Checklist of the British and Irish Basidiomycota
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
CRISTIANE SEGER.Pdf
UNIVERSIDADE FEDERAL DO PARANÁ CRISTIANE SEGER REVISÃO TAXONÔMICA DO GÊNERO STROPHARIA SENSU LATO (AGARICALES) NO SUL DO BRASIL CURITIBA 2016 CRISTIANE SEGER REVISÃO TAXONÔMICA DO GÊNERO STROPHARIA SENSU LATO (AGARICALES) NO SUL DO BRASIL Dissertação apresentada ao Programa de Pós- Graduação em Botânica, área de concentração em Taxonomia, Biologia e Diversidade de Algas, Liquens e Fungos, Setor de Ciências Biológicas, Universidade Federal do Paraná, como requisito parcial à obtenção do título de Mestre em Botânica. Orientador: Prof. Dr. Vagner G. Cortez CURITIBA 2016 '«'[ir UNIVERSIDADE FEDERAL DO PARANÁ UFPR Biológicas Setor de Ciências Biológicas ***** Programa de Pos-Graduação em Botânica .*•* t * ivf psiomD* rcD í?A i 0 0 p\» a u * 303a 2016 Ata de Julgamento da Dissertação de Mestrado da pos-graduanda Cristiane Seger Aos 13 dias do mês de maio do ano de 2016, as nove horas, por meio de videoconferência, na presença cia Comissão Examinadora, composta pelo Dr Vagner Gularte Cortez, pela Dr* Paula Santos da Silva e pela Dr1 Sionara Eliasaro como titulares, foi aberta a sessão de julgamento da Dissertação intitulada “REVISÃO TAXONÓMICA DO GÊNERO STROPHARIA SENSU LATO (AGARICALES) NO SUL DO BRASIL” Apos a apresentação perguntas e esclarecimentos acerca da Dissertação, a Comissão Examinadora APROVA O TRABALHO DE CONCLUSÃO do{a) aluno(a) Cristiane Seger Nada mais havendo a tratar, encerrou-se a sessão da qual foi lavrada a presente ata, que, apos lida e aprovada, foi assinada pelos componentes da Comissão Examinadora Dr Vagr *) Dra, Paula Santos da Stlva (UFRGS) Dra Sionara Eliasaro (UFPR) 'H - UNIVERSIDADE FEDERAL DO PARANA UfPR , j í j B io lo g ic a s —— — — ——— Setor de Ciências Biologicas *• o ' • UrPK ----Programa- de— Pós-Graduação em Botânica _♦ .»• j.„o* <1 I ‘’Hl /Dl í* Ui V* k P, *U 4 Titulo Mestre em Ciências Biológicas - Área de Botânica Dissertação “REVISÃO TAXONÔMICA DO GÉNERO STROPHARIA SENSU LATO (AGARICALES) NO SUL DO BR ASIL” . -
Stropharia Caerulea Kreisel 1979 Le Chapeau Est Visqueux À L’Humidité, Bleu Verdâtre Décolorant En Jaunâtre, Et La Marge Ornée De Légers Flocons Blancs
13,90 11,55 8,66 10,43 Stropharia caerulea Kreisel 1979 Le chapeau est visqueux à l’humidité, bleu verdâtre décolorant en jaunâtre, et la marge ornée de légers flocons blancs. La cuticule sèche paraît lisse. Systématique Division Basidiomycètes Classe Agaricomycètes Ordre Agaricales Famille Strophariacées Les lames sont adnées à échancrées, crème, puis beige rosé, enfin brun chocolat clair. Détermination L’arête est concolore, caractéristique Les lames adnées à échancrées et la sporée brun déterminante. violacé orientent vers le Genre Stropharia. La sporée est brune . Avec la clé de Marcel Bon, DM 129, suivre : 1a Couleur vert-bleu, 2b Spores < 10 µm Section Stropharia Une confusion est possible avec Stropharia aeruginosa, 3a Espèces moyennes 5-7 cm +/- charnues, qui possède une arête blanche stérile, vert-bleu jaunissant, Le stipe est recouvert d’un voile caulinaire 4b Lames avec arête concolore, nombreuses floconneux blanc se terminant par un un anneau membraneux plus persistant, chrysocystides anneau fragile et fugace teinté de brun par de nombreuses cheilocystides clavées Stropharia caerulea les spores sur sa face supérieure. et très peu de chrysocystides sur l’arête. Les nombreuses chrysocystides de l’arête émergent au milieu de cellules clavées. Elles sont lagéniformes, étirées au sommet plus ou moins longuement sans toutefois être mucronées, et contiennent une vacuole assez importante. Les chrysocystides sécrètent une matière amorphe qui remplit leur vacuole. Cette masse est incolore puis devient jaune et enfin orangée avec l’âge et dans les solutions basiques comme l’ammoniaque ou la potasse. C’est ainsi que la vacuole paraît incolore ou jaune pâle dans l’eau, jaune très vif dans l’ammoniaque et orangée dans le rouge congo ammoniacal. -
Major Clades of Agaricales: a Multilocus Phylogenetic Overview
Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153- Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J. -
LUNDY FUNGI: FURTHER SURVEYS 2004-2008 by JOHN N
Journal of the Lundy Field Society, 2, 2010 LUNDY FUNGI: FURTHER SURVEYS 2004-2008 by JOHN N. HEDGER1, J. DAVID GEORGE2, GARETH W. GRIFFITH3, DILUKA PEIRIS1 1School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1M 8JS 2Natural History Museum, Cromwell Road, London, SW7 5BD 3Institute of Biological Environmental and Rural Sciences, University of Aberystwyth, SY23 3DD Corresponding author, e-mail: [email protected] ABSTRACT The results of four five-day field surveys of fungi carried out yearly on Lundy from 2004-08 are reported and the results compared with the previous survey by ourselves in 2003 and to records made prior to 2003 by members of the LFS. 240 taxa were identified of which 159 appear to be new records for the island. Seasonal distribution, habitat and resource preferences are discussed. Keywords: Fungi, ecology, biodiversity, conservation, grassland INTRODUCTION Hedger & George (2004) published a list of 108 taxa of fungi found on Lundy during a five-day survey carried out in October 2003. They also included in this paper the records of 95 species of fungi made from 1970 onwards, mostly abstracted from the Annual Reports of the Lundy Field Society, and found that their own survey had added 70 additional records, giving a total of 156 taxa. They concluded that further surveys would undoubtedly add to the database, especially since the autumn of 2003 had been exceptionally dry, and as a consequence the fruiting of the larger fleshy fungi on Lundy, especially the grassland species, had been very poor, resulting in under-recording. Further five-day surveys were therefore carried out each year from 2004-08, three in the autumn, 8-12 November 2004, 4-9 November 2007, 3-11 November 2008, one in winter, 23-27 January 2006 and one in spring, 9-16 April 2005. -
Agaricus Campestris L
23 24 Agaricus campestris L.. Scientific name: Agaricus campestris L. Family: Agaricaceae Genus: Agaricus Species: compestris Synonyms: Psalliota bispora; Psalliota hortensis; Common names: Field mushroom or, in North America, meadow mushroom. Agaric champêtre, Feldegerling, Kerti csiperke, mezei csiperke, Pink Bottom, Rosé de prés, Wiesenchampignon. Parts used: Cap and stem Distribution: Agaricus campestris is common in fields and grassy areas after rain from late summer onwards worldwide. It is often found on lawns in suburban areas. Appearing in small groups, in fairy rings or solitary. Owing to the demise of horse-drawn vehicles, and the subsequent decrease in the number of horses on pasture, the old "white outs" of years gone by are becoming rare events. This species is rarely found in woodland. The mushroom has been reported from Asia, Europe, northern Africa, Australia, New Zealand, and North America (including Mexico). Plant Description: The cap is white, may have fine scales, and is 5 to 10 centimetres (2.0 to 3.9 in) in diameter; it is first hemispherical in shape before flattening out with maturity. The gills are initially pink, then red-brown and finally a dark brown, as is the spore print. The 3 to 10 centimetres (1.2 to 3.9 in) tall stipe is predominantly white and bears a single thin ring. The taste is mild. The white flesh bruises a dingy reddish brown, as opposed to yellow in the inedible (and somewhat toxic) Agaricus xanthodermus and similar species. The thick-walled, elliptical spores measure 5.5–8.0 µm by 4–5 µm. Cheilocystidia are absent. -
Grazing Alters Network Architecture During Interspecific Mycelial
fungal ecology 1 (2008) 124–132 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/funeco Grazing alters network architecture during interspecific mycelial interactions T.D. ROTHERAYa, T.H. JONESa, M.D. FRICKERb, Lynne BODDYa,* aCardiff School of Biosciences, Cardiff University, Biosciences Building, Museum Avenue, Cardiff CF10 3AX, UK bDepartment of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK article info abstract Article history: The changes that occur in mycelial architecture of Phanerochaete velutina interacting with Received 18 July 2008 Hypholoma fasciculare mycelium in soil microcosms in the presence and absence of the Revision received 19 November 2008 collembola Folsomia candida are investigated employing tools developed in graph theory Accepted 1 December 2008 and statistical mechanics. There was substantially greater overgrowth of H. fasciculare by Published online 16 December 2008 P. velutina mycelium when grazed than when un-grazed. There was a marked disappear- Corresponding editor: ance of hyphal links in all un-grazed systems between 8 d and 34 d, predominantly in areas Fordyce Davidson distant from the interaction, but this was much less evident in grazed systems. Further, new tangential cross-links connecting radial cords distant from the inoculum formed in Keywords: grazed systems. The thickness of cords increased with time, and more so in grazed Adaptive biological networks systems. There was no significant difference in transport efficiency between the grazed Basidiomycete ecology and un-grazed systems. The ability of the mycelial network to modify dynamically link Combative interactions strengths is crucial to achieving a balance between transport capacity/robustness to Network architecture damage and overall cost of production. -
Mycoparasite Hypomyces Odoratus Infests Agaricus Xanthodermus Fruiting Bodies in Nature Kiran Lakkireddy1,2†, Weeradej Khonsuntia1,2,3† and Ursula Kües1,2*
Lakkireddy et al. AMB Expr (2020) 10:141 https://doi.org/10.1186/s13568-020-01085-5 ORIGINAL ARTICLE Open Access Mycoparasite Hypomyces odoratus infests Agaricus xanthodermus fruiting bodies in nature Kiran Lakkireddy1,2†, Weeradej Khonsuntia1,2,3† and Ursula Kües1,2* Abstract Mycopathogens are serious threats to the crops in commercial mushroom cultivations. In contrast, little is yet known on their occurrence and behaviour in nature. Cobweb infections by a conidiogenous Cladobotryum-type fungus iden- tifed by morphology and ITS sequences as Hypomyces odoratus were observed in the year 2015 on primordia and young and mature fruiting bodies of Agaricus xanthodermus in the wild. Progress in development and morphologies of fruiting bodies were afected by the infections. Infested structures aged and decayed prematurely. The mycopara- sites tended by mycelial growth from the surroundings to infect healthy fungal structures. They entered from the base of the stipes to grow upwards and eventually also onto lamellae and caps. Isolated H. odoratus strains from a diseased standing mushroom, from a decaying overturned mushroom stipe and from rotting plant material infected mushrooms of diferent species of the genus Agaricus while Pleurotus ostreatus fruiting bodies were largely resistant. Growing and grown A. xanthodermus and P. ostreatus mycelium showed degrees of resistance against the mycopatho- gen, in contrast to mycelium of Coprinopsis cinerea. Mycelial morphological characteristics (colonies, conidiophores and conidia, chlamydospores, microsclerotia, pulvinate stroma) and variations of fve diferent H. odoratus isolates are presented. In pH-dependent manner, H. odoratus strains stained growth media by pigment production yellow (acidic pH range) or pinkish-red (neutral to slightly alkaline pH range). -
Olympic Mushrooms 4/16/2021 Susan Mcdougall
Olympic Mushrooms 4/16/2021 Susan McDougall With links to species’ pages 206 species Family Scientific Name Common Name Agaricaceae Agaricus augustus Giant agaricus Agaricaceae Agaricus hondensis Felt-ringed Agaricus Agaricaceae Agaricus silvicola Forest Agaric Agaricaceae Chlorophyllum brunneum Shaggy Parasol Agaricaceae Chlorophyllum olivieri Olive Shaggy Parasol Agaricaceae Coprinus comatus Shaggy inkcap Agaricaceae Crucibulum laeve Common bird’s nest fungus Agaricaceae Cyathus striatus Fluted bird’s nest Agaricaceae Cystoderma amianthinum Pure Cystoderma Agaricaceae Cystoderma cf. gruberinum Agaricaceae Gymnopus acervatus Clustered Collybia Agaricaceae Gymnopus dryophilus Common Collybia Agaricaceae Gymnopus luxurians Agaricaceae Gymnopus peronatus Wood woolly-foot Agaricaceae Lepiota clypeolaria Shield dapperling Agaricaceae Lepiota magnispora Yellowfoot dapperling Agaricaceae Leucoagaricus leucothites White dapperling Agaricaceae Leucoagaricus rubrotinctus Red-eyed parasol Agaricaceae Morganella pyriformis Warted puffball Agaricaceae Nidula candida Jellied bird’s-nest fungus Agaricaceae Nidularia farcta Albatrellaceae Albatrellus avellaneus Amanitaceae Amanita augusta Yellow-veiled amanita Amanitaceae Amanita calyptroderma Ballen’s American Caesar Amanitaceae Amanita muscaria Fly agaric Amanitaceae Amanita pantheriana Panther cap Amanitaceae Amanita vaginata Grisette Auriscalpiaceae Lentinellus ursinus Bear lentinellus Bankeraceae Hydnellum aurantiacum Orange spine Bankeraceae Hydnellum complectipes Bankeraceae Hydnellum suaveolens -
Forest Fungi in Ireland
FOREST FUNGI IN IRELAND PAUL DOWDING and LOUIS SMITH COFORD, National Council for Forest Research and Development Arena House Arena Road Sandyford Dublin 18 Ireland Tel: + 353 1 2130725 Fax: + 353 1 2130611 © COFORD 2008 First published in 2008 by COFORD, National Council for Forest Research and Development, Dublin, Ireland. All rights reserved. No part of this publication may be reproduced, or stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying recording or otherwise, without prior permission in writing from COFORD. All photographs and illustrations are the copyright of the authors unless otherwise indicated. ISBN 1 902696 62 X Title: Forest fungi in Ireland. Authors: Paul Dowding and Louis Smith Citation: Dowding, P. and Smith, L. 2008. Forest fungi in Ireland. COFORD, Dublin. The views and opinions expressed in this publication belong to the authors alone and do not necessarily reflect those of COFORD. i CONTENTS Foreword..................................................................................................................v Réamhfhocal...........................................................................................................vi Preface ....................................................................................................................vii Réamhrá................................................................................................................viii Acknowledgements...............................................................................................ix -
Revision of Pyrophilous Taxa of Pholiota Described from North America Reveals Four Species—P
Mycologia ISSN: 0027-5514 (Print) 1557-2536 (Online) Journal homepage: http://www.tandfonline.com/loi/umyc20 Revision of pyrophilous taxa of Pholiota described from North America reveals four species—P. brunnescens, P. castanea, P. highlandensis, and P. molesta P. Brandon Matheny, Rachel A. Swenie, Andrew N. Miller, Ronald H. Petersen & Karen W. Hughes To cite this article: P. Brandon Matheny, Rachel A. Swenie, Andrew N. Miller, Ronald H. Petersen & Karen W. Hughes (2018): Revision of pyrophilous taxa of Pholiota described from North America reveals four species—P.brunnescens,P.castanea,P.highlandensis, and P.molesta, Mycologia, DOI: 10.1080/00275514.2018.1516960 To link to this article: https://doi.org/10.1080/00275514.2018.1516960 Published online: 27 Nov 2018. Submit your article to this journal Article views: 28 View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=umyc20 MYCOLOGIA https://doi.org/10.1080/00275514.2018.1516960 Revision of pyrophilous taxa of Pholiota described from North America reveals four species—P. brunnescens, P. castanea, P. highlandensis, and P. molesta P. Brandon Matheny a, Rachel A. Sweniea, Andrew N. Miller b, Ronald H. Petersen a, and Karen W. Hughesa aDepartment of Ecology and Evolutionary Biology, University of Tennessee, Dabney 569, Knoxville, Tennessee 37996-1610; bIllinois Natural History Survey, University of Illinois Urbana Champaign, 1816 South Oak Street, Champaign, Illinois 61820 ABSTRACT ARTICLE HISTORY A systematic reevaluation of North American pyrophilous or “burn-loving” species of Pholiota is Received 17 March 2018 presented based on molecular and morphological examination of type and historical collections. -
Chemical Elements in Ascomycetes and Basidiomycetes
Chemical elements in Ascomycetes and Basidiomycetes The reference mushrooms as instruments for investigating bioindication and biodiversity Roberto Cenci, Luigi Cocchi, Orlando Petrini, Fabrizio Sena, Carmine Siniscalco, Luciano Vescovi Editors: R. M. Cenci and F. Sena EUR 24415 EN 2011 1 The mission of the JRC-IES is to provide scientific-technical support to the European Union’s policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Via E.Fermi, 2749 I-21027 Ispra (VA) Italy Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC Catalogue number: LB-NA-24415-EN-C Editors: R. M. Cenci and F. Sena JRC65050 EUR 24415 EN ISBN 978-92-79-20395-4 ISSN 1018-5593 doi:10.2788/22228 Luxembourg: Publications Office of the European Union Translation: Dr. Luca Umidi © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Italy 2 Attached to this document is a CD containing: • A PDF copy of this document • Information regarding the soil and mushroom sampling site locations • Analytical data (ca, 300,000) on total samples of soils and mushrooms analysed (ca, 10,000) • The descriptive statistics for all genera and species analysed • Maps showing the distribution of concentrations of inorganic elements in mushrooms • Maps showing the distribution of concentrations of inorganic elements in soils 3 Contact information: Address: Roberto M. -
A Floristic Study of the Genus Agaricus for the Southeastern United States
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-1977 A Floristic Study of the Genus Agaricus for the Southeastern United States Alice E. Hanson Freeman University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Botany Commons Recommended Citation Freeman, Alice E. Hanson, "A Floristic Study of the Genus Agaricus for the Southeastern United States. " PhD diss., University of Tennessee, 1977. https://trace.tennessee.edu/utk_graddiss/3633 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Alice E. Hanson Freeman entitled "A Floristic Study of the Genus Agaricus for the Southeastern United States." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Botany. Ronald H. Petersen, Major Professor We have read this dissertation and recommend its acceptance: Rodger Holton, James W. Hilty, Clifford C. Handsen, Orson K. Miller Jr. Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council : I am submitting he rewith a dissertation written by Alice E.