Integrated Multi-Trophic Aquaculture with the California Sea Cucumber

Total Page:16

File Type:pdf, Size:1020Kb

Integrated Multi-Trophic Aquaculture with the California Sea Cucumber Integrated Multi-Trophic Aquaculture with the California Sea Cucumber (Parastichopus californicus): Investigating Grow-out Cage Design for Juvenile Sea Cucumbers Co-cultured with Pacific Oysters (Crassostrea gigas) by Angela Caroline Fortune B.Sc., Simon Fraser University, 2013 A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of MASTER OF SCIENCE In the Department of Geography © Angela Caroline Fortune, 2018 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part by photocopy or other means, without the permission of the author. Supervisory Committee Integrated Multi-Trophic Aquaculture with the California Sea Cucumber (Parastichopus californicus): Investigating Grow-out Cage Design for Juvenile Sea Cucumbers Co-cultured with Pacific Oysters (Crassostrea gigas) by Angela Caroline Fortune B.Sc., Simon Fraser University, 2013 Dr. Christopher M. Pearce (Department of Geography) Co-Supervisor Dr. Stephen F. Cross (Department of Geography) Co-Supervisor ii Abstract Excess nutrients in the form of uneaten food or waste from intensive, monospecies aquaculture farms can have negative effects on the surrounding natural ecosystem, causing eutrophication and benthic habitat degradation. Biomitigative techniques such as Integrated Multi-Trophic Aquaculture (IMTA) are being investigated for their ability to reduce these negative environmental impacts. IMTA is the co-culture of multiple species from complementary trophic levels, physically orientated in such a way that excess waste nutrients from the fed component are intercepted by the extractive species. For IMTA systems to become a sustainable aquaculture design alternative, it is important to ensure that infrastructure orientation and stocking densities of the extractive species maximize the amount of excess nutrients intercepted and overall system efficiency. Previous research has shown that the majority of wastes from fed finfish are made up of large organic particulates which sink rapidly to the benthos underneath or near the fish cages and which would be available to benthic deposit-feeding species. The California sea cucumber (Parastichopus californicus) is a promising extractive species for IMTA on the west coast of Canada due to its deposit-feeding behaviour and its relatively high market price. Owing to the sea cucumber’s morphology and ability to move through restricted spaces, containment can be difficult without reducing nutrient transfer and overall IMTA system efficiency (i.e. mesh sizes needed to contain small sea cucumbers may restrict flow of farm particulates to them). The overall goal of the present work is to effectively contain juvenile sea cucumbers in such a way that maximizes benthic extraction of large-particulate nutrients within an IMTA system. iii Table of Contents Supervisory Committee .............................................................................................................. ii Abstract ...................................................................................................................................... iii Table of Contents ........................................................................................................................ iv List of Tables ............................................................................................................................... vi List of Figures ........................................................................................................................... vii Acknowledgements .................................................................................................................. viii Chapter 1: Integrated Multi-Trophic Aquaculture with the California Sea Cucumber (Parastichopus californicus): Background and Introduction ........................................................ 1 1.0 Abstract ............................................................................................................................. 1 2.0 Aquaculture ...................................................................................................................... 1 3.0 Integrated Multi-Trophic Aquaculture (IMTA) ........................................................... 3 4.0 Sea Cucumber Aquaculture ............................................................................................ 4 4.1 Farming Methods .................................................................................................... 8 4.2 Sea Cucumber IMTA Challenges ......................................................................... 11 5.0 The California Sea Cucumber (Parastichopus californicus) ....................................... 13 5.1 Wild Fishery .......................................................................................................... 13 5.2 Biology ................................................................................................................... 14 6.0 Parastichopus californicus and IMTA .......................................................................... 20 6.1 Potential IMTA Farming Options for the California Sea Cucumber ................. 23 7.0 Research Objective ......................................................................................................... 25 Chapter 2: Integrated Multi-Trophic Aquaculture with the California sea cucumber (Parastichopus californicus): Investigating cage design elements for juvenile sea cucumbers .. 27 1.0 Abstract ........................................................................................................................... 27 2.0 Introduction .................................................................................................................... 28 2.1 Hypotheses Tested ................................................................................................. 32 3.0 Materials and Methods .................................................................................................. 33 3.1 Sea Cucumber Cage Designs ................................................................................ 33 3.2 Sea Cucumber Measurements .............................................................................. 35 3.3 Laboratory Study ................................................................................................... 36 3.4 Field Study ............................................................................................................. 39 4.0 Results.............................................................................................................................. 45 4.1 Laboratory Study ................................................................................................... 45 4.3 Sea Cucumber Size and Visceral Atrophy/Evisceration ...................................... 47 4.4 Sediment Retention Efficiency .............................................................................. 47 4.5 Sea Cucumber Growth .......................................................................................... 49 iv 5.0 Discussion ........................................................................................................................ 50 5.1 Effects of Sea Cucumber Cage Lid and Mesh Size .............................................. 50 5.2 Effects of Sea Cucumber Cage Fringe ................................................................. 52 5.3 Effects of Oyster Shell Substrate in Sea Cucumber Cages .................................. 53 5.4 Effects of Sea Cucumber Cage on Food Availability and Occurrence of Visceral Atrophy ........................................................................................................................ 54 5.5 Oyster Farm Effects on Sea Cucumber Co-Culture ............................................ 55 5.6 Newly-Recruited Sea Cucumbers ......................................................................... 56 5.7 Sea Cucumber Growth .......................................................................................... 57 5.8. Minimum Body Size for Visceral Atrophy........................................................... 58 References .................................................................................................................................. 59 Tables .......................................................................................................................................... 77 Figures ........................................................................................................................................ 94 v List of Tables Table 1.1. Global aquaculture production summary in 2014. ................................... 83 Table 1.2. Global commercial sea cucumber industry overview. ............................. 84 Table 1.3. Global sea cucumber production summary 2014. .................................... 87 Table 2.1. Parastichopus californicus size measurements. ....................................... 94 Table 2.2. ANOVA results for containment success of Parastichopus californicus in the laboratory trial. ................................................................................................ 95 Table 2.3. ANOVA results for percent containment of Parastichopus californicus in the field trial. ......................................................................................................... 95 Table 2.4. ANOVA results for final count of Parastichopus californicus in the field trial (sub-divided by state of
Recommended publications
  • FISH LIST WISH LIST: a Case for Updating the Canadian Government’S Guidance for Common Names on Seafood
    FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood Authors: Christina Callegari, Scott Wallace, Sarah Foster and Liane Arness ISBN: 978-1-988424-60-6 © SeaChoice November 2020 TABLE OF CONTENTS GLOSSARY . 3 EXECUTIVE SUMMARY . 4 Findings . 5 Recommendations . 6 INTRODUCTION . 7 APPROACH . 8 Identification of Canadian-caught species . 9 Data processing . 9 REPORT STRUCTURE . 10 SECTION A: COMMON AND OVERLAPPING NAMES . 10 Introduction . 10 Methodology . 10 Results . 11 Snapper/rockfish/Pacific snapper/rosefish/redfish . 12 Sole/flounder . 14 Shrimp/prawn . 15 Shark/dogfish . 15 Why it matters . 15 Recommendations . 16 SECTION B: CANADIAN-CAUGHT SPECIES OF HIGHEST CONCERN . 17 Introduction . 17 Methodology . 18 Results . 20 Commonly mislabelled species . 20 Species with sustainability concerns . 21 Species linked to human health concerns . 23 Species listed under the U .S . Seafood Import Monitoring Program . 25 Combined impact assessment . 26 Why it matters . 28 Recommendations . 28 SECTION C: MISSING SPECIES, MISSING ENGLISH AND FRENCH COMMON NAMES AND GENUS-LEVEL ENTRIES . 31 Introduction . 31 Missing species and outdated scientific names . 31 Scientific names without English or French CFIA common names . 32 Genus-level entries . 33 Why it matters . 34 Recommendations . 34 CONCLUSION . 35 REFERENCES . 36 APPENDIX . 39 Appendix A . 39 Appendix B . 39 FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood 2 GLOSSARY The terms below are defined to aid in comprehension of this report. Common name — Although species are given a standard Scientific name — The taxonomic (Latin) name for a species. common name that is readily used by the scientific In nomenclature, every scientific name consists of two parts, community, industry has adopted other widely used names the genus and the specific epithet, which is used to identify for species sold in the marketplace.
    [Show full text]
  • A Practical Handbook for Determining the Ages of Gulf of Mexico And
    A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399.
    [Show full text]
  • Faunistic Resources Used As Medicines by Artisanal Fishermen from Siribinha Beach, State of Bahia, Brazil'
    Journal of Ethnobiology 20(1): 93-109 Summer 2000 FAUNISTIC RESOURCES USED AS MEDICINES BY ARTISANAL FISHERMEN FROM SIRIBINHA BEACH, STATE OF BAHIA, BRAZIL' ERALOO M. COSTA-NETOAND jost GERALOO w. MARQUES Departamento de CiCllcias BioJ6gicas Universidade Estadual de Feim de Santana, Km 3, 8R 116, Call/pus Ulliversitririo, CEP 44031-460, Feirn de Salltalla, Bahia, Brasil ABSTRACT.- Artisanal fishermen from Siribinha Beach in the State of Bahia, Northeastern Brazil, have been using several marine/estuarine animal resources as folk medicines. Wf.> hilve recorded the employment of mollusks, crustaceans, echinoderms, fishes, reptiles, and cetace<lns, and noted a high predominance of fishes over other aquatic animals. Asthma, bronchitis, stroke, and wounds arc the most usual illnesses treated by animal-based medicines. These results corroborate Marques' zoothcrapeutic universality hypothesis. According to him, all human cultures that prcscnt a developed medical system do use animals as medicines. Further studies are requested in order to estimate the existence of bioactive compounds of ph<lrmacological value in these bioresources. Key words: Fishennen, marine resources, medicine, Bahia, Brazil RESUMO.-Pescadores artcsanais da Praia de Siribinha, estado da Bahia, Nordeste do Brasil, utilizam varios recursos animais marinhos/estuarinos como remedios populares. Registramos 0 e.mprego de moluscos, crustaceos, equinoderrnos, peixes, repteis e cetaceos. Observou-se uma alta predominilncia de peixes sobre outros animais aquaticos. Asma, bronquite, derrame e ferimentos sao as afecr;6es mais usualmente tratadas com remedios Ii. base de animais. Estes resultados corroboram a hip6tese da universalidadc zooterapeutica de Marqucs. De <lcordo com cle, toda cultura humana quc .1preSe.nta urn sistema medico desenvolvido utiliza-se de animais como remlidios, Estudos posteriores sao neccssarios a fim de avaliar a existcncia de compostos bioativos de valor farmacol6gico nesses biorrecursos.
    [Show full text]
  • Abstract Book
    January 21-25, 2013 Alaska Marine Science Symposium hotel captain cook & Dena’ina center • anchorage, alaska Bill Rome Glenn Aronmits Hansen Kira Ross McElwee ShowcaSing ocean reSearch in the arctic ocean, Bering Sea, and gulf of alaSka alaskamarinescience.org Glenn Aronmits Index This Index follows the chronological order of the 2013 AMSS Keynote and Plenary speakers Poster presentations follow and are in first author alphabetical order according to subtopic, within their LME category Editor: Janet Duffy-Anderson Organization: Crystal Benson-Carlough Abstract Review Committee: Carrie Eischens (Chair), George Hart, Scott Pegau, Danielle Dickson, Janet Duffy-Anderson, Thomas Van Pelt, Francis Wiese, Warren Horowitz, Marilyn Sigman, Darcy Dugan, Cynthia Suchman, Molly McCammon, Rosa Meehan, Robin Dublin, Heather McCarty Cover Design: Eric Cline Produced by: NOAA Alaska Fisheries Science Center / North Pacific Research Board Printed by: NOAA Alaska Fisheries Science Center, Seattle, Washington www.alaskamarinescience.org i ii Welcome and Keynotes Monday January 21 Keynotes Cynthia Opening Remarks & Welcome 1:30 – 2:30 Suchman 2:30 – 3:00 Jeremy Mathis Preparing for the Challenges of Ocean Acidification In Alaska 30 Testing the Invasion Process: Survival, Dispersal, Genetic Jessica Miller Characterization, and Attenuation of Marine Biota on the 2011 31 3:00 – 3:30 Japanese Tsunami Marine Debris Field 3:30 – 4:00 Edward Farley Chinook Salmon and the Marine Environment 32 4:00 – 4:30 Judith Connor Technologies for Ocean Studies 33 EVENING POSTER
    [Show full text]
  • Fishery Resources Reading: Chapter 3 Invertebrate and Vertebrate Fisheries  Diversity and Life History  Species Important Globally  Species Important Locally
    Exploited Fishery Resources Reading: Chapter 3 Invertebrate and vertebrate fisheries Diversity and life history species important globally species important locally Fisheries involving Invertebrate Phyla Mollusca • Bivalves, Gastropods and Cephalopods Echinodermata • sea cucumbers and urchins Arthropoda • Sub-phylum Crustacea: • shrimps and prawns • clawed lobsters, crayfish • clawless lobsters • crabs Phylum Mollusca: Bivalves Fisheries • Oysters, Scallops, Mussels, and Clams • World catch > 1 million MT • Ideal for aquaculture (mariculture) • Comm. and rec. in shallow water 1 Phylum Mollusca: Gastropods Fisheries • Snails, whelks, abalone • Largest number of species • Most harvested from coastal areas • Food & ornamental shell trade • Depletion of stocks (e.g. abalone) due to habitat destruction & overexploitation Phylum Mollusca: Cephalopods Fisheries • Squid, octopus, nautilus • 70% of world mollusc catch = squids • Inshore squid caught with baited jigs, purse seines, & trawls • Oceanic: gill nets & jigging Phylum Echinodermata Fisheries • Sea cucumbers and sea urchins Sea cucumber fisheries • Indian & Pacific oceans, cultured in Japan • slow growth rates, difficult to sustain Sea urchin fisheries • roe (gonads) a delicacy • seasonal based on roe availability Both Easily Overexploited 2 Sub-phylum Crustacea: Shrimps & Prawns Prawn fisheries • extensive farming (high growth rate & fecundity) • Penaeids with high commercial value • stocks in Australia have collapsed due to overfishing & destruction of inshore nursery areas Caridean
    [Show full text]
  • SPC Beche-De-Mer Information Bulletin #39 – March 2019
    ISSN 1025-4943 Issue 39 – March 2019 BECHE-DE-MER information bulletin v Inside this issue Editorial Towards producing a standard grade identification guide for bêche-de-mer in This issue of the Beche-de-mer Information Bulletin is well supplied with Solomon Islands 15 articles that address various aspects of the biology, fisheries and S. Lee et al. p. 3 aquaculture of sea cucumbers from three major oceans. An assessment of commercial sea cu- cumber populations in French Polynesia Lee and colleagues propose a procedure for writing guidelines for just after the 2012 moratorium the standard identification of beche-de-mer in Solomon Islands. S. Andréfouët et al. p. 8 Andréfouët and colleagues assess commercial sea cucumber Size at sexual maturity of the flower populations in French Polynesia and discuss several recommendations teatfish Holothuria (Microthele) sp. in the specific to the different archipelagos and islands, in the view of new Seychelles management decisions. Cahuzac and others studied the reproductive S. Cahuzac et al. p. 19 biology of Holothuria species on the Mahé and Amirantes plateaux Contribution to the knowledge of holo- in the Seychelles during the 2018 northwest monsoon season. thurian biodiversity at Reunion Island: Two previously unrecorded dendrochi- Bourjon and Quod provide a new contribution to the knowledge of rotid sea cucumbers species (Echinoder- holothurian biodiversity on La Réunion, with observations on two mata: Holothuroidea). species that are previously undescribed. Eeckhaut and colleagues P. Bourjon and J.-P. Quod p. 27 show that skin ulcerations of sea cucumbers in Madagascar are one Skin ulcerations in Holothuria scabra can symptom of different diseases induced by various abiotic or biotic be induced by various types of food agents.
    [Show full text]
  • Apostichopus Japonicus
    Acta Oceanol. Sin., 2018, Vol. 37, No. 5, P. 54–66 DOI: 10.1007/s13131-017-1101-4 http://www.hyxb.org.cn E-mail: [email protected] Differential gene expression in the body wall of the sea cucumber (Apostichopus japonicus) under strong lighting and dark conditions ZHANG Libin1, 2, FENG Qiming1, 3, SUN Lina1, 2, FANG Yan4, XU Dongxue5, ZHANG Tao1, 2, YANG Hongsheng1, 2* 1 CAS Key laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China 2 Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 School of Agriculture, Ludong University, Yantai 264025, China 5 College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China Received 25 January 2017; accepted 9 March 2017 © Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Sea cucumber, Apostichopus japonicus is very sensitive to light changes. It is important to study the influence of light on the molecular response of A. japonicus. In this study, RNA-seq provided a general overview of the gene expression profiles of the body walls of A. japonicus exposed to strong light (“light”), normal light (“control”) and fully dark (“dark”) environment. In the comparisons of “control” vs. “dark”, ”control” vs. “light” and “dark” vs. “light”, 1 161, 113 and 1 705 differentially expressed genes (DEGs) were identified following the criteria of |log2ratio|≥1 and FDR≤0.001, respectively. Gene ontology analysis showed that “cellular process” and “binding” enriched the most DEGs in the category of “biological process” and “molecular function”, while “cell” and “cell part” enriched the most DEGs in the category of “cellular component”.
    [Show full text]
  • Europa, Glorieuses, Juan De Nova), Mozambique Channel, France Chantal Conand, Thierry Mulochau, Sabine Stöhr, Marc Eléaume, Pascale Chabanet
    Inventory of echinoderms in the Iles Eparses (Europa, Glorieuses, Juan de Nova), Mozambique Channel, France Chantal Conand, Thierry Mulochau, Sabine Stöhr, Marc Eléaume, Pascale Chabanet To cite this version: Chantal Conand, Thierry Mulochau, Sabine Stöhr, Marc Eléaume, Pascale Chabanet. Inventory of echinoderms in the Iles Eparses (Europa, Glorieuses, Juan de Nova), Mozambique Channel, France. Acta Oecologica, Elsevier, 2016, 72, pp.53-61. 10.1016/j.actao.2015.06.007. hal-01306705 HAL Id: hal-01306705 https://hal.univ-reunion.fr/hal-01306705 Submitted on 26 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Inventory of echinoderms in the Iles Eparses (Europa, Glorieuses, Juan de Nova), Mozambique Channel, France * C. Conand a, b, , T. Mulochau c,S.Stohr€ d,M.Eleaume b, P. Chabanet e a Ecomar, UniversitedeLaReunion, 97715 La Reunion, France b Departement Milieux et Peuplements Aquatiques, MNHN, 47 rue Cuvier, 75005 Paris, France c BIORECIF, 3 ter rue de l'albatros, 97434 La Reunion, France d Swedish Museum of Natural History, Frescativagen€ 40, 114 18 Stockholm, Sweden e IRD, BP 50172, 97492 Ste Clotilde, La Reunion, France abstract The multidisciplinary programme BioReCIE (Biodiversity, Resources and Conservation of coral reefs at Eparses Is.) inventoried multiple marine animal groups in order to provide information on the coral reef health of the Iles Eparses.
    [Show full text]
  • The Shallow-Water Macro Echinoderm Fauna of Nha Trang Bay (Vietnam): Status at the Onset of Protection of Habitats
    The Shallow-water Macro Echinoderm Fauna of Nha Trang Bay (Vietnam): Status at the Onset of Protection of Habitats Master Thesis in Marine Biology for the degree Candidatus scientiarum Øyvind Fjukmoen Institute of Biology University of Bergen Spring 2006 ABSTRACT Hon Mun Marine Protected Area, in Nha Trang Bay (South Central Vietnam) was established in 2002. In the first period after protection had been initiated, a baseline survey on the shallow-water macro echinoderm fauna was conducted. Reefs in the bay were surveyed by transects and free-swimming observations, over an area of about 6450 m2. The main area focused on was the core zone of the marine reserve, where fishing and harvesting is prohibited. Abundances, body sizes, microhabitat preferences and spatial patterns in distribution for the different species were analysed. A total of 32 different macro echinoderm taxa was recorded (7 crinoids, 9 asteroids, 7 echinoids and 8 holothurians). Reefs surveyed were dominated by the locally very abundant and widely distributed sea urchin Diadema setosum (Leske), which comprised 74% of all specimens counted. Most species were low in numbers, and showed high degree of small- scale spatial variation. Commercially valuable species of sea cucumbers and sea urchins were nearly absent from the reefs. Species inventories of shallow-water asteroids and echinoids in the South China Sea were analysed. The results indicate that the waters of Nha Trang have echinoid and asteroid fauna quite similar to that of the Spratly archipelago. Comparable pristine areas can thus be expected to be found around the offshore islands in the open parts of the South China Sea.
    [Show full text]
  • Vii Fishery-At-A-Glance: Warty Sea Cucumber Scientific Name: Apostichopus Parvimensis Range: Warty Sea Cucumber Range from Puert
    Fishery-at-a-Glance: Warty Sea Cucumber Scientific Name: Apostichopus parvimensis Range: Warty Sea Cucumber range from Puerto San Bartolome in Baja California, Mexico to Fort Bragg, California, US, but are uncommon north of Point Conception, California. Habitat: Warty Sea Cucumber occupy waters from the subtidal zone to 180 feet (55 meters) depth. They are commonly found to inhabit both rocky reef and sand/mud substrate. Size (length and weight): Warty Sea Cucumber can reach 12-16 inches (30.5-40.6 c centimeters) when encountered in their natural state (in-situ) on the seafloor; however, this size measurement is not an accurate measure of body size due to the ability of sea cucumber to extend and contract their bodies. Constricted length and width provide a more accurate estimate of body size. The maximum reported length for Warty Sea Cucumber in a constricted state is 9.5 inches (24.1 centimeters) and a maximum width (excluding soft spines) of 3.5 inches (8.9 centimeters). The maximum individual weight recorded for a Warty Sea Cucumber in a whole or live state is 1.64 lb (743.9 grams), with the maximum weight of individuals in a cut eviscerated state (the predominant commercial landing condition) of .82 lb (371.9 grams). Life span: The life span of Warty Sea Cucumber is currently unknown. There is currently no way to directly age Warty Sea Cucumber. Reproduction: Warty Sea Cucumber have separate male and female sexes that reproduce via aggregate broadcast spawning. Spawning occurs from March to July in depths less than 100 feet (30.5 meters), with most spawning occurring less than 60 feet (18.3 meters) depth.
    [Show full text]
  • Movement Patterns of Gray Triggerfish, Balistes Capriscus, Around Artificial Reefs in the Northern Gulf of Mexico
    Movement Patterns of Gray Triggerfish, Balistes capriscus, Around Artificial Reefs in the Northern Gulf of Mexico. by Jennifer L. Herbig A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama August 2, 2014 Keywords: VPS telemetry, Fine scale movements, Site fidelity Copyright 2014 by Jennifer Herbig Approved by Stephen T. Szedlmayer, Chair, Professor School Fisheries, Aquaculture, and Aquatic Sciences Terrill R. Hanson, Associate Professor School of Fisheries, Aquaculture, and Aquatic Sciences Stephen A. Bullard, Assistant Professor School of Fisheries, Aquaculture, and Aquatic Sciences ABSTRACT Relatively little is known about the ecology of gray triggerfish, Balistes capriscus Gmelin, despite its importance to both sport and commercial fisheries. In particular, gray triggerfish habitat use is not well understood. Fine scale tracking would provide an understanding of habitat use for gray triggerfish which may help with the future management of this species. Thus, this study was an attempt to implant ultrasonic transmitters in gray triggerfish and track their fine scale movement patterns around artificial reefs in the northern Gulf of Mexico. Adult gray triggerfish (n = 17) were successfully tagged with transmitters and tracked using the VR2W Positioning System (VPS). Most (84.2 %) tagged fish successfully survived and were tracked for extended periods (1 to 57 weeks), with only three fish lost within 24 hours of tagging (here considered a tagging artifact). Tagged gray triggerfish showed diel movement patterns with home ranges (95 % KDE) and core areas (50 % KDE) significantly larger during the day than night. Fish also showed seasonal movement patterns that were positively correlated with water temperature.
    [Show full text]
  • Composition and Diversity of Intestinal Microbiota of Sea Cucumber Apostichopus Japonicus from Different Habitats
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 18F–072/2018/20–8–1868–1872 DOI: 10.17957/IJAB/15.0743 http://www.fspublishers.org Full Length Article Composition and Diversity of Intestinal Microbiota of Sea Cucumber Apostichopus japonicus from Different Habitats Shigen Ye1, Meiru Liu1, Li Wang1, Ruijun Li1 and Qiang Li1,2* 1Dalian Key Laboratory of Marine Animal Disease Control and Prevention, Dalian Ocean University, Dalian 116023, China 2Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China *For correspondence: [email protected] Abstract The intestinal flora of the sea cucumbers Apostichopus japonicus Selenka were detected by 16S rRNA sequence. The sea cucumbers were collected from Zhangzidao Island (ZZD), Dandong (DD) and Zhuanghe (ZH) at the Yellow Sea, Huludao Island (HLD) at the Bohai Sea, and Lvshun (LS) at the confluence of the Yellow Sea and the Bohai Sea. Proteobacteria was found to be the predominant phylum, while dominant genera were different from different habitats. Halomonas and Shewanella were the top two genera for groups at the Yellow Sea and the Bohai Sea, and genus Bacteroides was dominant at the confluence of the Yellow Sea and the Bohai Sea. The results of LS might be influenced by the peculiar geographical environment of the confluence. Moreover, some beneficial bacteria such as lactic acid bacteria and Bifidobacterium were detected with the proportion from 0.58% to 4.66% from all the samples. These results exhibit the relationship between intestinal flora of healthy sea cucumbers and their habitats, which may become directions for probable probiotics development and utilization.
    [Show full text]