Benefits from Energy Storage Technologies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Review of Energy Storage Technologies' Application
sustainability Review A Review of Energy Storage Technologies’ Application Potentials in Renewable Energy Sources Grid Integration Henok Ayele Behabtu 1,2,* , Maarten Messagie 1, Thierry Coosemans 1, Maitane Berecibar 1, Kinde Anlay Fante 2 , Abraham Alem Kebede 1,2 and Joeri Van Mierlo 1 1 Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussels, Pleinlaan 2, 1050 Brussels, Belgium; [email protected] (M.M.); [email protected] (T.C.); [email protected] (M.B.); [email protected] (A.A.K.); [email protected] (J.V.M.) 2 Faculty of Electrical and Computer Engineering, Jimma Institute of Technology, Jimma University, Jimma P.O. Box 378, Ethiopia; [email protected] * Correspondence: [email protected]; Tel.: +32-485659951 or +251-926434658 Received: 12 November 2020; Accepted: 11 December 2020; Published: 15 December 2020 Abstract: Renewable energy sources (RESs) such as wind and solar are frequently hit by fluctuations due to, for example, insufficient wind or sunshine. Energy storage technologies (ESTs) mitigate the problem by storing excess energy generated and then making it accessible on demand. While there are various EST studies, the literature remains isolated and dated. The comparison of the characteristics of ESTs and their potential applications is also short. This paper fills this gap. Using selected criteria, it identifies key ESTs and provides an updated review of the literature on ESTs and their application potential to the renewable energy sector. The critical review shows a high potential application for Li-ion batteries and most fit to mitigate the fluctuation of RESs in utility grid integration sector. -
DESIGN of a WATER TOWER ENERGY STORAGE SYSTEM a Thesis Presented to the Faculty of Graduate School University of Missouri
DESIGN OF A WATER TOWER ENERGY STORAGE SYSTEM A Thesis Presented to The Faculty of Graduate School University of Missouri - Columbia In Partial Fulfillment of the Requirements for the Degree Master of Science by SAGAR KISHOR GIRI Dr. Noah Manring, Thesis Supervisor MAY 2013 The undersigned, appointed by the Dean of the Graduate School, have examined he thesis entitled DESIGN OF A WATER TOWER ENERGY STORAGE SYSTEM presented by SAGAR KISHOR GIRI a candidate for the degree of MASTER OF SCIENCE and hereby certify that in their opinion it is worthy of acceptance. Dr. Noah Manring Dr. Roger Fales Dr. Robert O`Connell ACKNOWLEDGEMENT I would like to express my appreciation to my thesis advisor, Dr. Noah Manring, for his constant guidance, advice and motivation to overcome any and all obstacles faced while conducting this research and support throughout my degree program without which I could not have completed my master’s degree. Furthermore, I extend my appreciation to Dr. Roger Fales and Dr. Robert O`Connell for serving on my thesis committee. I also would like to express my gratitude to all the students, professors and staff of Mechanical and Aerospace Engineering department for all the support and helping me to complete my master’s degree successfully and creating an exceptional environment in which to work and study. Finally, last, but of course not the least, I would like to thank my parents, my sister and my friends for their continuous support and encouragement to complete my program, research and thesis. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................ ii ABSTRACT .................................................................................................................... v LIST OF FIGURES ....................................................................................................... -
Innovation Insights Brief | 2020
FIVE STEPS TO ENERGY STORAGE Innovation Insights Brief | 2020 In collaboration with the California Independent System Operator (CAISO) ABOUT THE WORLD ENERGY COUNCIL ABOUT THIS INSIGHTS BRIEF The World Energy Council is the principal impartial This Innovation Insights brief on energy storage is part network of energy leaders and practitioners promoting of a series of publications by the World Energy Council an affordable, stable and environmentally sensitive focused on Innovation. In a fast-paced era of disruptive energy system for the greatest benefit of all. changes, this brief aims at facilitating strategic sharing of knowledge between the Council’s members and the Formed in 1923, the Council is the premiere global other energy stakeholders and policy shapers. energy body, representing the entire energy spectrum, with over 3,000 member organisations in over 90 countries, drawn from governments, private and state corporations, academia, NGOs and energy stakeholders. We inform global, regional and national energy strategies by hosting high-level events including the World Energy Congress and publishing authoritative studies, and work through our extensive member network to facilitate the world’s energy policy dialogue. Further details at www.worldenergy.org and @WECouncil Published by the World Energy Council 2020 Copyright © 2020 World Energy Council. All rights reserved. All or part of this publication may be used or reproduced as long as the following citation is included on each copy or transmission: ‘Used by permission of the World -
An Overview of Energy Storage Opportunities for Massachusetts Commercial Buildings
AN OVERVIEW OF ENERGY APRIL 2018 STORAGE OPPORTUNITIES OVERVIEW FOR MASSACHUSETTS COMMERCIAL BUILDINGS ABETC1-50150 OV-Storage.indd 1 4/6/18 10:48 AM 2 A BETTER CITY AN OVERVIEW OF ENERGY STORAGE OPPORTUNITIES FOR MASSACHUSETTS COMMERCIAL BUILDINGS ACKNOWLEDGMENTS This joint A Better City/Boston Green Ribbon Commission publication would not be possible without generous funding support from the Barr Foundation. REPORT TEAM A Better City CONTENTS • Yve Torrie Meister Consultants Group, A Cadmus Company 3 Introduction • Will Hanley 5 Energy Storage History • Kathryn Wright 5 Energy Storage Types and Terminology REVIEWERS 6 Services fnd Benefits 9 Technology Options • Ward Bower, Ward Bower Innovations LLC 11 Environmental Considerations • John Cleveland, Boston Green Ribbon Commission 11 Resilience Considerations • Meredith Hatfield, The Barr Foundation 11 Incentives and Support for Project • Lars Lisell, Resilient Energy Systems, Implementation National Renewable Energy Laboratory • Seth Mullendore, Clean Energy Group 14 Market Barriers and Policy Opportunities • Galen Nelson, Massachusetts Clean Energy Center 17 Endnotes • Kavita Ravi, Massachusetts Clean Energy Center 19 Photo Credits To view a hyperlinked version of this report online, go to http://www.abettercity.org/assets/images/ An_Overview_of_Energy_Storage_Opportunities.pdf A Better City is a diverse group of business leaders united around a common goal—to enhance Boston and the region’s economic health, competitiveness, vibrancy, sustainability and quality of life. By ampli- fying the voice of the business community through collaboration and consensus across a broad range of stakeholders, A Better City develops solutions and influences policy in three critical areas central to the Boston region’s economic competitiveness and growth: transportation and infrastructure, land Design: David Gerratt/NonprofitDesign.com use and development, and energy and environment. -
Formula Sheet for LSU Physics 2113, Third Exam, Fall ’14
Formula Sheet for LSU Physics 2113, Third Exam, Fall '14 • Constants, definitions: m g = 9:8 R = 6:37 × 106 m M = 5:98 × 1024 kg s2 Earth Earth m3 G = 6:67 × 10−11 R = 1:74 × 106 m Earth-Sun distance = 1.50×1011 m kg · s2 Moon 30 22 8 MSun = 1:99 × 10 kg MMoon = 7:36 × 10 kg Earth-Moon distance = 3.82×10 m 2 2 −12 C 1 9 Nm −19 o = 8:85 × 10 2 k = = 8.99 ×10 2 e = 1:60 × 10 C Nm 4πo C 8 −19 c = 3:00 × 10 m/s mp = 1:67 × 10−27 kg 1 eV = e(1V) = 1.60×10 J −31 Q Q Q dipole moment: ~p = qd~ me = 9:11 × 10 kg charge densities: λ = ; σ = ; ρ = L A V 2 2 4 3 Area of a circle: A = πr Area of a sphere: A = 4πr Volume of a sphere: V = 3 πr Area of a cylinder: A = 2πr` Volume of a cylinder: V = πr2` • Units: Joule = J = N·m • Kinematics (constant acceleration): 1 1 2 2 2 v = vo + at x − xo = 2 (vo + v)t x − xo = vot + 2 at v = vo + 2a(x − xo) • Circular motion: mv2 2πr Fc = mac = , T = , v = !r r v • General (work, def. of potential energy, kinetic energy): 1 2 ~ K = 2 mv Fnet = m~a Emech = K + U W = −∆U (by field) Wext = ∆U = −W (if objects are initially and finally at rest) • Gravity: m1m2 GM Newton's law: jF~j = G Gravitational acceleration (planet of mass M): ag = r2 r2 M dVg GM Gravitational Field: ~g = −G r^ = − Gravitational potential: Vg = − r2 dr r 2 ! 4π m1m2 Law of periods: T 2 = r3 Potential Energy: U = −G GM r12 m1m2 m1m3 m2m3 Potential Energy of a System (more than 2 masses): U = − G + G + G + ::: r r r I 12 13 23 Gauss' law for gravity: ~g · dS~ = −4πGMins S • Electrostatics: j q1 jj q2 j Coulomb's law: jF~j = k Force on a charge in -
Commercialization of Energy Storage Technologies
Commercialization of Energy Storage Technologies PECC International Project Energy Transition and New Economic Models 2013-2014 Energy transition: Making the most out of available resources Victoria, BC, Canada November 08 2013 CONFIDENTIAL Presentation Agenda • Introduction to SDTC’s clean technology commercialization model • Demand Drivers for Energy Storage (ES) and Renewable Energy (RE) Integration • Technology Configurations and SDTC ES Portfolio Company Summary • ES Market Size and Potential • Regulatory Policy and Market Rules Support for ES CONFIDENTIAL 2 External Sources Acknowledgement • Sandia National Labs • DOE/ EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA July 2013 • Energy Storage for the Electicity Grid: Benefits and Market Potential Assessments Guide, A Study for the DOE Energy Storage System Program Feb 2010 • EPRI (Electric Power Research Institute) • Electricity Energy Storage Technology Options 23-Dec-2010 • Lux • Grid Storage Under the Microscope: Using Local Knowledge to Forecast Global Demand March 2012 • Roland Berger Strategy Consultants CONFIDENTIAL 3 SDTC Mission and Mandate • SDTC is a policy delivery instrument of the Government of Canada to deliver environmental and economic benefits to Canadians. • As a delivery agent, we foster the development and demonstration of technological solutions that address: • Clean Air • Clean Water • Climate Change • Clean Land • Forge innovative partnerships and build a sustainable development technology infrastructure. • Ensure timely diffusion - increase -
Battery Energy Storage Overview
Business & Technology Report Updated April 2019 Battery Energy Storage Overview This Battery Energy Storage Overview is a joint publication by the National Rural Electric Cooperative Association, National Rural Utilities Cooperative Finance Corporation, CoBank, and NRTC. For more information please contact: • Jan Ahlen, Director, NRECA Business and Technology Strategies: [email protected]. • Tom Binet, Senior Economist, Power, Energy & Water, Knowledge Exchange Division, CoBank: [email protected] • Peter Muhoro, Vice President, Strategic Industry Research and Analysis, NRUCFC: [email protected] • Brad Seibert, Vice President, Next Generation Energy, NRTC: [email protected] Disclaimers The information in this report is intended to be a helpful and educational resource that is general in nature. The information is not an exhaustive and complete examination of issues relating to deployment of battery energy storage technologies. NRECA and the authors are not attempting to render specific legal or other professional advice in this report. We, therefore, encourage cooperatives to consult with qualified experts when undergoing any analysis of deployment of any of these technologies within your system. This report is provided “as is” and NRECA and the authors make no warranties or representations, either express or implied, about the information contained in the manual, including warranties of accuracy, completeness or usefulness. In addition, the authors and NRECA make no warranty or representation that the use of these contents does not infringe on privately held rights. Readers are reminded to perform due diligence in applying these findings to their specific needs, as it is not possible for NRECA to have sufficient understanding of any specific situation to ensure applicability of the findings in all cases. -
Deployment of Energy Storage to Improve Environmental Outcomes of Hydropower White Paper May 2021
PNNL-SA-157672 Deployment of Energy Storage to Improve Environmental Outcomes of Hydropower White Paper May 2021 B Bellgraph, T Douville, A Somani, K DeSomber, R O’Neil, R Harnish, J Lessick, D Bhatnagar, J Alam Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Choose an item. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: [email protected] Available to the public from the National Technical Information Service 5301 Shawnee Rd., Alexandria, VA 22312 ph: (800) 553-NTIS (6847) email: [email protected] <https://www.ntis.gov/about> Online ordering: http://www.ntis.gov Choose an item. -
1 Wind Turbine Energy Storage • Most Electricity in the U.S. Is Produced at the Same Time It Is Consumed. • Peak-Load Plants
Wind Turbine Energy Storage 1 1 Wind Turbine Energy Storage • Most electricity in the U.S. is produced at the same time it is consumed. • Peak-load plants, usually fueled by natural gas, run when de- mand surges, often on hot days when consumers run air condi- tioners. • Wind generated power in contrast, cannot be guaranteed to be available when demand is highest. • The hourly electric power demand is relatively periodic on a 24 hour cycle with the peak demand occurring in the daylight hours. • Wind power generation is not periodic or correlated to the demand cycle. • The solution is energy storage. Figure 1: Example of a two week period of system loads, system loads minus wind generation, and wind generation. University of Notre Dame AME 40530 Wind Turbine Energy Storage 2 • There are many methods of energy storage. { electro-chemical energy storage such as batteries { chemical storage such as electro-hydrogen generation { gravitational potential energy storage such as pumped-storage hydroelectric { electrical potential storage such as electric capacitors { latent heat storage such as phase-change materials { kinetic energy storage such as flywheels • Short-term energy storage vs very long-term storage • maximum discharge rate • possible number of charge-discharge cycles University of Notre Dame AME 40530 Wind Turbine Energy Storage 3 Figure 2: Wind turbine energy storage optimization flow chart. University of Notre Dame AME 40530 Wind Turbine Energy Storage 4 1.1 Electro-chemical Energy Storage • Rechargeable batteries are the most common form of electric storage devices • Three main types: lead-acid batteries, nickel-based batteries, and lithium-based • Each consist of cells made up of positive and negative electrodes that are immersed in an electrolyte Figure 3: Illustration of an electro-chemical storage battery cell. -
On the Magnetic Dipole Energy Expression of an Arbitrary Current
On the magnetic dipole energy expression of an arbitrary current distribution Keeyung Lee Department of Physics, Inha University, Incheon, 402-751, Korea (Dated: October 16, 2012) We show that the magnetic dipole energy term appearing in the expansion of the magnetic potential energy of a localized current distribution has the form U = +m · B which is wrong by a sign from the well known −m · B expression. Implication of this result in relation to the electric dipole energy −p·E, and the force and torque on the magnetic dipole based on this energy expression is also discussed. PACS numbers: 13.40 Em, 21.10. Ky I. Introduction netic potential energy and show that the expansion of Potential energy of a charge distribution in an external the magnetic energy of an arbitrary current distribution electric field or the potential energy of a current distribu- system results in the expression +m·B for the dipole en- tion in an external magnetic field is an important concept ergy term. Implication of this result in connection with in the electromagnetic theory. It is well known that in the force and torque on the dipole is also discussed. the energy expansion of a localized charge or of a local- ized current distribution, the dipole energy term becomes II. Magnetic Energy Expansion important. Before discussing the magnetic energy case, let us For an electrically neutral system, since the monopole consider first the expansion of electric potential energy term vanishes, electric dipole energy which has the form U = dV ρ(r)φ(r) of a static charge distribution with U = −p · E becomes the most important term in most chargeR density ρ(r) under the influence of an external cases. -
Energy Storage in an IGCC Coal Power Plant
TECHNOLOGY COMMERCIALIZATION OFFICE Energy Storage in an IGCC Coal Power Plant BACKGROUND There is a strong interest in replacing conventional coal power plant with Integrated Licensing Contact Gasification Combined Cycles (IGCC), clean coal power plants based on coal gasification, for varieties of environmental and efficiency benefit. However, IGCCs respond to changes in Douglas Adams load much more slowly than conventional coal power plant, and the response rate is reduced TCO even more where CO2 sequestered by converting the gas to H2. There is an eager need to increase the ability to respond rapidly to fluctuations in demand, which is essential for The City University of New York controlling the stability of the grid. th 555 West 57 Street, Suite 1407 New York, NY 10019 INVENTION T 646-758-7906 This invention allows the gasifier of an IGCC (with or without a H2 plant) plant to operate full F 646.758.7907 time by combusting the clean gas and storing heat in a bed of high temperature resistant material. The stored heat is recovered with very high efficiency and used to generate [email protected] electricity through a steam power plant, which is capable of fast load following. This system is www.cuny.edu/research/ovcr/tco.html simple, efficient and cheap. __________________________ Ref #: 07A0066 Lead Inventor: Reuel Shinnar APPLICATIONS IP pending. • Enable rapid load-following in an IGCC power plant. Licensing available. • Supply instantaneously dispatchable electricity, when grid faces large changes in demand during short period. • Increase the capacity of an existing IGCC power plant by approximately 75%. -
Energy Storage Overview Ray Byrne, Ph.D
Photos placed in horizontal position with even amount of white space between photos and header Energy Storage Overview Ray Byrne, Ph.D. Acknowledgment: this work was supported by the DOE energy storage program under the guidance of Dr. Imre Gyuk. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-4387 Outline . Grid scale energy storage . Value streams . Storage on the grid today 2 Grid Scale Energy Storage . Primary methods for energy storage . Electrochemical . Lithium batteries . Lead acid batteries . Flow batteries . Mechanical . Compressed air . Pumped hydro SCE Tehachapi Plant, 8MW, 32 MWh . Flywheels . Thermal . Molten salt . Ice . Electrical . Ultra Capacitors 3 Why Do We Need Energy Storage? . Major reasons for installing energy storage: . Renewable integration . Transmission and Distribution upgrade deferral . Power quality, e.g., UPS application, microgrids, etc. Improved efficiency of nonrenewable sources (e.g., coal, nuclear) . Off-grid applications (not the topic of this presentation) 4 Electricity Storage Services Source: DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA Additional information: “Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide” http://www.sandia.gov/ess/publications/SAND2010-0815.pdf 5 Recent Storage Policy Breakthroughs . American Recovery and Reinvestment Act (ARRA) of 2009 Energy Storage Demonstration Projects . 16 projects . Varying levels of technology maturity . 50% federal cost share ($600M for all 21 SGDPs) . FERC order 755 and FERC order 784: “pay-for-performance” . More fairly compensates “fast responding” systems (e.g., storage) .