Stratigraphy and Structure of the Altar Basin of NW Sonora: Implications for the History of the Colorado River Delta and the Salton Trough

Total Page:16

File Type:pdf, Size:1020Kb

Stratigraphy and Structure of the Altar Basin of NW Sonora: Implications for the History of the Colorado River Delta and the Salton Trough Revista Mexicana de Ciencias Geológicas,Stratigraphy 2006, v. and 23, structurenúm, 1, 2006, of the p. Altar 1-22 basin of NW Sonora 1 Stratigraphy and structure of the Altar basin of NW Sonora: Implications for the history of the Colorado River delta and the Salton trough Martín Pacheco1, Arturo Martín-Barajas1,*, Wilfred Elders2, Juan Manuel Espinosa-Cardeña1, Javier Helenes1, and Alberto Segura3 1 División de Ciencias de la Tierra, CICESE, Km 107 Carr. Tijuana-Ensenada, Ensenada, Baja California, Mexico. 2 Department of Earth Sciences, University of California, Riverside, CA 92521, USA. 3Activo Regional de Exploración, Región Norte, PEMEX, Poza Rica, Veracruz, Mexico. [email protected] ABSTRACT The Altar basin in northwestern Sonora, Mexico, is a subsidiary basin forming a now inactive part of the Colorado River delta. Its sedimentary record illustrates how the delta prograded in the last 4–5 Ma over a late Miocene, structurally distinct, marine basin at the northern end of the Gulf of California. Our interpretation of outcrop data, and data from seven exploratory wells, six analog seismic lines of Petróleos Mexicanos (PEMEX), and magnetic and gravity surveys from various sources indicates the existence of three sedimentary sequences, A, B, and C, which can be correlated at regional scale and have a thickness >5 km at the basin depocenter. The lower sedimentary sequence A is a shale unit representing open marine conditions (outer neritic). It grades into a thick sequence of interstratifi ed mudstone, siltstone, and sandstone (sequence B), which grades in turn into poorly consolidated sand (sequence C). Extensive outcrops of a sandy, cut and fi ll succession exposed along the coast of Sonora are consistent with sequences B and C being the sub-aqueous and the sub-aereal parts of the delta, respectively. A contact at the base of the sequence A, where pre-marine continental deposits are missing, and where the marine sequence overlies crystalline basement, is interpreted as tectonic transport along a top-to-the-northwest detachment fault. The Altar basin became inactive as result of the westward shift in the locus of tectonic activity from the Altar fault to the Cerro Prieto fault, coupled with realignments in the course of the Colorado River during Pleistocene time. Key words: stratigraphy, rifting, Colorado River delta, Altar basin, Gulf of California. RESUMEN El Desierto de Altar en el noroeste de Sonora, contiene una cuenca subsidiaria ubicada en la parte inactiva del delta del Río Colorado. El registro sedimentario ilustra cómo el delta progradó sobre una cuenca marina estructuralmente independiente del Mioceno tardío, hacia la terminación norte del Golfo de California. La interpretación de datos de afl oramientos, datos de siete pozos exploratorios y seis líneas sísmicas analógicas de Petróleos Mexicanos (PEMEX), además de datos magnéticos y gravimétricos compilados de diversas fuentes, indican la existencia de tres secuencias sedimentarias, A, B y C, con más de 5 km de espesor y con una distribución de escala regional. La secuencia inferior (secuencia A) es una unidad de lutita marina de ambiente nerítico externo. Esta unidad grada a una potente secuencia de lodolita, limolita y arenisca (secuencia B), la cual a su vez grada a una secuencia de arena poco consolidada (secuencia C). Las secuencias B y C se interpretan como parte del sistema submarino y subaéreo, respectivamente, que progradó hacia la cuenca marina. Afl oramientos de una secuencia arenosa de corte y relleno, interpretada como depósitos fl uviodeltaicos y expuesta a lo largo 2 Pacheco et al. de la costa de Sonora, son consistentes con una interpretación en donde la secuencia C forma parte de la planicie fl uvial del Río Colorado. El contacto discordante de la base de la secuencia A sobre el basamento cristalino y la ausencia de depósitos premarinos se interpreta como el resultado del transporte tectónico a lo largo de una falla de despegue con transporte de la placa superior hacia el nor-noroeste. La subsidencia en la cuenca de Altar cesó debido al cambio en la localización de la actividad tectónica de la falla Altar a la falla Cerro Prieto, así como al cambio en el cauce del Río Colorado hacia el Valle de Mexicali durante el Pleistoceno. Palabras clave: estratigrafía, rifting, delta del Río Colorado, Cuenca de Altar, Golfo de California. INTRODUCTION lacustrine environments that were periodically fl ooded by discharges of the Colorado River (Dibblee, 1984; Winker The Colorado River delta largely fi lls the depression and Kidwell, 1996). known as the Salton trough, comprising the Imperial Valley, Besides sharing a complex structural control, the in Southern California, and the Mexicali Valley, in northern individual basins also share an early stage dominated by Baja California (Figure 1). The trough is traversed by ac- marine deposits, framed by basin-margin alluvial deposits, tive faults associated with the southern San Andreas fault which predated rapid deltaic progradation into the marine system and the Gulf of California extensional province, basin. However, marine conditions may have persisted on and so the Colorado delta is somewhat unique among the both fl anks of the delta because the rift margins continued world’s major deltas in being structurally confi ned and lying to widen and subside. The Altar basin, east of the active across a major plate boundary between the Pacifi c and North modern delta (Figure 1), is a good example of an abandoned American plates (Figure 1) (Elders, et al., 1972; Lonsdale, basin, whereas the Laguna Salada to the west is a good 1989). The delta also contains a record of the erosion of example of a still active basin (Dorsey and Martín-Barajas, its source in the Grand Canyon and Colorado Plateau in 1999; Martín-Barajas et al., 2001), although both are the Arizona (Winker and Kidwell, 1996, and references therein; result of changes in the locus of tectonic deformation. On Elders et al., 2001; Hunt and Elders, 2001). However, to the Sonoran side of the gulf, less is known about the timing date, no synthesis of the geological structure and history of of major subsidence and the stratigraphic record produced the whole delta had been possible because some areas are by the three major geological processes of transtensional still poorly known. Therefore, we used data from onshore tectonics, proto-gulf marine sedimentation and deltaic wells and seismic refl ection profi les from PEMEX (national progradation. petroleum company of Mexico), and from magnetic and The Altar basin covers an area between San Luis Río gravity surveys, to gain insight into the sedimentation and Colorado and Bahía Adair in northwestern Sonora (Figure structure associated with this transform fault plate margin 2). It is assumed that this area was once part of the delta com- and its relationship to the geological history of the Grand plex, although the surface of the Altar basin is now above Canyon and Colorado River (Elders et al., 2003; Espinosa- the level susceptible to fl ooding by the Colorado River and Cardeña and Elders, 2003). is an extensive eolian dune fi eld. Until now, no stratigraphic The Altar basin in northwestern Sonora shares a data had been published to interpret the nature of the basin common history with other basins within the trough, fi ll, inferred to be at ~5 km depth (Sumner, 1972). and therefore exemplifi es basin evolution in this tectonic Exploratory seismic refl ection surveys and drilling environment. Each of these basins has experienced the ef- for hydrocarbons and geothermal resources have produced fects of three main geological events: 1) an initial period a large amount of data, which for many years remained of extension and subsidence; 2) an intermediate stage of unpublished, apart from a few preliminary reports (PEMEX, marine sedimentation; and 3) a later stage of basin fi lling, 1985; Guzmán, 1981). In this paper, we integrate data from largely dominated by the growth of the Colorado River the Altar basin that include seven well logs and six analog delta, and to a lesser extent by alluvial deposits from the seismic lines (Figure 2). Additionally, we use the gravity basin margin. Where age constraints for these three geologic and magnetic anomalies to interpret the structure of the events exist, the onset and end of this sequence differs from Altar basin. We also studied the sedimentology of outcrops basin to basin, depending on its position relative to major along the western margin of the Altar basin (Figure 2) to depocenters and on the confi guration of the delta complex. gain insight of the sedimentary environments for the up- The construction of the Colorado River delta isolated the permost part of sequence. Then, we contrast our model of Altar basin and the northern gulf from basins located to the the structure and stratigraphy of Altar basin to other co-ge- north and west within the Salton trough. Also, in the north- netic basins located to the west and northwest in the Salton central part of the trough, the growth of the delta produced trough, and fi nally, we discuss the tectonic implications of Stratigraphy and structure of the Altar basin of NW Sonora 3 Salton Sea SAF WSD WSD S2-14 Colorado River 33°00’ Imperial Valley East AL Mesa Gila River IF Yuma California LSF S. Cucapah Mexicali Yuma Basin Baja California Valley Cerro San Luis R.C. Laguna Prieto Salada S. El Mayor Arizona El RosarioSierra Salton CPF Sonora Sea Sierra Juárez ALTAR 32°00’ SMD BASIN USA AF MEXICO El Golfo de Baja CaliforniaWB Sierra Santa Clara Caborca Las Tinajas DB Sonora Gulf TB of Bahía Adair IT Pacific California Ocean MGE Wagner Km Basin 0 20 40 31°00’ 117°00’ 116°00’ 115° 00’ 114° 00’ Figure 1. Digital elevation model (DEM) map, and main tectonic features in the northern Gulf of California and Salton trough regions.
Recommended publications
  • Calcium Isotopic Variation in Marine Evaporites and Carbonates: Applications To
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Calcium Isotopic Variation in Marine Evaporites and Carbonates: Applications to Late Miocene Mediterranean Brine Chemistry and Late Cenozoic Calcium Cycling in the Oceans A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Earth Sciences by Tabitha Michele Hensley Committee in Charge: J. Douglas Macdougall, Chair Chris Charles Miriam Kastner Kurt Marti Jeff Severinghaus 2006 Copyright Tabitha Michele Hensley, 2006 All rights reserved ii The dissertation of Tabitha Michele Hensley is approved, and it is acceptable in quality and form for publication on microfilm: _____________________________________________ _____________________________________________ _____________________________________________ _____________________________________________ _____________________________________________ Chair University of California, San Diego 2006 iii To my parents, Eddy and Brenda Hensley iv TABLE OF CONTENTS Signature Page …………………………………………………………………. iii Dedication ……………………………………………………………………… iv Table of Contents ………………………………………………………………. v List of Figures ………………………………………………………………….. vii List of Tables …………………………………………………………………… viii Acknowledgements …………………………………………………………….. ix Vita, Publications and Fields of Study …………………………………………. xi Abstract ………………………………………………………………………… xiii Chapter I Introduction and Ca Isotope Background ………………………….. 1 1.1 Introduction ………………………………………………………… 1 1.2 Calcium Isotope Notation and Common Standards ………………… 3 1.3 Double Spiking
    [Show full text]
  • Us Department of the Interior
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Palynological Data from the Imperial and Palm Spring Formations, Anza-Borrego Desert State Park, California by R. Parley Fleming! U.S. Geological Survey Open-File Report 93-678 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards (or with the North American Stratigraphic Code). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1 Denver, Colorado 1993 TABLE OF CONTENTS Introduction ...........................................................................................3 Acknowledgments ...................................................................................3 Regional Geology and Stratigraphy ................................................................3 Materials and Methods ...............................................................................4 Age Control ...........................................................................................4 Pliocene Palynology .................................................................................7 Reworked Cretaceous Pollen .......................................................................7 Implications of Reworked Pollen for Pliocene Climate ..........................................8 Conclusions ...........................................................................................9 References ...........................................................................................10
    [Show full text]
  • A Brief History of Till Research and Developing Nomenclature
    k 7 2 A Brief History of Till Research and Developing Nomenclature With relief one remembers that, after all, the facts gathered with such infinite care, over so many years, are in no ways affected: their permanency is untouched, their value as high as ever. It is the interpretation which has gone astray. Carruthers (1953, p. 36) A benchmark publication in the development of till nomenclature was contained in the final report by the INQUA Commission on Genesis and Lithology of Glacial Quaternary Deposits, entitled ‘Genetic Classification of Glacigenic Deposits’ (Goldthwait and Matsch, 1989; Figure 2.1). Most significant in this report was the paper by Aleksis Dreimanis (Figure 2.2), entitled ‘Tills: Their Genetic Terminology k k and Classification’, a summary of the findings of the Till Work Group, which operated over the period 1974–1986. It was a synthesis of knowledge and a rationale for a unified process-based nomenclature but at the same time afforded the presentation of alternative standpoints on till classification, and hence delivered a selection of frameworks containing complex and overlapping genetic terms. More broadly, ‘till’ at this juncture was defined as: a sediment that has been transported and is subsequently deposited by or from glacier ice, with little or no sorting by water. (Dreimanis and Lundqvist, 1984, p. 9) As a way forward, the Till Work Group, through Dreimanis (1989), arrived at a series of nomencla- ture diagrams (Figure 2.3), which aimed at an inclusive but at the same time simplified and unambigu- ous, process-based till classification scheme. More specifically, Dreimanis (1989), within the same volume, compiled a table of diagnostic characteristics for differentiating what he termed ‘lodgement till’, ‘melt-out till’ and ‘gravity flowtill’.
    [Show full text]
  • Style, Scale and Significance of Sand Bodies in the Northern and Central Belts, Southwest Southern Uplands
    Journal ofthe Geological Society, London, Vol. 144, 1987, pp. 787-805, 13 figs, 3 tables, Printed in Northern Ireland Style, scale and significance of sand bodies in the Northern and Central Belts, southwest Southern Uplands G.KELLINGl, P. DAVIES' & J. HOLROYD2 1 Geology Department, University of Keele, Staffs. ST5 5BG, UK 21 Blythe Road, Forsbrook, Blythe Bridge, Staffs., UK Abstract: Sedimentological and biostratigraphical data fromthe Rhinns of Galloway andadjacent areas in SW Scotland confirm that deep-water depositional systems consistently operated along, and were sourced from, the northwestern margin of an asymmetrical basin during the late Ordovician and earlySilurian, while pelagic facies accumulated simultaneously tothe SE, providing ascenario analogous to many modern trench systems. Most of the observedsedimentological anomalies, with regard to thisgeneral model, can be explained within the context of the varied styles of trench-filling depositional systems, briefly reviewed here, and the major stratigraphic and sedimentologic features can be best explained in terms of a geotectonically evolving fore-arcregion. Two main phases of development are recognized: (a) Llandeilo-late Ashgill: during this time interval the fore-arc trench region was tectonically juxtaposed against an active continental margin arc. Small- to medium-scale, SE-prograding sand-rich fans were formed within a relatively narrow trench, leading to axial diversion of the fans, initially to NE but later mainly to SW. Simultaneously a coarse volcanilithic sediment apron, flanking the arc, migrated gradually northeastwards, probably in response to relative fault displacement of the arc and trench; (b) Llandovery: during this time interval the fore-arc trench region was dominated by a variety of mainly fan-typedepositional systems which were exclusively sourced(at least until theuppermost Llandovery) from the northwestern margin.
    [Show full text]
  • Cat Herding on a Global Scale
    OneGeology-Europe – an INSPIRE testbed for semantic harmonisation of „geology“ data across Europe (WP 3) Kristine Asch and John Laxton Project deliverables • Interoperable on- shore geology spatial dataset • with ”progress • Mutilingual metadata for towards discovery harmonisation” • View services • Forerunner and “guinea • Geological pig” for the vocabulary and data implementation of specifications for INSPIRE Directive Europe • Use case studies Fact Vast amount of data hidden in the archives and hard disks in governmental organisations across Europe … Kristine Asch ©BGR.de And they are all different.. Edge matching at national boundaries? Î National boundary Î geological terms and classifications (age, lithology, tectonics ..) Î age of data (mapping campaign) Î choice of units to be mapped Î level of detail / scale Î topographical base (projection, spheroid, drainage system, ...) Î Portrayal (colours and symbols) Î Mapped border of the units Interoperability and harmonisation • Interoperability – when the data model/structure and properties to describe its parts (what GeoSciML does) is agreed – E.g. agreeing a data model will have the feature of “GeologicUnit” with properties of “age” and “lithology” • Semantic harmonisation – when the use of the same definitions and classifications to describe a concept/term is agreed – E.g. ‘clay’. The same concept can be labelled with several terms (“argilla” in Italian, “Ton” in German), but needs to have the same definition, in this case of “clay/Ton/argilla, …”): > 50% particles < 0,004 mm (Wentworth
    [Show full text]
  • A Systematic Nomenclature for Metamorphic Rocks
    A systematic nomenclature for metamorphic rocks: 1. HOW TO NAME A METAMORPHIC ROCK Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web version 1/4/04. Rolf Schmid1, Douglas Fettes2, Ben Harte3, Eleutheria Davis4, Jacqueline Desmons5, Hans- Joachim Meyer-Marsilius† and Jaakko Siivola6 1 Institut für Mineralogie und Petrographie, ETH-Centre, CH-8092, Zürich, Switzerland, [email protected] 2 British Geological Survey, Murchison House, West Mains Road, Edinburgh, United Kingdom, [email protected] 3 Grant Institute of Geology, Edinburgh, United Kingdom, [email protected] 4 Patission 339A, 11144 Athens, Greece 5 3, rue de Houdemont 54500, Vandoeuvre-lès-Nancy, France, [email protected] 6 Tasakalliontie 12c, 02760 Espoo, Finland ABSTRACT The usage of some common terms in metamorphic petrology has developed differently in different countries and a range of specialised rock names have been applied locally. The Subcommission on the Systematics of Metamorphic Rocks (SCMR) aims to provide systematic schemes for terminology and rock definitions that are widely acceptable and suitable for international use. This first paper explains the basic classification scheme for common metamorphic rocks proposed by the SCMR, and lays out the general principles which were used by the SCMR when defining terms for metamorphic rocks, their features, conditions of formation and processes. Subsequent papers discuss and present more detailed terminology for particular metamorphic rock groups and processes. The SCMR recognises the very wide usage of some rock names (for example, amphibolite, marble, hornfels) and the existence of many name sets related to specific types of metamorphism (for example, high P/T rocks, migmatites, impactites).
    [Show full text]
  • Southern Exposures
    Searching for the Pliocene: Southern Exposures Robert E. Reynolds, editor California State University Desert Studies Center The 2012 Desert Research Symposium April 2012 Table of contents Searching for the Pliocene: Field trip guide to the southern exposures Field trip day 1 ���������������������������������������������������������������������������������������������������������������������������������������������� 5 Robert E. Reynolds, editor Field trip day 2 �������������������������������������������������������������������������������������������������������������������������������������������� 19 George T. Jefferson, David Lynch, L. K. Murray, and R. E. Reynolds Basin thickness variations at the junction of the Eastern California Shear Zone and the San Bernardino Mountains, California: how thick could the Pliocene section be? ��������������������������������������������������������������� 31 Victoria Langenheim, Tammy L. Surko, Phillip A. Armstrong, Jonathan C. Matti The morphology and anatomy of a Miocene long-runout landslide, Old Dad Mountain, California: implications for rock avalanche mechanics �������������������������������������������������������������������������������������������������� 38 Kim M. Bishop The discovery of the California Blue Mine ��������������������������������������������������������������������������������������������������� 44 Rick Kennedy Geomorphic evolution of the Morongo Valley, California ���������������������������������������������������������������������������� 45 Frank Jordan, Jr. New records
    [Show full text]
  • The Pyramidellidae (Mollusca: Gastropoda) from the Miocene Cantaure Formation of Venezuela
    Cainozoic Research, 15(1-2), pp. 13-54, October 2015 13 The Pyramidellidae (Mollusca: Gastropoda) from the Miocene Cantaure Formation of Venezuela Bernard M. Landau1, 3 & Patrick I. LaFollette2 1 Naturalis Biodiversity Center, P.O. Box 9517, NL-2300 RA Leiden, The Netherlands; Instituto Dom Luiz da Universi- dade de Lisboa, Portugal and International Health Centres, Av. Infante de Henrique 7, Areias São João, P-8200-261 Albufeira, Portugal; [email protected] 2 Research Associate, Malacology Department, Natural History Museum of Los Angeles County, 900 Exposition Boul- evard, Los Angeles, California, U.S.A.; [email protected] 3 corresponding author Received 18 June 2015, revised version accepted 15 July 2015 The Pyramidellidae Gray, 1840 present in the upper Burdigalian-lower Langhian, Lower-Middle Miocene, Cantaure Formation assemblage of Venezuela is described and discussed. Twenty-one species are recognised: 13 are described as new: Brachystomia cantaurana nov. sp., Goniodostomia bicarinata nov. sp., Iolaea miocenica nov. sp., Chrysallida cantaurana nov. sp., Kleinella pumila nov. sp., Parthenina martae nov. sp., Ividella guppyi nov. sp., Chemnitzia macsotayi nov. sp., Turbonilla paraguanensis nov. sp., Pyrgiscus caribbaeus nov. sp., Pyrgiscus silvai nov. sp., Eulimella dianeae nov. sp. and Iselica belliata nov. sp., three are left in open nomenclature. The state of knowledge of tropical American Neogene pyramidellids is rudimentary, but the assemblage is fairly typical at generic level to that of the tropical American Neogene today, with some species suggesting closer affinities with tropical American Pacific taxa. KEY WORDS: Pyramidellidae, Miocene, Cantaure, Venezuela, new species. Introduction Pyramidellidae. Of these projects, only Bartsch’s 1955 ‘The pyramidellid mollusks of the Pliocene deposits of Despite the enormous amount of research done by the North St.
    [Show full text]
  • BCGS IC1997-03.Pdf
    For information on the contents of this document contact: Ministry of Employment and Investment Energy and Minerals Division British Columbia Geological Survey Branch 5 - 1810 Blanshard Street PO Box 9320, Stn Prov Gov't Victoria, BC, V8W 9N3 Attn: W.J. McMillan, Manager, Map ing Section Fax: 250-952-0381 [mail: [email protected] or; B. Grant, Editor, GSB Fax: 250-952-0451 E-mail : [email protected]. bc.ca Canadian Cataloguing in Publication Data I Main entry under title: Specifications and guidelines for bedrock mapping in British Columbia Includes bibliographical references: p. ISBN 0-7726-2950-1 1. Geological mapping - British Columbia. 2. Geology, Structural - British Columbia. 3. Geology - Maps - Symbols. I. British Columbia. Geological Survey Branch. Victoria British Columbia May 1997 October, 1996 TaMb Off GmQmQs Introduction . 3 Fission Track Dating Technique . 36 Part 1: Fundamental Bedrock Mapping Concepts 5 Usual Application of Geochronology . 36 Part 2: Mapping and Field Survey Procedures. 7 Materials Suitable for Dating. 36 2-1 Overview. 7 Rubidium-strontium Dating . 38 2-2 Bedrock Field Survey Databases . 10 Uranium-Lead Dating . 3 8 2-3 Quality Control, Correlation, and Map Lead Isotope Analysis . 38 Reliability . 11 Fission Track Dating . 38 Part 3: Data Representation On Bedrock Maps 13 Analytical Procedure . 39 3-1 Title Block . 13 Quaternary Dating Methods . 39 3-2 Base Map Specifications . 15 Radiocarbon Dating . 39 3-3 Reliability Diagrams . 15 Potassium-Argon Dating of Quaternary 3-4 Legend . 16 Volcanic Rocks. 40 3-5 Map Attributes . 17 Fission Track Dating . 40 3-6 Symbols. 17 Sampling . 41 3-7 Map-unit Designations .
    [Show full text]
  • Geology and Paleontology of the Late Miocene Wilson Grove Formation at Bloomfield Quarry, Sonoma County, California
    Geology and Paleontology of the Late Miocene Wilson Grove Formation at Bloomfield Quarry, Sonoma County, California 2 cm 2 cm Scientific Investigations Report 2019–5021 U.S. Department of the Interior U.S. Geological Survey COVER. Photographs of fragments of a walrus (Gomphotaria pugnax Barnes and Raschke, 1991) mandible from the basal Wilson Grove Formation exposed in Bloomfield Quarry, just north of the town of Bloomfield in Sonoma County, California (see plate 8 for more details). The walrus fauna at Bloomfield Quarry is the most diverse assemblage of walrus yet reported worldwide from a single locality. cm, centimeter. (Photographs by Robert Boessenecker, College of Charleston.) Geology and Paleontology of the Late Miocene Wilson Grove Formation at Bloomfield Quarry, Sonoma County, California By Charles L. Powell II, Robert W. Boessenecker, N. Adam Smith, Robert J. Fleck, Sandra J. Carlson, James R. Allen, Douglas J. Long, Andrei M. Sarna-Wojcicki, and Raj B. Guruswami-Naidu Scientific Investigations Report 2019–5021 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DAVID BERNHARDT, Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2019 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Nature, Provenance and Relationships of Early Miocene Palaeovalley Fills, Northern Adana Basin, Turkey: Their Significance for Sediment-Bypassing on a Carbonate Shelf
    Turkish Journal of Earth Sciences (Turkish J. Earth Sci.), Vol. 16, 2007, pp. 181–209. Copyright ©TÜB‹TAK Nature, Provenance and Relationships of Early Miocene Palaeovalley Fills, Northern Adana Basin, Turkey: Their Significance for Sediment-Bypassing on a Carbonate Shelf A. SAM‹ DERMAN1 & KEMAL GÜRBÜZ2 1 Türkiye Petrolleri A.O., Arama Grubu, Mustafa Kemal Mahallesi, 2. Cadde, No. 86, Sö¤ütözü, TR-06100 Ankara, Turkey (E-mail: [email protected]) 2 Çukurova Üniversitesi, Jeoloji Mühendisli¤i Bölümü, Balcal›, TR-01100 Adana, Turkey Abstract: The Gildirli Formation is the oldest Neogene rock unit in the Adana Basin and was formed prior to the regionally extensive Early Miocene marine transgression. These coarse clastic red-beds provide important evidence about the causes and early phases of filling in this large trough, because the Gildirli Formation sediments fill an irregular palaeotopography carved out of Palaeozoic and Mesozoic basement rocks. Detailed study of the Gildirli Formation reveals the existence of at least two alluvial fans supplied from different source areas. A northeastern fan, exposed around Gildirli Village, was fed by streams draining an area of ophiolitic mélange, Mesozoic and older limestones, and fills an irregular palaeomorphology around and northeast of Gildirli. The southwestern fan, in the Nergizlik area, is dominated by debris flow and sheet flow rudites derived from an area of entirely carbonate bedrock. The lower part of the southwestern fan is characterised by well- bedded carbonate breccias and conglomerates that occupy deep, steep-sided palaeovalleys with approximate E–W trends (parallelling the main basin-margin), whereas higher parts of this fan are muddier and show channelised fluvial and floodplain attributes.
    [Show full text]
  • Mojave Miocene Robert E
    Mojave Miocene Robert E. Reynolds, editor California State University Desert Studies Center 2015 Desert Symposium April 2015 Front cover: Rainbow Basin syncline, with rendering of saber cat by Katura Reynolds. Back cover: Cajon Pass Title page: Jedediah Smith’s party crossing the burning Mojave Desert during the 1826 trek to California by Frederic Remington Past volumes in the Desert Symposium series may be accessed at <http://nsm.fullerton.edu/dsc/desert-studies-center-additional-information> 2 2015 desert symposium Table of contents Mojave Miocene: the field trip 7 Robert E. Reynolds and David M. Miller Miocene mammal diversity of the Mojave region in the context of Great Basin mammal history 34 Catherine Badgley, Tara M. Smiley, Katherine Loughney Regional and local correlations of feldspar geochemistry of the Peach Spring Tuff, Alvord Mountain, California 44 David C. Buesch Phytoliths of the Barstow Formation through the Middle Miocene Climatic Optimum: preliminary findings 51 Katharine M. Loughney and Selena Y. Smith A fresh look at the Pickhandle Formation: Pyroclastic flows and fossiliferous lacustrine sediments 59 Jennifer Garrison and Robert E. Reynolds Biochronology of Brachycrus (Artiodactyla, Oreodontidae) and downward relocation of the Hemingfordian– Barstovian North American Land Mammal Age boundary in the respective type areas 63 E. Bruce Lander Mediochoerus (Mammalia, Artiodactyla, Oreodontidae, Ticholeptinae) from the Barstow and Hector Formations of the central Mojave Desert Province, southern California, and the Runningwater and Olcott Formations of the northern Nebraska Panhandle—Implications of changes in average adult body size through time and faunal provincialism 83 E. Bruce Lander Review of peccaries from the Barstow Formation of California 108 Donald L.
    [Show full text]