Magnetic Cannon: the Physics of the Gauss Rifle Arsène Chemin, Pauline Besserve, Aude Caussarieu, Nicolas Taberlet, Nicolas Plihon

Total Page:16

File Type:pdf, Size:1020Kb

Magnetic Cannon: the Physics of the Gauss Rifle Arsène Chemin, Pauline Besserve, Aude Caussarieu, Nicolas Taberlet, Nicolas Plihon Magnetic Cannon: the physics of the Gauss rifle Arsène Chemin, Pauline Besserve, Aude Caussarieu, Nicolas Taberlet, Nicolas Plihon To cite this version: Arsène Chemin, Pauline Besserve, Aude Caussarieu, Nicolas Taberlet, Nicolas Plihon. Magnetic Cannon: the physics of the Gauss rifle. American Journal of Physics, American Association of Physics Teachers, 2017, 85 (7), pp.495-502. 10.1119/1.4979653. hal-02408779 HAL Id: hal-02408779 https://hal.archives-ouvertes.fr/hal-02408779 Submitted on 13 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Magnetic Cannon: the physics of the Gauss rifle Ars`eneChemin,1 Pauline Besserve,1 Aude Caussarieu,1 Nicolas Taberlet,1 and Nicolas Plihon1, a) Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, D´epartement de Physique, F-69342 Lyon, France (Dated: 13 December 2019) The magnetic cannon is a simple device that converts magnetic energy into kinetic energy: when a steel ball with low initial velocity impacts a chain made of a magnet followed by a few other steel balls, the last ball of the chain is ejected at a much larger velocity. The analysis of this spectacular device involves understanding of advanced magnetostatics, energy conversion and collision of solids. In this article, the phenomena at each step of the process are modeled to predict the final kinetic energy of the ejected ball as a function of a few parameters which can all be experimentally measured. I. INTRODUCTION Steel ball Magnet Steel balls 0 ms I A. What is a magnetic cannon? 128.7 ms The magnetic cannon, sometimes referred to as the II Gauss rifle is a simple device that accelerates a steel ball 164.7 ms through conversion of magnetic energy into kinetic en- ergy1{4. The energy conversion at work is reminiscent of III other electromagnetism-based accelerating device, such Impact Soliton 190.5 ms 5 as rail-guns . Figure1 shows a time sequence (from top IV to bottom) of a typical setup where a line of four balls 193 ms (the first one being a permanent magnet) is resting on a rail. When an additional ball approaches from the left V with a low initial velocity, it experiences an attractive 218.8 ms magnetic force from the magnet, collides with the mag- net, and the final ball on the right is ejected at high VI velocity. Note that, to highlight the various sequences in Figure1, frame-times are not equi-spaced. The video from which these frames have been extracted is provided as a supplementary material. To understand the physics FIG. 1. Time sequence (from top to bottom) showing accel- of the Gauss rifle, the process may be divided into three eration in the magnetic cannon. A line of three steel balls phases: (i) acceleration of the ferromagnetic steel ball initially stuck to the right of a strong permanent magnet, in the magnetic field created by the magnet (frames I loosely fixed on a rail, is impacted by a steel ball coming from to III in Figure1), (ii) momentum propagation into the the left hand side and accelerated in the magnetic field of the chain of steel balls which is similar to the propagation in magnet. Momentum is transferred into the chain and the last the Newton's cradle (frame IV), (iii) ejection of the final ball on the right is ejected at high velocity. Images from a ball escaping the residual magnetic attraction (frames V 2048x360 pixel film acquired at 400 frames per second. and VI). While Figure1 highlights a specific example, we will focus on the more general case described in Fig- ure2, where the initial chain is formed of n steel balls The acceleration phase is governed by the magnetic in front of the magnet and m balls behind (each ball of field created by the magnet6,7 and the magnetization of mass M having a radius R). The magnet is a strong Nd- the impacting steel ball. The determination of the mag- FeB permanent magnet which is maintained on the rail, netization of the incoming ferromagnetic steel ball differs strongly enough to prevent the chain from moving in the from classical problems in which material (dia- or para- leftward direction in the acceleration phase, but loosely magnetic balls8) or geometry (large sample of ferromag- enough to allow momentum propagation in the chain (a netic materials9{11) are different from ours. The gain of patch of putty can be observed in Figure1). Note that magnetic energy during the acceleration phase is called the dipolar axis of the magnet is spontaneously aligned U to indicate the dependence on the number of balls with the axis of the steel ball chain to minimize potential n screening the magnetic field of the magnet. Part of this energy. energy is converted into kinetic energy, which will add up to the initial kinetic energy of the incoming ball Kinit, resulting in an impacting kinetic energy Kimpact. The en- ergy transfer in the chain is reminiscent of the Newton's a)Electronic mail: [email protected] cradle12,13, governed by Hertzian contact forces involv- 2 Incoming n balls Magnet m balls ball addition to the challenge that the tournament represents, it provides students with an exciting and eye-opening ex- x=0 x perience in which they learn how to design experiments K init impact with the aim of solving physics problems, and to con- U structively criticize scientific solutions. n The authors would highly recommend participation in K impact soliton propagation the IPT as a rare learning opportunity for undergraduate students. K Ejected eject ball -U C. What students can learn from this problem m-1 K final At introductory physics level, this experiment could be FIG. 2. Schematic of the sequences described in Figure1 used to foster student's motivation while working on an and associated kinetic K and (potential) magnetic U ener- open problem involving energy conservation. In a more gies. Red arrows represent conversion between magnetic en- classical laboratory work, students could reinvest their ergy and kinetic energy. knowledge on magnetism to find out whether the incom- ing steel ball is to be considered as a permanent or an induced magnet through magnetic force and magnetic ing dissipation14 in an inhomogeneous chain containing field measurements. At graduate level, the question of a magnet. Part of the impacting energy is transmitted the dependence of the final velocity on some of the pa- through the chain, resulting in a kinetic energy Keject. rameters of the system might lead to a few days exper- Finally, in the expulsion phase, the final kinetic energy imental project work in which knowledge on mechanics, of the ejected ball Kfinal is given by the energy transmit- magnetism and non linear physics can be reused. ted through the chain decreased by the energy required to escape the residual magnetic attraction on the right- hand side of the chain, Um−1. The goal of the present II. FROM MAGNETIC ENERGY TO KINETIC ENERGY article is to relate Kfinal to Kinit and the parameters of the system. Note that the energy conversion process at In this section we investigate the conversion of mag- lead in this problem is not in contradiction with the fact netic energy Un into kinetic energy in the acceleration that magnetic field do not work on charged particles (the phase, as well as the symmetric problem of the decrease Lorentz force being perpendicular to the charged par- of kinetic energy by Um−1 in the ejection phase. Direct ticles velocity). The analysis of a situation similar to measurement of the spatial dependence of the magnetic the one investigated here is discussed in details in Grif- force exerted by the magnet on the incoming (ejected) fiths’s textbook15; interested readers could also refer to ball and of the magnetic field are in agreement with a the discussion about magnetic energy provided in Jack- permanent dipole/induced dipole modeling. son's textbook16 (p. 224 and following) All effects related to the conversion of magnetic energy into kinetic energy are studied in sectionII. The transmission of kinetic en- A. Force exerted by the chain on a steel ball: a ergy through the chain is then detailed in section III. permanent/induced dipole interaction Finally, parameters influencing the global energy conver- sion of the system and the understanding of a succession Let us first focus on the direct measurement of the of Gauss rifles are discussed in sectionIV. magnetic force exerted on the steel ball. Its spatial evo- lution is measured using a weighing scale mounted as a Newton-meter, as sketched in Figure3. A steel ball is at- B. International Physicists Tournament tached to a heavy plastic block resting on the scale below the magnetic cannon chain. The steel ball attached to the The work presented here was done in preparation scale is subject to its weight in the downward direction for the International Physicists Tournament (http:// and to a magnetic force in the upward direction. The evo- iptnet.info/), a world-wide competition for undergrad- lution of the force exerted by the magnet as a function of uate students. Each national team is composed of six the distance d between the center of the ball attached to students who work throughout the academic year on a the scale and the center of the magnet, derived from the list of seventeen open questions and present their find- apparent mass, is displayed in Figure3.
Recommended publications
  • DESIGN of a WATER TOWER ENERGY STORAGE SYSTEM a Thesis Presented to the Faculty of Graduate School University of Missouri
    DESIGN OF A WATER TOWER ENERGY STORAGE SYSTEM A Thesis Presented to The Faculty of Graduate School University of Missouri - Columbia In Partial Fulfillment of the Requirements for the Degree Master of Science by SAGAR KISHOR GIRI Dr. Noah Manring, Thesis Supervisor MAY 2013 The undersigned, appointed by the Dean of the Graduate School, have examined he thesis entitled DESIGN OF A WATER TOWER ENERGY STORAGE SYSTEM presented by SAGAR KISHOR GIRI a candidate for the degree of MASTER OF SCIENCE and hereby certify that in their opinion it is worthy of acceptance. Dr. Noah Manring Dr. Roger Fales Dr. Robert O`Connell ACKNOWLEDGEMENT I would like to express my appreciation to my thesis advisor, Dr. Noah Manring, for his constant guidance, advice and motivation to overcome any and all obstacles faced while conducting this research and support throughout my degree program without which I could not have completed my master’s degree. Furthermore, I extend my appreciation to Dr. Roger Fales and Dr. Robert O`Connell for serving on my thesis committee. I also would like to express my gratitude to all the students, professors and staff of Mechanical and Aerospace Engineering department for all the support and helping me to complete my master’s degree successfully and creating an exceptional environment in which to work and study. Finally, last, but of course not the least, I would like to thank my parents, my sister and my friends for their continuous support and encouragement to complete my program, research and thesis. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................ ii ABSTRACT .................................................................................................................... v LIST OF FIGURES .......................................................................................................
    [Show full text]
  • Permanent Magnet DC Motors Catalog
    Catalog DC05EN Permanent Magnet DC Motors Drives DirectPower Series DA-Series DirectPower Plus Series SC-Series PRO Series www.electrocraft.com www.electrocraft.com For over 60 years, ElectroCraft has been helping engineers translate innovative ideas into reality – one reliable motor at a time. As a global specialist in custom motor and motion technology, we provide the engineering capabilities and worldwide resources you need to succeed. This guide has been developed as a quick reference tool for ElectroCraft products. It is not intended to replace technical documentation or proper use of standards and codes in installation of product. Because of the variety of uses for the products described in this publication, those responsible for the application and use of this product must satisfy themselves that all necessary steps have been taken to ensure that each application and use meets all performance and safety requirements, including all applicable laws, regulations, codes and standards. Reproduction of the contents of this copyrighted publication, in whole or in part without written permission of ElectroCraft is prohibited. Designed by stilbruch · www.stilbruch.me ElectroCraft DirectPower™, DirectPower™ Plus, DA-Series, SC-Series & PRO Series Drives 2 Table of Contents Typical Applications . 3 Which PMDC Motor . 5 PMDC Drive Product Matrix . .6 DirectPower Series . 7 DP20 . 7 DP25 . 9 DP DP30 . 11 DirectPower Plus Series . 13 DPP240 . 13 DPP640 . 15 DPP DPP680 . 17 DPP700 . 19 DPP720 . 21 DA-Series. 23 DA43 . 23 DA DA47 . 25 SC-Series . .27 SCA-L . .27 SCA-S . .29 SC SCA-SS . 31 PRO Series . 33 PRO-A04V36 . 35 PRO-A08V48 . 37 PRO PRO-A10V80 .
    [Show full text]
  • Formula Sheet for LSU Physics 2113, Third Exam, Fall ’14
    Formula Sheet for LSU Physics 2113, Third Exam, Fall '14 • Constants, definitions: m g = 9:8 R = 6:37 × 106 m M = 5:98 × 1024 kg s2 Earth Earth m3 G = 6:67 × 10−11 R = 1:74 × 106 m Earth-Sun distance = 1.50×1011 m kg · s2 Moon 30 22 8 MSun = 1:99 × 10 kg MMoon = 7:36 × 10 kg Earth-Moon distance = 3.82×10 m 2 2 −12 C 1 9 Nm −19 o = 8:85 × 10 2 k = = 8.99 ×10 2 e = 1:60 × 10 C Nm 4πo C 8 −19 c = 3:00 × 10 m/s mp = 1:67 × 10−27 kg 1 eV = e(1V) = 1.60×10 J −31 Q Q Q dipole moment: ~p = qd~ me = 9:11 × 10 kg charge densities: λ = ; σ = ; ρ = L A V 2 2 4 3 Area of a circle: A = πr Area of a sphere: A = 4πr Volume of a sphere: V = 3 πr Area of a cylinder: A = 2πr` Volume of a cylinder: V = πr2` • Units: Joule = J = N·m • Kinematics (constant acceleration): 1 1 2 2 2 v = vo + at x − xo = 2 (vo + v)t x − xo = vot + 2 at v = vo + 2a(x − xo) • Circular motion: mv2 2πr Fc = mac = , T = , v = !r r v • General (work, def. of potential energy, kinetic energy): 1 2 ~ K = 2 mv Fnet = m~a Emech = K + U W = −∆U (by field) Wext = ∆U = −W (if objects are initially and finally at rest) • Gravity: m1m2 GM Newton's law: jF~j = G Gravitational acceleration (planet of mass M): ag = r2 r2 M dVg GM Gravitational Field: ~g = −G r^ = − Gravitational potential: Vg = − r2 dr r 2 ! 4π m1m2 Law of periods: T 2 = r3 Potential Energy: U = −G GM r12 m1m2 m1m3 m2m3 Potential Energy of a System (more than 2 masses): U = − G + G + G + ::: r r r I 12 13 23 Gauss' law for gravity: ~g · dS~ = −4πGMins S • Electrostatics: j q1 jj q2 j Coulomb's law: jF~j = k Force on a charge in
    [Show full text]
  • Equivalence of Current–Carrying Coils and Magnets; Magnetic Dipoles; - Law of Attraction and Repulsion, Definition of the Ampere
    GEOPHYSICS (08/430/0012) THE EARTH'S MAGNETIC FIELD OUTLINE Magnetism Magnetic forces: - equivalence of current–carrying coils and magnets; magnetic dipoles; - law of attraction and repulsion, definition of the ampere. Magnetic fields: - magnetic fields from electrical currents and magnets; magnetic induction B and lines of magnetic induction. The geomagnetic field The magnetic elements: (N, E, V) vector components; declination (azimuth) and inclination (dip). The external field: diurnal variations, ionospheric currents, magnetic storms, sunspot activity. The internal field: the dipole and non–dipole fields, secular variations, the geocentric axial dipole hypothesis, geomagnetic reversals, seabed magnetic anomalies, The dynamo model Reasons against an origin in the crust or mantle and reasons suggesting an origin in the fluid outer core. Magnetohydrodynamic dynamo models: motion and eddy currents in the fluid core, mechanical analogues. Background reading: Fowler §3.1 & 7.9.2, Lowrie §5.2 & 5.4 GEOPHYSICS (08/430/0012) MAGNETIC FORCES Magnetic forces are forces associated with the motion of electric charges, either as electric currents in conductors or, in the case of magnetic materials, as the orbital and spin motions of electrons in atoms. Although the concept of a magnetic pole is sometimes useful, it is diácult to relate precisely to observation; for example, all attempts to find a magnetic monopole have failed, and the model of permanent magnets as magnetic dipoles with north and south poles is not particularly accurate. Consequently moving charges are normally regarded as fundamental in magnetism. Basic observations 1. Permanent magnets A magnet attracts iron and steel, the attraction being most marked close to its ends.
    [Show full text]
  • Permanent Magnet Design Guidelines
    NOTE(2019): THIS ORGANIZATION (MMPA) IS OBSOLETE! MAGNET GUIDELINES Basic physics of magnet materials II. Design relationships, figures merit and optimizing techniques Ill. Measuring IV. Magnetizing Stabilizing and handling VI. Specifications, standards and communications VII. Bibliography INTRODUCTION This guide is a supplement to our MMPA Standard No. 0100. It relates the information in the Standard to permanent magnet circuit problems. The guide is a bridge between unit property data and a permanent magnet component having a specific size and geometry in order to establish a magnetic field in a given magnetic circuit environment. The MMPA 0100 defines magnetic, thermal, physical and mechanical properties. The properties given are descriptive in nature and not intended as a basis of acceptance or rejection. Magnetic measure- ments are difficult to make and less accurate than corresponding electrical mea- surements. A considerable amount of detailed information must be exchanged between producer and user if magnetic quantities are to be compared at two locations. MMPA member companies feel that this publication will be helpful in allowing both user and producer to arrive at a realistic and meaningful specifica- tion framework. Acknowledgment The Magnetic Materials Producers Association acknowledges the out- standing contribution of Parker to this and designers and manufacturers of products usingpermanent magnet materials. Parker the Technical Consultant to MMPA compiled and wrote this document. We also wish to thank the Standards and Engineering Com- mittee of MMPA which reviewed and edited this document. December 1987 3M July 1988 5M August 1996 December 1998 1 M CONTENTS The guide is divided into the following sections: Glossary of terms and conversion A very important starting point since the whole basis of communication in the magnetic material industry involves measurement of defined unit properties.
    [Show full text]
  • An Inexpensive Hands-On Introduction to Permanent Magnet Direct Current Motors
    AC 2011-1082: AN INEXPENSIVE HANDS-ON INTRODUCTION TO PER- MANENT MAGNET DIRECT CURRENT MOTORS Garrett M. Clayton, Villanova University Dr. Garrett M. Clayton received his BSME from Seattle University and his MSME and PhD in Mechanical Engineering from the University of Washington (Seattle). He is an Assistant Professor in Mechanical Engineering at Villanova University. His research interests focus on mechatronics, specifically modeling and control of scanning probe microscopes and unmanned vehicles. Rebecca A Stein, University of Pennsylvania Rebecca Stein is the Associate Director of Research and Educational Outreach in the School of Engi- neering and Applied Science at the University of Pennsylvania. She received her B.S. in Mechanical Engineering and Masters in Technology Management from Villanova University. Her background and work experience is in K-12 engineering education initiatives. Rebecca has spent the past 5 years involved in STEM high school programs at Villanova University and The School District of Philadelphia. Ad- ditionally, she has helped coordinate numerous robotics competitions such as BEST Robotics, FIRST LEGO League and MATE. Page 22.177.1 Page c American Society for Engineering Education, 2011 An Inexpensive Hands-on Introduction to Permanent Magnet Direct Current Motors Abstract Motors are an important curricular component in freshman and sophomore introduction to mechanical engineering (ME) courses as well as in curricula developed for high school science and robotics clubs. In order to facilitate a hands-on introduction to motors, an inexpensive permanent magnet direct current (PMDC) motor experiment has been developed that gives students an opportunity to build a PMDC motor from common office supplies along with a few inexpensive laboratory components.
    [Show full text]
  • On the Magnetic Dipole Energy Expression of an Arbitrary Current
    On the magnetic dipole energy expression of an arbitrary current distribution Keeyung Lee Department of Physics, Inha University, Incheon, 402-751, Korea (Dated: October 16, 2012) We show that the magnetic dipole energy term appearing in the expansion of the magnetic potential energy of a localized current distribution has the form U = +m · B which is wrong by a sign from the well known −m · B expression. Implication of this result in relation to the electric dipole energy −p·E, and the force and torque on the magnetic dipole based on this energy expression is also discussed. PACS numbers: 13.40 Em, 21.10. Ky I. Introduction netic potential energy and show that the expansion of Potential energy of a charge distribution in an external the magnetic energy of an arbitrary current distribution electric field or the potential energy of a current distribu- system results in the expression +m·B for the dipole en- tion in an external magnetic field is an important concept ergy term. Implication of this result in connection with in the electromagnetic theory. It is well known that in the force and torque on the dipole is also discussed. the energy expansion of a localized charge or of a local- ized current distribution, the dipole energy term becomes II. Magnetic Energy Expansion important. Before discussing the magnetic energy case, let us For an electrically neutral system, since the monopole consider first the expansion of electric potential energy term vanishes, electric dipole energy which has the form U = dV ρ(r)φ(r) of a static charge distribution with U = −p · E becomes the most important term in most chargeR density ρ(r) under the influence of an external cases.
    [Show full text]
  • Magnetic Energy Dissipation and Emission from Magnetars
    Magnetic energy dissipation and emission from magnetars Andrei Beloborodov Columbia University Magnetars • strong and evolving B • large variations in emission and spindown • internal + external heating • energy budget E ~ t L ~ 1047 −1048 erg Building up magnetic stresses Hall drift Goldreich Reisenegger (1992) ambipolar diffusion Observed quasi-thermal surface emission Kaminker et al. (2009) heating in the outer crust is required with E! ~ 1036 −1037 erg/s Crustal motions and internal heating • No cracks • No slippage except along magnetic flux surfaces • Collapse of ideal crystal? (Chugunov, Horowitz 2010) • Plastic flow (motion of dislocations) heating q! = σ s! heat is conducted toward the core and surface (Kaminker et al. 2009; Jose Pons) • QPOs (externally triggered) External (magnetospheric) dissipation Sun Recorded in extreme ultraviolet from NASA’s Transition Region and Coronal Explorer satellite. Sun: convective motions twist the magnetic field anchored to the surface Dissipated/radiated power: L = I Φ vacuum: I = 0 force-free: Φ = 0 Voltage regulated by e+- discharge Φ ~ 109−10V surface radiation: !ω ~ 3kT ~ 1 keV B 2 Landau energy: !ωB = mec BQ 3 4 resonant scattering: γω ≈ ωB when γ ~ 10 −10 (σ res ≈ πreλ) 2 + − scattered photon: E ~ γωB ~ γ ω → e + e Magnetosphere Twisted c j = ∇ × B ≠ 0, j || B force free 4π (cf. solar corona) Filled with plasma Dynamic -- Changing magnetic moment (spindown) -- Changing pulse profiles -- Bursts Flares δt ~ 0.1-0.3 s Starquake? Excitation of Alfven waves on field lines with length > cδt Reconnection in the magnetosphere? (Thomspon, Duncan 1996) Twisted magnetospheres and flares Parfrey et al. 2013 Twist energy W = W0 for untwisted dipole Loss of magnetic equilibrium and reconnection Parfrey et al.
    [Show full text]
  • Electromagnetic Harvesting to Power Energy Management Sensors in the Built Environment
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Architectural Engineering -- Dissertations and Architectural Engineering and Construction, Student Research Durham School of Spring 5-2012 ELECTROMAGNETIC HARVESTING TO POWER ENERGY MANAGEMENT SENSORS IN THE BUILT ENVIRONMENT Evans Sordiashie University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/archengdiss Part of the Architectural Engineering Commons Sordiashie, Evans, "ELECTROMAGNETIC HARVESTING TO POWER ENERGY MANAGEMENT SENSORS IN THE BUILT ENVIRONMENT" (2012). Architectural Engineering -- Dissertations and Student Research. 18. https://digitalcommons.unl.edu/archengdiss/18 This Article is brought to you for free and open access by the Architectural Engineering and Construction, Durham School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Architectural Engineering -- Dissertations and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ELECTROMAGNETIC HARVESTING TO POWER ENERGY MANAGEMENT SENSORS IN THE BUILT ENVIRONMENT by Evans Sordiashie A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Architectural Engineering Under the Supervision of Professor Mahmoud Alahmad Lincoln, Nebraska May, 2012 ELECTROMAGNETIC HARVESTING TO POWER ENERGY MANAGEMENT SENSORS IN THE BUILT ENVIRONMENT Evans Sordiashie, M.S. University of Nebraska, 2012 Adviser: Mahmoud Alahmad Recently, a growing body of scholarly work in the field of energy conservation is focusing on the implementation of energy management sensors in the power distribution system. Since most of these sensors are either battery operated or hardwired to the existing power distribution system, their use comes with major drawbacks.
    [Show full text]
  • IEA Wind Task 24 Integration of Wind and Hydropower Systems Volume 1: Issues, Impacts, and Economics of Wind and Hydropower Integration
    IEA Wind Task 24 Final Report, Vol. 1 1 IEA Wind Task 24 Integration of Wind and Hydropower Systems Volume 1: Issues, Impacts, and Economics of Wind and Hydropower Integration Authors: Tom Acker, Northern Arizona University on behalf of the National Renewable Energy Laboratory U.S. Department of Energy Wind and Hydropower Program Prepared for the International Energy Agency Implementing Agreement for Co-operation in the Research, Development, and Deployment of Wind Energy Systems National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy, Office of Energy 1617 Cole Boulevard Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Golden, Colorado 80401 303-275-3000 • www.nrel.gov Technical Report NREL/TP-5000-50181 December 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at www.osti.gov/bridge Available for a processing fee to U.S.
    [Show full text]
  • Exploring the Earth's Magnetic Field
    ([SORULQJWKH(DUWK·V0DJQHWLF)LHOG $Q,0$*(6DWHOOLWH*XLGHWRWKH0DJQHWRVSKHUH An IMAGE Satellite Guide to Exploring the Earth’s Magnetic Field 1 $FNQRZOHGJPHQWV Dr. James Burch IMAGE Principal Investigator Dr. William Taylor IMAGE Education and Public Outreach Raytheon ITS and NASA Goddard SFC Dr. Sten Odenwald IMAGE Education and Public Outreach Raytheon ITS and NASA Goddard SFC Ms. Annie DiMarco This resource was developed by Greenwood Elementary School the NASA Imager for Brookville, Maryland Magnetopause-to-Auroral Global Exploration (IMAGE) Ms. Susan Higley Cherry Hill Middle School Information about the IMAGE Elkton, Maryland Mission is available at: http://image.gsfc.nasa.gov Mr. Bill Pine http://pluto.space.swri.edu/IMAGE Chaffey High School Resources for teachers and Ontario, California students are available at: Mr. Tom Smith http://image.gsfc.nasa.gov/poetry Briggs-Chaney Middle School Silver Spring, Maryland Cover Artwork: Image of the Earth’s ring current observed by the IMAGE, HENA instrument. Some representative magnetic field lines are shown in white. An IMAGE Satellite Guide to Exploring the Earth’s Magnetic Field 2 &RQWHQWV Chapter 1: What is a Magnet? , *UDGH 3OD\LQJ:LWK0DJQHWLVP ,, *UDGH ([SORULQJ0DJQHWLF)LHOGV ,,, *UDGH ([SORULQJWKH(DUWKDVD0DJQHW ,9 *UDGH (OHFWULFLW\DQG0DJQHWLVP Chapter 2: Investigating Earth’s Magnetism 9 *UDGH *UDGH7KH:DQGHULQJ0DJQHWLF3ROH 9, *UDGH 3ORWWLQJ3RLQWVLQ3RODU&RRUGLQDWHV 9,, *UDGH 0HDVXULQJ'LVWDQFHVRQWKH3RODU0DS 9,,, *UDGH :DQGHULQJ3ROHVLQWKH/DVW<HDUV ,; *UDGH 7KH0DJQHWRVSKHUHDQG8V
    [Show full text]
  • Vocabulary of Magnetism
    TECHNotes The Vocabulary of Magnetism Symbols for key magnetic parameters continue to maximum energy point and the value of B•H at represent a challenge: they are changing and vary this point is the maximum energy product. (You by author, country and company. Here are a few may have noticed that typing the parentheses equivalent symbols for selected parameters. for (BH)MAX conveniently avoids autocorrecting Subscripts in symbols are often ignored so as to the two sequential capital letters). Units of simplify writing and typing. The subscripted letters maximum energy product are kilojoules per are sometimes capital letters to be more legible. In cubic meter, kJ/m3 (SI) and megagauss•oersted, ASTM documents, symbols are italicized. According MGOe (cgs). to NIST’s guide for the use of SI, symbols are not italicized. IEC uses italics for the main part of the • µr = µrec = µ(rec) = recoil permeability is symbol, but not for the subscripts. I have not used measured on the normal curve. It has also been italics in the following definitions. For additional called relative recoil permeability. When information the reader is directed to ASTM A340[11] referring to the corresponding slope on the and the NIST Guide to the use of SI[12]. Be sure to intrinsic curve it is called the intrinsic recoil read the latest edition of ASTM A340 as it is permeability. In the cgs-Gaussian system where undergoing continual updating to be made 1 gauss equals 1 oersted, the intrinsic recoil consistent with industry, NIST and IEC usage. equals the normal recoil minus 1.
    [Show full text]