Advances in Anticancer Antibody-Drug Conjugates and Immunotoxins
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CD74 Targeted Nanoparticles As Dexamethasone Delivery System for B Lymphoid Malignancies
CD74 targeted nanoparticles as Dexamethasone Delivery System for B lymphoid malignancies DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Georgia Triantafillou, MPH Integrated Biomedical Sciences Graduate Program The Ohio State University 2011 Dissertation Committee John C. Byrd, MD, advisor Natarajan Muthusamy, PhD co-advisor Robert J.Lee, PhD, co-advisor Mitch A.Phelps, PhD, co-advisor Guido Marcucci, MD committee member Susheela Tridandapani, PhD committee member Copyright page Georgia Triantafillou 2011 ABSTRACT Chronic Lymphocytic Leukemia (CLL) is the most common adult leukemia and is not curable with standard therapy. In CLL the B lymphocytes appear morphologically mature but immunologically express less mature B cell makers. Specifically, the CLL B cells co-express surface antigens including CD19, CD20, CD5, CD23. Due to nonspecific delivery of the drugs to malignant as well as normal cells, patients experience numerous side effects. Targeted drug delivery to cancer cells is a desirable goal for all anti cancer strategies. Corticosteroids have been proven to be a beneficial and well established part of CLL treatment. Dexamethasone(DEX) is frequently used in CLL therapies as well as other malignancies and antiinflammatory diseases. However, DEX nonspecifically enters all tissues inducing various toxicities to patients. Therefore, DEX treatment is often discontinued or not administered to certain patients. We aimed to deliver this efficient clinical agent via a targeted delivery vehicle and examine its effect on its target B-CLL cells. The main scope of the work presented is the creation of a sterically stable nanoparticle, an ii immunoliposome (ILP), that has DEX encapsulated in its interior and a monoclonal antibody(Mab) in its exterior targeting CLL B cells expressing the surface antigen that is recognized by the Mab. -
Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models. -
AMATOXIN MUSHROOM POISONING in NORTH AMERICA 2015-2016 by Michael W
VOLUME 57: 4 JULY-AUGUST 2017 www.namyco.org AMATOXIN MUSHROOM POISONING IN NORTH AMERICA 2015-2016 By Michael W. Beug: Chair, NAMA Toxicology Committee Assessing the degree of amatoxin mushroom poisoning in North America is very challenging. Understanding the potential for various treatment practices is even more daunting. Although I have been studying mushroom poisoning for 45 years now, my own views on potential best treatment practices are still evolving. While my training in enzyme kinetics helps me understand the literature about amatoxin poisoning treatments, my lack of medical training limits me. Fortunately, critical comments from six different medical doctors have been incorporated in this article. All six, each concerned about different aspects in early drafts, returned me to the peer reviewed scientific literature for additional reading. There remains no known specific antidote for amatoxin poisoning. There have not been any gold standard double-blind placebo controlled studies. There never can be. When dealing with a potentially deadly poisoning (where in many non-western countries the amatoxin fatality rate exceeds 50%) treating of half of all poisoning patients with a placebo would be unethical. Using amatoxins on large animals to test new treatments (theoretically a great alternative) has ethical constraints on the experimental design that would most likely obscure the answers researchers sought. We must thus make our best judgement based on analysis of past cases. Although that number is now large enough that we can make some good assumptions, differences of interpretation will continue. Nonetheless, we may be on the cusp of reaching some agreement. Towards that end, I have contacted several Poison Centers and NAMA will be working with the Centers for Disease Control (CDC). -
Antibody Drug Conjugates in Lymphoma
Review: Clinical Trial Outcomes Nathwani & Chen Antibody drug conjugates in lymphoma 6 Review: Clinical Trial Outcomes Antibody drug conjugates in lymphoma Clin. Investig. (Lond.) Antibody drug conjugates (ADCs) are comprised of monoclonal antibodies physically Nitya Nathwani1 & Robert linked to cytotoxic molecules. They expressly target cancer cells by delivering cytotoxic Chen*,1 agents to cells displaying specific antigens, and minimize damage to normal tissue. The 1Department of Hematology & Hematopoietic Cell Transplantation, City efficacy and tolerability of these agents are primarily determined by the target antigen, of Hope, Duarte, CA, USA the cytotoxic agent and the linker connecting the cytotoxic agent to the monoclonal *Author for correspondence: antibody. Following advances in technology, clinical trials have demonstrated greater Tel.: +626 256 4673 (ext. 65298) efficacy for ADCs compared with the corresponding naked monoclonal antibodies. Fax: +626 301 8116 This review summarizes the features of current clinically active ADCs in lymphoma and [email protected] emphasizes recent clinical data elucidating the benefit of antibody-directed delivery of cytotoxic agents to tumor cells. Keywords: antibody drug conjugates • lymphoma • monoclonal antibodies Lymphoma is the most common hematologic concentration and poor performance status malignancy, and is subdivided into two main are adverse prognostic factors. SEER (Sur- types: Hodgkin lymphoma (HL) and non- veillance, Epidemiology and End Results) Hodgkin lymphoma (NHL). In the United data from the National Cancer Institute, States, there are an estimated 731,277 people 2013 has revealed a significant improvement 10.4155/CLI.14.73 living with or in remission from lymphoma. in survival rates in this group of diseases in In 2013, there were an estimated 79,030 new the last four decades. -
615.9Barref.Pdf
INDEX Abortifacient, abortifacients bees, wasps, and ants ginkgo, 492 aconite, 737 epinephrine, 963 ginseng, 500 barbados nut, 829 blister beetles goldenseal blister beetles, 972 cantharidin, 974 berberine, 506 blue cohosh, 395 buckeye hawthorn, 512 camphor, 407, 408 ~-escin, 884 hypericum extract, 602-603 cantharides, 974 calamus inky cap and coprine toxicity cantharidin, 974 ~-asarone, 405 coprine, 295 colocynth, 443 camphor, 409-411 ethanol, 296 common oleander, 847, 850 cascara, 416-417 isoxazole-containing mushrooms dogbane, 849-850 catechols, 682 and pantherina syndrome, mistletoe, 794 castor bean 298-302 nutmeg, 67 ricin, 719, 721 jequirity bean and abrin, oduvan, 755 colchicine, 694-896, 698 730-731 pennyroyal, 563-565 clostridium perfringens, 115 jellyfish, 1088 pine thistle, 515 comfrey and other pyrrolizidine Jimsonweed and other belladonna rue, 579 containing plants alkaloids, 779, 781 slangkop, Burke's, red, Transvaal, pyrrolizidine alkaloids, 453 jin bu huan and 857 cyanogenic foods tetrahydropalmatine, 519 tansy, 614 amygdalin, 48 kaffir lily turpentine, 667 cyanogenic glycosides, 45 lycorine,711 yarrow, 624-625 prunasin, 48 kava, 528 yellow bird-of-paradise, 749 daffodils and other emetic bulbs Laetrile", 763 yellow oleander, 854 galanthamine, 704 lavender, 534 yew, 899 dogbane family and cardenolides licorice Abrin,729-731 common oleander, 849 glycyrrhetinic acid, 540 camphor yellow oleander, 855-856 limonene, 639 cinnamomin, 409 domoic acid, 214 rna huang ricin, 409, 723, 730 ephedra alkaloids, 547 ephedra alkaloids, 548 Absorption, xvii erythrosine, 29 ephedrine, 547, 549 aloe vera, 380 garlic mayapple amatoxin-containing mushrooms S-allyl cysteine, 473 podophyllotoxin, 789 amatoxin poisoning, 273-275, gastrointestinal viruses milk thistle 279 viral gastroenteritis, 205 silibinin, 555 aspartame, 24 ginger, 485 mistletoe, 793 Medical Toxicology ofNatural Substances, by Donald G. -
(12) United States Patent (10) Patent No.: US 9,161,992 B2 Jefferies Et Al
US009 161992B2 (12) United States Patent (10) Patent No.: US 9,161,992 B2 Jefferies et al. (45) Date of Patent: Oct. 20, 2015 (54) P97 FRAGMENTS WITH TRANSFER 4,683.202 A 7, 1987 Mullis ACTIVITY 4,704,362 A 11/1987 Itakura et al. 4,766,075 A 8, 1988 Goeddeletal. (71) Applicant: biosis Technologies, Inc., Richmond 4,800,1594,784.950 A 11/19881/1989 MullisHagen et al. (CA) 4,801,542 A 1/1989 Murray et al. 4.866,042 A 9, 1989 Neuwelt (72) Inventors: Wilfred Jefferies, South Surrey (CA); 4,935,349 A 6/1990 McKnight et al. Mei Mei Tian, Coquitlam (CA): 4.946,778 A 8, 1990 Ladner et al. Timothy Vitalis, Vancouver (CA) 5,091,513 A 2f1992 Huston et al. 5,132,405 A 7, 1992 Huston et al. (73) Assignee: biOasis Technologies, Inc., British 5, 186,941 A 2f1993 Callahan et al. Columbia (CA) 5,672,683 A 9, 1997 Friden et al. 5,677,171 A 10, 1997 Hudziak et al. c - r 5,720,937 A 2f1998 Hudziak et al. (*) Notice: Subject to any disclaimer, the term of this 5,720,954. A 2f1998 Hudziak et al. patent is extended or adjusted under 35 5,725,856 A 3, 1998 Hudziak et al. U.S.C. 154(b) by 0 days. 5,770,195 A 6/1998 Hudziak et al. 5,772,997 A 6/1998 Hudziak et al. (21) Appl. No.: 14/226,506 5,844,093 A 12/1998 Kettleborough et al. 5,962,012 A 10, 1999 Lin et al. -
Monoclonal Antibodies in Myeloma
Monoclonal Antibodies in Myeloma Pia Sondergeld, PhD, Niels W. C. J. van de Donk, MD, PhD, Paul G. Richardson, MD, and Torben Plesner, MD Dr Sondergeld is a medical student at the Abstract: The development of monoclonal antibodies (mAbs) for University of Giessen in Giessen, Germany. the treatment of disease goes back to the vision of Paul Ehrlich in Dr van de Donk is a hematologist in the the late 19th century; however, the first successful treatment with department of hematology at the VU a mAb was not until 1982, in a lymphoma patient. In multiple University Medical Center in Amsterdam, The Netherlands. Dr Richardson is the R.J. myeloma, mAbs are a very recent and exciting addition to the Corman Professor of Medicine at Harvard therapeutic armamentarium. The incorporation of mAbs into Medical School, and clinical program current treatment strategies is hoped to enable more effective and leader and director of clinical research targeted treatment, resulting in improved outcomes for patients. at the Jerome Lipper Myeloma Center, A number of targets have been identified, including molecules division of hematologic malignancy, depart- on the surface of the myeloma cell and components of the bone ment of medical oncology, Dana-Farber Cancer Institute in Boston, MA. Dr Plesner marrow microenvironment. Our review focuses on a small number is a professor of hematology at the Univer- of promising mAbs directed against molecules on the surface of sity of Southern Denmark and a consultant myeloma cells, including CS1 (elotuzumab), CD38 (daratumumab, in the department of hematology at Vejle SAR650984, MOR03087), CD56 (lorvotuzumab mertansine), and Hospital in Vejle, Denmark. -
Toxic Fungi of Western North America
Toxic Fungi of Western North America by Thomas J. Duffy, MD Published by MykoWeb (www.mykoweb.com) March, 2008 (Web) August, 2008 (PDF) 2 Toxic Fungi of Western North America Copyright © 2008 by Thomas J. Duffy & Michael G. Wood Toxic Fungi of Western North America 3 Contents Introductory Material ........................................................................................... 7 Dedication ............................................................................................................... 7 Preface .................................................................................................................... 7 Acknowledgements ................................................................................................. 7 An Introduction to Mushrooms & Mushroom Poisoning .............................. 9 Introduction and collection of specimens .............................................................. 9 General overview of mushroom poisonings ......................................................... 10 Ecology and general anatomy of fungi ................................................................ 11 Description and habitat of Amanita phalloides and Amanita ocreata .............. 14 History of Amanita ocreata and Amanita phalloides in the West ..................... 18 The classical history of Amanita phalloides and related species ....................... 20 Mushroom poisoning case registry ...................................................................... 21 “Look-Alike” mushrooms ..................................................................................... -
New Developments in Amatoxin Poisoning
New Developments in Amatoxin Poisoning ACMT Annual Scientific Meeting San Juan, PR March 15, 2013 Disclosure S Todd Mitchell MD,MPH Principal Investigator: Prevention and Treatment of Amatoxin Induced Hepatic Failure With Intravenous Silibinin ( Legalon® SIL): An Open Multicenter Clinical Trial Consultant: Madaus-Rottapharm Amatoxin Poisoning: Overview • 95%+ of all fatal mushroom poisonings worldwide are due to amatoxin containing species. • 50-100 Deaths per year in Europe is typical. • Growing Problem in North America, especially Northern Califoriia USA 1976-2005: 126 Reported Cases 2006: 48 Reported Cases, 4 Deaths Summer 2008: 2 Deaths on East Coast September/October 2012: 2 deaths, 1 transplant among 15 total cases on the East Coast. Mexico 2005 & 2006: 19 Reported Deaths. Countless more in SE Asia, Indian Sub-Continent, South Africa Assam, India March 2008: 20 Deaths Swat, Pakistan 2006: Watsonville September 2006 • 57 yo former ER nurse, electrical contractor ingests 8 mushrooms from his property at 1800 on September 8. • Onset of sx ~0200. • Mushrooms identified as Amanita Phalloides by local expert amateur mycologist ~1500. • Presented to ER 24 hours post ingestion: BUN 37, Creat 2.0, Hgb 20.2, Hct 60.5, ALT 96. • Transfer to UCSF 9/10. INR 2.2, ALT 869 after Rx with hydration, antiemetics, repeated doses of charcoal, IV NAC, and IV PEN G. • 72 Hours: INR 4.5, ALT 2274, Bil 4.0. • Liver Transplant 9/14. 2007 Santa Cruz Cohort • EM age 82. ALT 12224, INR 5.4, Factor V 9% @ 72 hours. ALT 3570, INR 1.7, Factor V 49% @ 144 hours. Died from anuric renal failure 1/11. -
The World's Most Poisonous Mushroom, Amanita Phalloides, Is
Maxwell Moor-Smith, BSc, Raymond Li, BSc(Pharm), MSc, Omar Ahmad, MD, FRCPC The world’s most poisonous mushroom, Amanita phalloides, is growing in BC The expanded range of death cap mushrooms—previously found on the roots of imported European trees but now found in association with native Garry oaks—puts amateur foragers at risk, and recognition of amatoxin poisoning is essential to preventing future fatalities. ABSTRACT: Amatoxins in Amanita acute liver failure occurs. Manage- shown some benefit in a retro- phalloides, commonly known as the ment of the symptomatic patient spective survival analysis. With the death cap mushroom, are responsi- consists of providing supportive expanded range of A. phalloides in ble for 90% of the world’s mushroom- care, promoting renal elimination of BC, physicians should be alert to related fatalities. The most deadly amatoxins, interrupting enterohe- the possibility of amatoxin poison- amatoxin for humans is α-amanitin, patic recirculation of amatoxins, and ing and include it in the differential a bicyclic octapeptide that irrevers- administering proposed antidotes. diagnosis of a patient presenting ibly binds RNA polymerase II, thus Although no established antidote with gastroenteritis or hepatotoxic- preventing protein synthesis and for A. phalloides has been identified, ity and a history of ingesting foraged causing cell death. Three recent N-acetylcysteine and silibinin have mushrooms. poisoning cases in British Columbia show how the death cap can be eas- ily mistaken for edible mushrooms the world’s most poisonous mushroom such as the puffball and the paddy is growing in British Columbia straw mushroom. Since being intro- duced from Europe to the west and mid-Atlantic coasts of North Ameri- Amanita phalloides, commonly known as the death cap mushroom, ca, A. -
Daratumumab (Darzalex)
Clinical Advances in Immunotherapy in Myeloma 6/14/17 Webinar 1: Monoclonal Antibodies: A New Type of Myeloma Drug Clinical Advances in Immunotherapy in Myeloma Webinar 1, June 14, 2017 Monoclonal Antibodies Speakers Moderator: Mary DeRome Multiple Myeloma Research Foundation Norwalk, Connecticut Faculty: Tom Martin, MD University of California, San Francisco San Francisco, California Amy Marsala, MPH, MSN, NP University of California, San Francisco San Francisco, California Gary Rudman, CSP Myeloma Patient Advocate 1 Clinical Advances in Immunotherapy in Myeloma 6/14/17 Webinar 1: Monoclonal Antibodies: A New Type of Myeloma Drug Topics for Discussion • Current and future monoclonal antibodies (what they are, how they work) • Management of side effects in the era of monoclonal antibodies • Patient experience on phase 2 clinical trial of Empliciti (elotuzumab) Tom Martin, MD 2 Clinical Advances in Immunotherapy in Myeloma 6/14/17 Webinar 1: Monoclonal Antibodies: A New Type of Myeloma Drug Current Overall Survival for Newly Diagnosed Myeloma 1.0 89% vs 81% 0.9 Still losing 25% patients in first 3 years 75% vs 62% 0.8 0.7 2007–2011 0.6 0.5 0.4 0.3 Proportion Surviving 2001–2006 0.2 0.1 0.0 012345678910 Years From Diagnosis A good trend but we always need to improve!! Myeloma Treatment: It’s an Art 3 Clinical Advances in Immunotherapy in Myeloma 6/14/17 Webinar 1: Monoclonal Antibodies: A New Type of Myeloma Drug New Agents in Myeloma Therapy Oral Kinase HDAC Immuno- New IMiDs proteasomes inhibitors Novel MOA inhibitors therapies • Lenalidomide -
The Emerging Role of Monoclonal Antibodies in the Treatment of Multiple Myeloma
Pharmacotherapy 5 The emerging role of monoclonal antibodies in the treatment of multiple myeloma K. Fostier, MD1, R. Schots, MD, PhD1 Monoclonal antibodies have a profound impact on the prognosis and survival of patients with haemato- logical malignancies. In the treatment of multiple myeloma, until recently, results of monoclonal antibodies have been disappointing. The introduction of two novel classes of monoclonal antibodies holds great promise to change this. Daratumumab (and related antibodies) is a monoclonal antibody directed to CD38, an intriguing multifunctional surface protein abundantly expressed on malignant plasma cells and their precursors. Daratumumab displays impressive single agent activity in heavily pretreated multiple myeloma patients and due to its favourable safety profile, this molecule seems to be an excellent accessory companion to known anti-multiple myeloma regimens and also in monotherapy as a maintenance agent. Elotuzumab, to the contrary, is an anti-CS1 monoclonal antibody, which does not show any clinically relevant single agent activity, but when combined with other anti-multiple myeloma drugs appears to greatly enhance their efficacy and can even revert the refractory state to the agents. When these promising results are confirmed in phase III trials, immunotherapy can finally be incorporated in the treatment schedule of newly diagnosed and relapsed/refractory multiple myeloma patients. (Belg J Hematol 2015;6(5):209-15) Introduction enter the clinical field. Rituximab (an anti-CD20 mAb) has significantly im- The new anti-CD38 and anti-CS1 mAbs show great proved survival in several B-cell malignancies including promise in the treatment of MM. This review briefly non-Hodgkin’s lymphoma, chronic lymphocytic leu- summarises the physiological role of these two surface kaemia and Waldenström’s macroglobulinemia.