Conversion of Magnetic Energy in the Magnetic Reconnection Layer of a Laboratory Plasma

Total Page:16

File Type:pdf, Size:1020Kb

Conversion of Magnetic Energy in the Magnetic Reconnection Layer of a Laboratory Plasma ARTICLE Received 5 May 2014 | Accepted 23 Jul 2014 | Published 10 Sep 2014 DOI: 10.1038/ncomms5774 Conversion of magnetic energy in the magnetic reconnection layer of a laboratory plasma Masaaki Yamada1, Jongsoo Yoo1, Jonathan Jara-Almonte1, Hantao Ji1, Russell M. Kulsrud1 & Clayton E. Myers1 Magnetic reconnection, in which magnetic field lines break and reconnect to change their topology, occurs throughout the universe. The essential feature of reconnection is that it energizes plasma particles by converting magnetic energy. Despite the long history of reconnection research, how this energy conversion occurs remains a major unresolved problem in plasma physics. Here we report that the energy conversion in a laboratory reconnection layer occurs in a much larger region than previously considered. The mechanisms for energizing plasma particles in the reconnection layer are identified, and a quantitative inventory of the converted energy is presented for the first time in a well-defined reconnection layer; 50% of the magnetic energy is converted to particle energy, 2/3 of which transferred to ions and 1/3 to electrons. Our results are compared with simulations and space measurements, for a key step towards resolving one of the most important problems in plasma physics. 1 Center for Magnetic Self-organization, Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08544, USA. Correspondence and requests for materials should be addressed to M.Y. (email: [email protected]). NATURE COMMUNICATIONS | 5:4774 | DOI: 10.1038/ncomms5774 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5774 agnetic reconnection, the breaking and topological Here we report that the energy conversion in a laboratory rearrangement of magnetic field lines in plasma, occurs reconnection layer occurs in a much larger region than previously Meverywhere in the universe, in solar flares, the Earth’s considered. We observe that electron heating occurs outside the magnetosphere, star formation and laboratory fusion plasmas1–4. electron diffusion region and that ion acceleration and heating The most important feature of magnetic reconnection is that dominate in a wide region of the exhaust of the reconnection significant acceleration and heating of plasma particles occurs at layer, which ranges beyond several ion skin depths. The the expense of magnetic energy. An example of this efficient mechanisms for energizing plasma particles in the magnetic energy conversion is the observation of large amounts of high- reconnection layer are identified, and a quantitative inventory of energy electrons associated with the reconnection of magnetic the converted energy is presented for the first time in a well- field lines in solar flares5. In the reconnection region of the defined reconnection layer. The study concludes that B50% of Earth’s magnetosphere and the solar wind, convective outflows the magnetic energy is converted to particle energy, two-thirds have been documented by in situ satellite measurements. Despite of which transferred to ions and one-third to electrons. Our these advances, the exact physical mechanisms for bulk plasma results are compared with numerical simulations and space heating, particle acceleration and energy flow channels remain measurements. unresolved. This paper addresses the key unresolved question: how is magnetic energy converted to plasma kinetic energy during reconnection? Furthermore, the conversion of magnetic Results energy is quantitatively evaluated for the first time in a laboratory Experimental apparatus. We use the MRX facility16 to reconnection layer by assessing the overall energy inventory in a experimentally study the conversion of magnetic energy to well-defined boundary. particle energy in a nearly collision-free reconnection layer. In the classical Sweet–Parker model1, which is based on the Figure 1a shows a schematic of the MRX apparatus, wherein two collision-dominated resistive magneto-hydrodynamics (MHD), oppositely directed field lines merge and reconnect. Experiments the energy dissipation rate during reconnection is small are carried out in a setup in which two toroidal plasmas with B 2 (1/2) ( (B /2m0)VA/LS ) due to the slow reconnection rate; VA is annular cross-section are formed around two flux cores as shown the Alfve´n velocity and S (441) is the Lundquist number2–4. in Fig. 1a. As we induce magnetic reconnection by driving Observations in nearly collision-free space and laboratory oppositely directed field lines towards the X-point (B ¼ 0 at the plasmas show, however, that this prediction is not realized3,4. centre of the layer) using pulsed flux core currents, ions and In the collisionless magnetic reconnection layer, electrons and electrons also flow into the reconnection layer. The ions become ions move quite differently from each other due to two-fluid demagnetized at a distance of the ion skin depth (di ¼ c/opi, 3,4,6,7 dynamics ; furthermore, differential motion between the where opi is the ion plasma frequency) from the X-point where magnetized electrons and the unmagnetized ions generates strong they enter the so-called ion diffusion region, and they change Hall currents in the reconnection layer. In the two-fluid their trajectories and are diverted into the reconnection exhaust formulation, the Ohm’s law of MHD should be replaced by a as seen Fig. 1b. The electrons, on the other hand, remain generalized Ohm’s law to describe the force balance of an electron magnetized through the ion diffusion region and continue to flow flow, namely, towards the X-point. They become demagnetized only when they reach the much narrower electron diffusion region j ÂB ÀrÁPe me dVe (B10d B1 cm in MRX) as seen in Fig. 1b. Electron currents E ¼ Zj þ e À ð1Þ e ene e dt flow dominantly in the out-of-plane direction (Y) near the centre (X-point) as shown in Fig.1c. For standard conditions, the 13 À 3 Here the conventional notations are used with E being the electron density and temperature are, neB(2–6)  10 cm , electric field and B reconnecting magnetic field, Ve the electron Te ¼ 5–15 eV, for B ¼ 0.1–0.3 kG,S4500; the electrons are well- flow velocity, j the current density, je is the electron current magnetized (gyro-radius, reB1mmooplasma size, L) while the 3 density and Pe the spatially dependent electron pressure tensor . ions are not. The mean free path for electron–ion Coulomb A large out-of-plane electric field caused by the Hall currents at collisions, lmfp, is in the range of 6–20 cm that is larger than the the reconnection layer (jHall  B) causes an increase in the layer thickness, and as a result, the reconnection dynamics are reconnection rate3,4,6,7 by inducing rapid movement of the nearly collision-free and dominated by two fluid and kinetic reconnecting field lines. This explains why the reconnection rate effects3,4. In this plasma, the energy exchange between electrons in collisionless plasmas is much faster than the classical Sweet– and ions is small since the characteristic energy transfer time is Parker rate. longer than the electron confinement time. The ion skin depth is In spite of recent progress, a major question remains 6–8 cm and the electron skin depth is typically 1 mm. We use unresolved: how is energy transferred from the magnetic field (R, Y and Z) coordinates where BZ is the reconnecting field to plasma particles? A simple two-dimensional (2D) numerical component and Y is the out-of-plane direction. Helium plasmas simulation would expect that field line breaking and energy with a fill pressure of 4.5 mTorr are used for this study to facilitate dissipation is localized in the small electron diffusion region ion temperature measurements. No external guide field is applied whose width is on the order of the electron skin depth (de ¼ c/ope, for this study. The plasma beta in the inflow region is about 0.1. where c is the speed of light and ope is the electron plasma Our measurements are carried out in a steady state reconnection frequency). However, significant acceleration and heating of both phase which last 20–30 ms, significantly longer than the Alfve´n ions and electrons have been observed and analyzed in a wide time (B1 ms). region of the actual reconnection layer8–15 of laboratory and We document comprehensively the dynamics of plasma space plasmas. Although quantitative studies of energy flow have particles and determine the mechanisms for energy conversion been recently reported based on multiple satellite data12,15, to our in the reconnection layer using extensive in situ diagnostics. The knowledge, a comprehensive analysis of energy inventory over main diagnostic is a 2D magnetic probe array that measures the a well-defined reconnection layer has not been made. A evolution of all three components of the magnetic field at 4200 quantitative analysis of the energy conversion rate together with locations in the reconnection plane. The array consists of seven the identification of heating mechanisms and location would probes with a separation of 3 cm along Z. Each probe has provide key insights into the energy conversion processes. 35 miniature pickup coils with a maximum radial (R) resolution 2 NATURE COMMUNICATIONS | 5:4774 | DOI: 10.1038/ncomms5774 | www.nature.com/naturecommunications & 2014 Macmillan Publishers Limited. All rights reserved. NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5774 ARTICLE Magnetic probe array Equilibrium field coil Magnetic field lines 37.5 cm Flux core R Y Z R Ion diffusion region Electron diffusion region Ion flow Electron flow Electron Plasma current outflow Y Z Plasma inflow Inflowing magnetic fieldlines Separatrix Out-of-plane magnetic field Figure 1 | MRX apparatus and two-fluid reconnection. (a) MRX apparatus and the reconnection layer. Each flux core (darkened sections) contains both toroidal field (TF) and poloidal field (PF) coils. The distance between the surfaces of the two flux cores is 42 cm.
Recommended publications
  • DESIGN of a WATER TOWER ENERGY STORAGE SYSTEM a Thesis Presented to the Faculty of Graduate School University of Missouri
    DESIGN OF A WATER TOWER ENERGY STORAGE SYSTEM A Thesis Presented to The Faculty of Graduate School University of Missouri - Columbia In Partial Fulfillment of the Requirements for the Degree Master of Science by SAGAR KISHOR GIRI Dr. Noah Manring, Thesis Supervisor MAY 2013 The undersigned, appointed by the Dean of the Graduate School, have examined he thesis entitled DESIGN OF A WATER TOWER ENERGY STORAGE SYSTEM presented by SAGAR KISHOR GIRI a candidate for the degree of MASTER OF SCIENCE and hereby certify that in their opinion it is worthy of acceptance. Dr. Noah Manring Dr. Roger Fales Dr. Robert O`Connell ACKNOWLEDGEMENT I would like to express my appreciation to my thesis advisor, Dr. Noah Manring, for his constant guidance, advice and motivation to overcome any and all obstacles faced while conducting this research and support throughout my degree program without which I could not have completed my master’s degree. Furthermore, I extend my appreciation to Dr. Roger Fales and Dr. Robert O`Connell for serving on my thesis committee. I also would like to express my gratitude to all the students, professors and staff of Mechanical and Aerospace Engineering department for all the support and helping me to complete my master’s degree successfully and creating an exceptional environment in which to work and study. Finally, last, but of course not the least, I would like to thank my parents, my sister and my friends for their continuous support and encouragement to complete my program, research and thesis. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................ ii ABSTRACT .................................................................................................................... v LIST OF FIGURES .......................................................................................................
    [Show full text]
  • Formula Sheet for LSU Physics 2113, Third Exam, Fall ’14
    Formula Sheet for LSU Physics 2113, Third Exam, Fall '14 • Constants, definitions: m g = 9:8 R = 6:37 × 106 m M = 5:98 × 1024 kg s2 Earth Earth m3 G = 6:67 × 10−11 R = 1:74 × 106 m Earth-Sun distance = 1.50×1011 m kg · s2 Moon 30 22 8 MSun = 1:99 × 10 kg MMoon = 7:36 × 10 kg Earth-Moon distance = 3.82×10 m 2 2 −12 C 1 9 Nm −19 o = 8:85 × 10 2 k = = 8.99 ×10 2 e = 1:60 × 10 C Nm 4πo C 8 −19 c = 3:00 × 10 m/s mp = 1:67 × 10−27 kg 1 eV = e(1V) = 1.60×10 J −31 Q Q Q dipole moment: ~p = qd~ me = 9:11 × 10 kg charge densities: λ = ; σ = ; ρ = L A V 2 2 4 3 Area of a circle: A = πr Area of a sphere: A = 4πr Volume of a sphere: V = 3 πr Area of a cylinder: A = 2πr` Volume of a cylinder: V = πr2` • Units: Joule = J = N·m • Kinematics (constant acceleration): 1 1 2 2 2 v = vo + at x − xo = 2 (vo + v)t x − xo = vot + 2 at v = vo + 2a(x − xo) • Circular motion: mv2 2πr Fc = mac = , T = , v = !r r v • General (work, def. of potential energy, kinetic energy): 1 2 ~ K = 2 mv Fnet = m~a Emech = K + U W = −∆U (by field) Wext = ∆U = −W (if objects are initially and finally at rest) • Gravity: m1m2 GM Newton's law: jF~j = G Gravitational acceleration (planet of mass M): ag = r2 r2 M dVg GM Gravitational Field: ~g = −G r^ = − Gravitational potential: Vg = − r2 dr r 2 ! 4π m1m2 Law of periods: T 2 = r3 Potential Energy: U = −G GM r12 m1m2 m1m3 m2m3 Potential Energy of a System (more than 2 masses): U = − G + G + G + ::: r r r I 12 13 23 Gauss' law for gravity: ~g · dS~ = −4πGMins S • Electrostatics: j q1 jj q2 j Coulomb's law: jF~j = k Force on a charge in
    [Show full text]
  • On the Magnetic Dipole Energy Expression of an Arbitrary Current
    On the magnetic dipole energy expression of an arbitrary current distribution Keeyung Lee Department of Physics, Inha University, Incheon, 402-751, Korea (Dated: October 16, 2012) We show that the magnetic dipole energy term appearing in the expansion of the magnetic potential energy of a localized current distribution has the form U = +m · B which is wrong by a sign from the well known −m · B expression. Implication of this result in relation to the electric dipole energy −p·E, and the force and torque on the magnetic dipole based on this energy expression is also discussed. PACS numbers: 13.40 Em, 21.10. Ky I. Introduction netic potential energy and show that the expansion of Potential energy of a charge distribution in an external the magnetic energy of an arbitrary current distribution electric field or the potential energy of a current distribu- system results in the expression +m·B for the dipole en- tion in an external magnetic field is an important concept ergy term. Implication of this result in connection with in the electromagnetic theory. It is well known that in the force and torque on the dipole is also discussed. the energy expansion of a localized charge or of a local- ized current distribution, the dipole energy term becomes II. Magnetic Energy Expansion important. Before discussing the magnetic energy case, let us For an electrically neutral system, since the monopole consider first the expansion of electric potential energy term vanishes, electric dipole energy which has the form U = dV ρ(r)φ(r) of a static charge distribution with U = −p · E becomes the most important term in most chargeR density ρ(r) under the influence of an external cases.
    [Show full text]
  • Magnetic Energy Dissipation and Emission from Magnetars
    Magnetic energy dissipation and emission from magnetars Andrei Beloborodov Columbia University Magnetars • strong and evolving B • large variations in emission and spindown • internal + external heating • energy budget E ~ t L ~ 1047 −1048 erg Building up magnetic stresses Hall drift Goldreich Reisenegger (1992) ambipolar diffusion Observed quasi-thermal surface emission Kaminker et al. (2009) heating in the outer crust is required with E! ~ 1036 −1037 erg/s Crustal motions and internal heating • No cracks • No slippage except along magnetic flux surfaces • Collapse of ideal crystal? (Chugunov, Horowitz 2010) • Plastic flow (motion of dislocations) heating q! = σ s! heat is conducted toward the core and surface (Kaminker et al. 2009; Jose Pons) • QPOs (externally triggered) External (magnetospheric) dissipation Sun Recorded in extreme ultraviolet from NASA’s Transition Region and Coronal Explorer satellite. Sun: convective motions twist the magnetic field anchored to the surface Dissipated/radiated power: L = I Φ vacuum: I = 0 force-free: Φ = 0 Voltage regulated by e+- discharge Φ ~ 109−10V surface radiation: !ω ~ 3kT ~ 1 keV B 2 Landau energy: !ωB = mec BQ 3 4 resonant scattering: γω ≈ ωB when γ ~ 10 −10 (σ res ≈ πreλ) 2 + − scattered photon: E ~ γωB ~ γ ω → e + e Magnetosphere Twisted c j = ∇ × B ≠ 0, j || B force free 4π (cf. solar corona) Filled with plasma Dynamic -- Changing magnetic moment (spindown) -- Changing pulse profiles -- Bursts Flares δt ~ 0.1-0.3 s Starquake? Excitation of Alfven waves on field lines with length > cδt Reconnection in the magnetosphere? (Thomspon, Duncan 1996) Twisted magnetospheres and flares Parfrey et al. 2013 Twist energy W = W0 for untwisted dipole Loss of magnetic equilibrium and reconnection Parfrey et al.
    [Show full text]
  • Electromagnetic Harvesting to Power Energy Management Sensors in the Built Environment
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Architectural Engineering -- Dissertations and Architectural Engineering and Construction, Student Research Durham School of Spring 5-2012 ELECTROMAGNETIC HARVESTING TO POWER ENERGY MANAGEMENT SENSORS IN THE BUILT ENVIRONMENT Evans Sordiashie University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/archengdiss Part of the Architectural Engineering Commons Sordiashie, Evans, "ELECTROMAGNETIC HARVESTING TO POWER ENERGY MANAGEMENT SENSORS IN THE BUILT ENVIRONMENT" (2012). Architectural Engineering -- Dissertations and Student Research. 18. https://digitalcommons.unl.edu/archengdiss/18 This Article is brought to you for free and open access by the Architectural Engineering and Construction, Durham School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Architectural Engineering -- Dissertations and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ELECTROMAGNETIC HARVESTING TO POWER ENERGY MANAGEMENT SENSORS IN THE BUILT ENVIRONMENT by Evans Sordiashie A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Architectural Engineering Under the Supervision of Professor Mahmoud Alahmad Lincoln, Nebraska May, 2012 ELECTROMAGNETIC HARVESTING TO POWER ENERGY MANAGEMENT SENSORS IN THE BUILT ENVIRONMENT Evans Sordiashie, M.S. University of Nebraska, 2012 Adviser: Mahmoud Alahmad Recently, a growing body of scholarly work in the field of energy conservation is focusing on the implementation of energy management sensors in the power distribution system. Since most of these sensors are either battery operated or hardwired to the existing power distribution system, their use comes with major drawbacks.
    [Show full text]
  • IEA Wind Task 24 Integration of Wind and Hydropower Systems Volume 1: Issues, Impacts, and Economics of Wind and Hydropower Integration
    IEA Wind Task 24 Final Report, Vol. 1 1 IEA Wind Task 24 Integration of Wind and Hydropower Systems Volume 1: Issues, Impacts, and Economics of Wind and Hydropower Integration Authors: Tom Acker, Northern Arizona University on behalf of the National Renewable Energy Laboratory U.S. Department of Energy Wind and Hydropower Program Prepared for the International Energy Agency Implementing Agreement for Co-operation in the Research, Development, and Deployment of Wind Energy Systems National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy, Office of Energy 1617 Cole Boulevard Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Golden, Colorado 80401 303-275-3000 • www.nrel.gov Technical Report NREL/TP-5000-50181 December 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at www.osti.gov/bridge Available for a processing fee to U.S.
    [Show full text]
  • Benefits from Energy Storage Technologies
    SERl/TP-252-2107 UC Category: 62e DE84000097 Benefits from Energy Storage Technologies Robert J. Copeland, Chairman Ad Hoc Subcommittee on Position Paper of the Energy Storage and Transport Technologies Committee of the Advanced Energy Systems Division of ASME November 1983 To be presented at the Energy Sources Technology Conference and Exhibition New Orleans, LA 12-16 February 1984 Prepared under Task No. 1379.11 WPA No. 431 Solar Energy Research Institute A Division of Midwest Research Institute 1617 Cole Boulevard Golden, Colorado 80401 Prepared for the U.S. Department of Energy Contract No. DE-AC02-B3CH10093 Printed in the United States of America Available from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price: Microfiche A01 Printed Copy A02 NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. SERI/TP-252-2107 BENEFITS FROM ENERGY STORAGE TECHNOLOGIFS Robert J. Copeland L. D. Kannberg R. S. Steele L. G. O'Connell S. Strauch D. Eisenhaure L. J. Lawson L. 0. Hoppie A. P. Sapowith T. M. Barlow D. E. Davis ABSTRACT for that mismatch. The results can provide cost advantages to the user and reduce premium fuel use.
    [Show full text]
  • 15.5 Magnetic Energy Levels
    5. Classical Magnetic Energy Levels in a Strong Applied Field In the absence of a coupling magnetic field (zero field situation), the magnetic energy levels due to spin angular momentum are degenerate, i.e., they all have the same (zero) magnetic energy. Let us now consider what happens to the degenerate magnetic energy levels at zero field when a strong field magentic field is applied. We shall examine the results for a classical magnet and then apply these results to determine how the quantum magnet associated with the electron spin changes its energy when it couples with a magnetic field. The vector model not only provides an effective tool to deal with the qualitative and quantitative aspects of the magnetic energy levels, but will also provides us with an excellent tool for dealing with the qualitative and quantitative aspects of transitions between magnetic energy levels. According to classical physics, when a bar magneti is placed in a magnetic field, H0, the torque acting on the magnetic moment of the bar magnet is proportional to the product of the magnitude of the magnetic moment, µ, of the bar magentic, the magnitude of the magnetic moment of the magnetic field, HZ, and the angle θ between the vectors describing the moments. Three important orientations of bar magnetic are shown schematically in Figure 11. N N N θ HZ S SS HZ θ o θ = 180 o θ = 0 o = 90 µ E = 0 E = µH E = - Hz z Figure 11. Energies of a classical bar magnet in a magnet field, Hz. The precise equation describing the energy relationship of the bar magnetic at various orientations is given by equation 10, where µ and Hz are the magnitudes of the magnetic moments of the bar magnet and the applied field in the Z direction.
    [Show full text]
  • Course Notes: Inductance and Magnetic Energy
    Module 22 and 23: Section 11.1 through Section 11.4 Module 24: Section 11.4 through Section 11.131 Table of Contents Inductance and Magnetic Energy .............................................................................. 11-3 11.1 Mutual Inductance ........................................................................................... 11-3 Example 11.1 Mutual Inductance of Two Concentric Coplanar Loops ................ 11-5 11.2 Self-Inductance ................................................................................................ 11-5 Example 11.2 Self-Inductance of a Solenoid ......................................................... 11-6 Example 11.3 Self-Inductance of a Toroid ............................................................ 11-7 Example 11.4 Mutual Inductance of a Coil Wrapped Around a Solenoid ............ 11-8 11.3 Energy Stored in Magnetic Fields.................................................................. 11-10 Example 11.5 Energy Stored in a Solenoid ......................................................... 11-11 11.3.1 Creating and Destroying Magnetic Energy Animation ......................... 11-12 11.3.2 Magnets and Conducting Rings Animation ........................................... 11-13 11.4 RL Circuits ..................................................................................................... 11-15 11.4.1 Self-Inductance and the Modified Kirchhoff's Loop Rule ..................... 11-15 11.4.2 Rising Current.......................................................................................
    [Show full text]
  • Energy Efficiency in Electric Devices, Machines and Drives • Gorazd Štumberger and Boštjan Polajžer Energy Efficiency in Electric Devices, Machines and Drives
    Energy Efficiency Electricin Devices, Machines and Drives • Gorazd Štumberger and Boštjan Polajžer Energy Efficiency in Electric Devices, Machines and Drives Edited by Gorazd Štumberger and Boštjan Polajžer Printed Edition of the Special Issue Published in Energies www.mdpi.com/journal/energies Energy Efficiency in Electric Devices, Machines and Drives Energy Efficiency in Electric Devices, Machines and Drives Special Issue Editors Gorazd Stumbergerˇ Boˇstjan Polajzerˇ MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Special Issue Editors Gorazd Stumbergerˇ Bostjanˇ Polajzerˇ University of Maribor University of Maribor Slovenia Slovenia Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Energies (ISSN 1996-1073) (available at: https://www.mdpi.com/journal/energies/special issues/ energy efficiency electric). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03936-356-8 (Pbk) ISBN 978-3-03936-357-5 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND.
    [Show full text]
  • Eere Strategic Program Review
    United States Department of Energy Energy Efficiency and Renewable Energy STRATEGIC PROGRAM REVIEW March 2002 MEMORANDUM FOR THE SECRETARY FROM: DAVID K. GARMAN ASSISTANT SECRETARY ENERGY EFFICIENCY AND RENEWABLE ENERGY (EERE) COPIES TO: DEPUTY SECRETARY BLAKE UNDER SECRETARY CARD SUBJECT: EERE STRATEGIC PROGRAM REVIEW I am pleased to present the complete report of the Strategic Program Review (SPR). The SPR is the result of recommendations of the National Energy Policy Development Group as stated in the National Energy Policy. The SPR concluded that EERE research, in the aggregate, generates significant public benefits and often exhibits scientific excellence. This finding is validated by external reviews by the National Academy of Sciences/National Research Council, and reinforced by the fact that EERE research is a top recipient of coveted “R&D 100” awards. However, the SPR also concluded that there were significant areas needing improvement: • Twenty projects should be terminated because they provide insufficient public benefits or have been successfully advanced to the point that no further public support is necessary. Among the projects identified were Natural Gas Vehicle Engines, Concentrating Solar Power Troughs and Residential Refrigerator Research. • Six initiatives and processes need significant redirection, including the Partnership for a New Generation of Vehicles (PGNV) initiative. • A variety of programs and projects have been placed on the “watch list,” meaning that they will require close monitoring to advance effectively. Congressional earmarks, microturbine research, the biomass program, deployment programs in the Office of Building Technologies, and analytical underpinnings of the Federal Energy Management Program are examples of “Watch List” programs/projects. • The application of “best program practices” is uneven across EERE sectors.
    [Show full text]
  • Electricity Storage and Renewables: Costs and Markets to 2030
    ELECTRICITY STORAGE AND RENEWABLES: COSTS AND MARKETS TO 2030 October 2017 www.irena.org ELECTRICITY STORAGE AND RENEWABLES: COSTS AND MARKETS TO 2030 © IRENA 2017 Unless otherwise stated, material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknowledgement is given of IRENA as the source and copyright holder. Material in this publication that is attributed to third parties may be subject to separate terms of use and restrictions, and appropriate permissions from these third parties may need to be secured before any use of such material. ISBN 978-92-9260-038-9 (PDF) Citation: IRENA (2017), Electricity Storage and Renewables: Costs and Markets to 2030, International Renewable Energy Agency, Abu Dhabi. About IRENA The International Renewable Energy Agency (IRENA) is an intergovernmental organisation that supports countries in their transition to a sustainable energy future, and it serves as the principal platform for international co-operation, a centre of excellence, and a repository of policy, technology, resource and financial knowledge on renewable energy. IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon economic growth and prosperity. www.irena.org Acknowledgements IRENA is grateful for the the reviews and comments of numerous experts, including Mark Higgins (Strategen Consulting), Akari Nagoshi (NEDO), Jens Noack (Fraunhofer Institute for Chemical Technology ICT), Kai-Philipp Kairies (Institute for Power Electronics and Electrical Drives, RWTH Aachen University), Samuel Portebos (Clean Horizon), Keith Pullen (City, University of London), Oliver Schmidt (Imperial College London, Grantham Institute - Climate Change and the Environment), Sayaka Shishido (METI) and Maria Skyllas-Kazacos (University of New South Wales).
    [Show full text]