Integrated Multi-Trophic Aquaculture with the California Sea Cucumber
Total Page:16
File Type:pdf, Size:1020Kb
Integrated Multi-Trophic Aquaculture with the California Sea Cucumber (Parastichopus californicus): Investigating Grow-out Cage Design for Juvenile Sea Cucumbers Co-cultured with Pacific Oysters (Crassostrea gigas) by Angela Caroline Fortune B.Sc., Simon Fraser University, 2013 A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of MASTER OF SCIENCE In the Department of Geography © Angela Caroline Fortune, 2018 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part by photocopy or other means, without the permission of the author. Supervisory Committee Integrated Multi-Trophic Aquaculture with the California Sea Cucumber (Parastichopus californicus): Investigating Grow-out Cage Design for Juvenile Sea Cucumbers Co-cultured with Pacific Oysters (Crassostrea gigas) by Angela Caroline Fortune B.Sc., Simon Fraser University, 2013 Dr. Christopher M. Pearce (Department of Geography) Co-Supervisor Dr. Stephen F. Cross (Department of Geography) Co-Supervisor ii Abstract Excess nutrients in the form of uneaten food or waste from intensive, monospecies aquaculture farms can have negative effects on the surrounding natural ecosystem, causing eutrophication and benthic habitat degradation. Biomitigative techniques such as Integrated Multi-Trophic Aquaculture (IMTA) are being investigated for their ability to reduce these negative environmental impacts. IMTA is the co-culture of multiple species from complementary trophic levels, physically orientated in such a way that excess waste nutrients from the fed component are intercepted by the extractive species. For IMTA systems to become a sustainable aquaculture design alternative, it is important to ensure that infrastructure orientation and stocking densities of the extractive species maximize the amount of excess nutrients intercepted and overall system efficiency. Previous research has shown that the majority of wastes from fed finfish are made up of large organic particulates which sink rapidly to the benthos underneath or near the fish cages and which would be available to benthic deposit-feeding species. The California sea cucumber (Parastichopus californicus) is a promising extractive species for IMTA on the west coast of Canada due to its deposit-feeding behaviour and its relatively high market price. Owing to the sea cucumber’s morphology and ability to move through restricted spaces, containment can be difficult without reducing nutrient transfer and overall IMTA system efficiency (i.e. mesh sizes needed to contain small sea cucumbers may restrict flow of farm particulates to them). The overall goal of the present work is to effectively contain juvenile sea cucumbers in such a way that maximizes benthic extraction of large-particulate nutrients within an IMTA system. iii Table of Contents Supervisory Committee .............................................................................................................. ii Abstract ...................................................................................................................................... iii Table of Contents ........................................................................................................................ iv List of Tables ............................................................................................................................... vi List of Figures ........................................................................................................................... vii Acknowledgements .................................................................................................................. viii Chapter 1: Integrated Multi-Trophic Aquaculture with the California Sea Cucumber (Parastichopus californicus): Background and Introduction ........................................................ 1 1.0 Abstract ............................................................................................................................. 1 2.0 Aquaculture ...................................................................................................................... 1 3.0 Integrated Multi-Trophic Aquaculture (IMTA) ........................................................... 3 4.0 Sea Cucumber Aquaculture ............................................................................................ 4 4.1 Farming Methods .................................................................................................... 8 4.2 Sea Cucumber IMTA Challenges ......................................................................... 11 5.0 The California Sea Cucumber (Parastichopus californicus) ....................................... 13 5.1 Wild Fishery .......................................................................................................... 13 5.2 Biology ................................................................................................................... 14 6.0 Parastichopus californicus and IMTA .......................................................................... 20 6.1 Potential IMTA Farming Options for the California Sea Cucumber ................. 23 7.0 Research Objective ......................................................................................................... 25 Chapter 2: Integrated Multi-Trophic Aquaculture with the California sea cucumber (Parastichopus californicus): Investigating cage design elements for juvenile sea cucumbers .. 27 1.0 Abstract ........................................................................................................................... 27 2.0 Introduction .................................................................................................................... 28 2.1 Hypotheses Tested ................................................................................................. 32 3.0 Materials and Methods .................................................................................................. 33 3.1 Sea Cucumber Cage Designs ................................................................................ 33 3.2 Sea Cucumber Measurements .............................................................................. 35 3.3 Laboratory Study ................................................................................................... 36 3.4 Field Study ............................................................................................................. 39 4.0 Results.............................................................................................................................. 45 4.1 Laboratory Study ................................................................................................... 45 4.3 Sea Cucumber Size and Visceral Atrophy/Evisceration ...................................... 47 4.4 Sediment Retention Efficiency .............................................................................. 47 4.5 Sea Cucumber Growth .......................................................................................... 49 iv 5.0 Discussion ........................................................................................................................ 50 5.1 Effects of Sea Cucumber Cage Lid and Mesh Size .............................................. 50 5.2 Effects of Sea Cucumber Cage Fringe ................................................................. 52 5.3 Effects of Oyster Shell Substrate in Sea Cucumber Cages .................................. 53 5.4 Effects of Sea Cucumber Cage on Food Availability and Occurrence of Visceral Atrophy ........................................................................................................................ 54 5.5 Oyster Farm Effects on Sea Cucumber Co-Culture ............................................ 55 5.6 Newly-Recruited Sea Cucumbers ......................................................................... 56 5.7 Sea Cucumber Growth .......................................................................................... 57 5.8. Minimum Body Size for Visceral Atrophy........................................................... 58 References .................................................................................................................................. 59 Tables .......................................................................................................................................... 77 Figures ........................................................................................................................................ 94 v List of Tables Table 1.1. Global aquaculture production summary in 2014. ................................... 83 Table 1.2. Global commercial sea cucumber industry overview. ............................. 84 Table 1.3. Global sea cucumber production summary 2014. .................................... 87 Table 2.1. Parastichopus californicus size measurements. ....................................... 94 Table 2.2. ANOVA results for containment success of Parastichopus californicus in the laboratory trial. ................................................................................................ 95 Table 2.3. ANOVA results for percent containment of Parastichopus californicus in the field trial. ......................................................................................................... 95 Table 2.4. ANOVA results for final count of Parastichopus californicus in the field trial (sub-divided by state of