abrin, oduvan, 755 colchicine, 694-896, 698 730-731 pennyroyal, 563-565 clostridium perfringens, 115 jellyfish, 1088 pine thistle, 515 comfrey and other pyrrolizidine Jimsonweed and other belladonna rue, 579 containing plants alkaloids, 779, 781 slangkop, Burke's, red, Transvaal, pyrrolizidine alkaloids, 453 jin bu huan and 857 cyanogenic foods tetrahydropalmatine, 519 tansy, 614 amygdalin, 48 kaffir lily turpentine, 667 cyanogenic glycosides, 45 lycorine,711 yarrow, 624-625 prunasin, 48 kava, 528 yellow bird-of-paradise, 749 daffodils and other emetic bulbs Laetrile", 763 yellow oleander, 854 galanthamine, 704 lavender, 534 yew, 899 dogbane family and cardenolides licorice Abrin,729-731 common oleander, 849 glycyrrhetinic acid, 540 camphor yellow oleander, 855-856 limonene, 639 cinnamomin, 409 domoic acid, 214 rna huang ricin, 409, 723, 730 ephedra alkaloids, 547 ephedra alkaloids, 548 Absorption, xvii erythrosine, 29 ephedrine, 547, 549 aloe vera, 380 garlic mayapple amatoxin-containing mushrooms S-allyl cysteine, 473 podophyllotoxin, 789 amatoxin poisoning, 273-275, gastrointestinal viruses milk thistle 279 viral gastroenteritis, 205 silibinin, 555 aspartame, 24 ginger, 485 mistletoe, 793 Medical Toxicology ofNatural Substances, by Donald G. -
Chemical and Biological Study of Aplysiatoxin Derivatives Showing Inhibition of Potassium Cite This: RSC Adv.,2019,9,7594 Channel Kv1.5†
RSC Advances View Article Online PAPER View Journal | View Issue Chemical and biological study of aplysiatoxin derivatives showing inhibition of potassium Cite this: RSC Adv.,2019,9,7594 channel Kv1.5† Yang-Hua Tang,‡ab Jing Wu,‡c Ting-Ting Fan,a Hui-Hui Zhang,a Xiao-Xia Gong,a Zheng-Yu Cao,e Jian Zhang,*c Hou-Wen Lin *d and Bing-Nan Han *a Three new aplysiatoxins, neo-debromoaplysiatoxin D (1), oscillatoxin E (2) and oscillatoxin F (3), accompanied by four known analogues (4–7), were identified from the marine cyanobacterium Lyngbya sp. Structural frames differ amongst these metabolites, and therefore we classified compounds 1 and 4– 6 as aplysiatoxins as they possess 6/12/6 and 6/10/6 tricyclic ring systems featuring a macrolactone ring, and compounds 2, 3 and 7 as oscillatoxins that feature a hexane-tetrahydropyran in a spirobicyclic system. Bioactivity experiments showed that compounds 1 and 4–6 presented significant expression of phosphor-PKCd whereas compounds 2, 5 and 7 showed the most potent blocking activity against Received 5th February 2019 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. potassium channel Kv1.5 with IC values of 0.79 Æ 0.032 mM, 1.28 Æ 0.080 mM and 1.47 Æ 0.138 mM, Accepted 25th February 2019 50 respectively. Molecular docking analysis supplementing the binding interaction of oscillatoxin E (2) and DOI: 10.1039/c9ra00965e oscillatoxin F (3) with Kv1.5 showed oscillatoxin E (2) with a strong binding affinity of À37.645 kcal molÀ1 À rsc.li/rsc-advances and oscillatoxin F (3) with a weaker affinity of À32.217 kcal mol 1, further supporting the experimental data. -
Electrochemical Biosensors for Tracing Cyanotoxins in Food and Environmental Matrices
biosensors Review Electrochemical Biosensors for Tracing Cyanotoxins in Food and Environmental Matrices Antonella Miglione 1 , Maria Napoletano 1 and Stefano Cinti 1,2,* 1 Department of Pharmacy, University Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; [email protected] (A.M.); [email protected] (M.N.) 2 BAT Center–Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University Naples Federico II, 80055 Naples, Italy * Correspondence: [email protected] Abstract: The adoption of electrochemical principles to realize on-field analytical tools for detecting pollutants represents a great possibility for food safety and environmental applications. With respect to the existing transduction mechanisms, i.e., colorimetric, fluorescence, piezoelectric etc., electrochemical mechanisms offer the tremendous advantage of being easily miniaturized, connected with low cost (commercially available) readers and unaffected by the color/turbidity of real matrices. In particular, their versatility represents a powerful approach for detecting traces of emerging pollutants such as cyanotoxins. The combination of electrochemical platforms with nanomaterials, synthetic receptors and microfabrication makes electroanalysis a strong starting point towards decentralized monitoring of toxins in diverse matrices. This review gives an overview of the electrochemical biosensors that have been developed to detect four common cyanotoxins, namely microcystin-LR, anatoxin-a, saxitoxin and cylindrospermopsin. The manuscript provides the readers a quick guide to understand the main electrochemical platforms that have been realized so far, and the presence of a comprehensive table provides a perspective at a glance. Keywords: electroanalysis; screen printed electrodes; voltammetry; impedance; aptamer; Citation: Miglione, A.; Napoletano, microcystin-LR; anatoxin-a; saxitoxin; cylindrospermopsin M.; Cinti, S. Electrochemical Biosensors for Tracing Cyanotoxins in Food and Environmental Matrices. -
Algal Toxic Compounds and Their Aeroterrestrial, Airborne and Other Extremophilic Producers with Attention to Soil and Plant Contamination: a Review
toxins Review Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review Georg G¨аrtner 1, Maya Stoyneva-G¨аrtner 2 and Blagoy Uzunov 2,* 1 Institut für Botanik der Universität Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria; [email protected] 2 Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 blvd. Dragan Tsankov, 1164 Sofia, Bulgaria; mstoyneva@uni-sofia.bg * Correspondence: buzunov@uni-sofia.bg Abstract: The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, Citation: G¨аrtner, G.; the health risk from phycotoxins on the background of the global warming and eutrophication and, ¨а Stoyneva-G rtner, M.; Uzunov, B. -
Investigations on the Impact of Toxic Cyanobacteria on Fish : As
INVESTIGATIONS ON THE IMPACT OF TOXIC CYANOBACTERIA ON FISH - AS EXEMPLIFIED BY THE COREGONIDS IN LAKE AMMERSEE - DISSERTATION Zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften an der Universität Konstanz Fachbereich Biologie Vorgelegt von BERNHARD ERNST Tag der mündlichen Prüfung: 05. Nov. 2008 Referent: Prof. Dr. Daniel Dietrich Referent: Prof. Dr. Karl-Otto Rothhaupt Referent: Prof. Dr. Alexander Bürkle 2 »Erst seit gestern und nur für einen Tag auf diesem Planeten weilend, können wir nur hoffen, einen Blick auf das Wissen zu erhaschen, das wir vermutlich nie erlangen werden« Horace-Bénédict de Saussure (1740-1799) Pionier der modernen Alpenforschung & Wegbereiter des Alpinismus 3 ZUSAMMENFASSUNG Giftige Cyanobakterien beeinträchtigen Organismen verschiedenster Entwicklungsstufen und trophischer Ebenen. Besonders bedroht sind aquatische Organismen, weil sie von Cyanobakterien sehr vielfältig beeinflussbar sind und ihnen zudem oft nur sehr begrenzt ausweichen können. Zu den toxinreichsten Cyanobakterien gehören Arten der Gattung Planktothrix. Hierzu zählt auch die Burgunderblutalge Planktothrix rubescens, eine Cyanobakterienart die über die letzten Jahrzehnte im Besonderen in den Seen der Voralpenregionen zunehmend an Bedeutung gewonnen hat. An einigen dieser Voralpenseen treten seit dem Erstarken von P. rubescens existenzielle, fischereiwirtschaftliche Probleme auf, die wesentlich auf markante Wachstumseinbrüche bei den Coregonenbeständen (Coregonus sp.; i.e. Renken, Felchen, etc.) zurückzuführen sind. So auch -
Author's Personal Copy
Author's personal copy Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Encyclopedia of Toxicology. The copy attached is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research, and educational use. This includes without limitation use in instruction at your institution, distribution to specific colleagues, and providing a copy to your institution's administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial From Hambright, K.D., Zamor, R.M., Easton, J.D., Allison, B., 2014. Algae. In: Wexler, P. (Ed.), Encyclopedia of Toxicology, 3rd edition vol 1. Elsevier Inc., Academic Press, pp. 130–141. ISBN: 9780123864543 Copyright © 2014 Elsevier, Inc. unless otherwise stated. All rights reserved. Academic Press Author's personal copy Algae KD Hambright and RM Zamor, Plankton Ecology and Limnology Laboratory, University of Oklahoma Biological Station, and Program in Ecology and Evolutionary Biology, University of Oklahoma, Norman, OK, USA JD Easton and B Allison, Plankton Ecology and Limnology Laboratory, University of Oklahoma Biological Station, University of Oklahoma, Kingston, OK, USA Ó 2014 Elsevier Inc. All rights reserved. This article is a revision of the previous edition article by Keiko Okamoto and Lora E. Fleming, volume 1, pp 68–76, Ó 2005, Elsevier Inc.