Western Earth Surface Processes

Total Page:16

File Type:pdf, Size:1020Kb

Western Earth Surface Processes i Pliocene Invertebrates From the Travertine Point Outcrop of the Imperial Formation, Imperial County, California Scientific Investigations Report 2008–5155 U.S. Department of the Interior U.S. Geological Survey This page left intentionally blank. Pliocene Invertebrates From the Travertine Point Outcrop of the Imperial Formation, Imperial County, California By Charles L. Powell II Scientific Investigations Report 2008–5155 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 This report and any updates to it are available online at: http://pubs.usgs.gov/sir/2008/5155/ For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod/ Telephone: 1-888-ASK-USGS For more information on the USGS — the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov/ Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Powell, C.L., II, 2008, Pliocene Invertebrates from the Travertine Point Outcrop of the Imperial Formation, Imperial County, California: U.S. Geological Survey Scientific Investigations Report 2008-5155, 25 p. Produced in the Western Region, Menlo Park, California Manuscript approved for publication, August 27, 2008 Text edited by James W. Hendley II Layout by David R. Jones FRONT COVER—The Bivalvia Glycymeris (Glycymeris) gigantea (Reeve) from the Travertine Point outcrop of the Imperial Formation. iii Contents Abstract ..........................................................................................................................................................1 Introduction.....................................................................................................................................................1 Geologic Setting .............................................................................................................................................1 Age and Correlation.......................................................................................................................................3 Paleoecology ..................................................................................................................................................3 Systematic Paleontology ..............................................................................................................................6 Acknowledgments .......................................................................................................................................18 References Cited..........................................................................................................................................18 Appendix—Locality Information Museum of Paleontology, University of California, Berkeley collections ..........................................25 U. S. Geological Survey, Menlo Park, California Cenozoic collections ..............................................25 Figures 1. Map of the Travertine Point study area ..................................................................................................2 2. Latitudinal distribution of selected mollusks recovered from the Travertine Point outcrop of the Imperial Formation ..........................................................................................................5 3. Selected fossils from the Travertine Point exposure of the Imperial Formation. ............................7 4. Selected fossils from the Travertine Point exposure of the Imperial Formation ...........................13 5. Selected fossils from the Travertine Point exposure of the Imperial Formation ...........................17 Tables 1. Fossils collections from the Travertine Point outcrop of the Imperial Formation ...........................4 2. Occurrence of specifically identified mollusks from the Travertine Point faunule.........................5 This page left intentionally blank. Pliocene Invertebrates From the Travertine Point Outcrop of the Imperial Formation, Imperial County, California By Charles L. Powell II Abstract at Cabazon (=Lions Canyon area of earlier reports), White- water (=Super Creek area of earlier reports), and Garnet Forty-four invertebrate taxa, including one coral, 40 Hill. Outcrops from the “southern” exposures are generally mollusks (30 bivalves and 10 gastropods), and three echinoids Pliocene (Johnson and others, 1983; Opdyke and others, are recognized from a thin marine interval of the Imperial 1977), but some recent work suggests that the “southern” Formation near Travertine Point, Imperial County, Califor- exposures are, in part, late Miocene (Winker, 1987). The nia. The Travertine Point outcrop lies about midway between “southern” exposures include outcrops at the Ocotillo Wells exposures of the Imperial Formation around Palm Springs, State Vehicle Recreation Area (=San Felipe Hills of earlier Riverside County, and exposures centered at Coyote Moun- reports), Supersitition Mountain, Fish Creek-Vallecitos tain in Imperial and San Diego Counties. Based on faunal Wash area, Coyote Mountain, Yuha Buttes, and northern comparisons, the Travertine Point outcrop corresponds to the Cucupa Mountains, east of Mexicali, Mexico (Ingle, 1974). Imperial and San Diego outcrops. One exception to this north-south division of the Imperial The Travertine Point fauna is inferred to have lived in Formation are exposure at Willis Palms, where the age of subtropical to tropical waters at littoral to inner sublittorial the fauna appears to be Pliocene (Powell, 1986). Outcrops at (<50 m) water depths. Coral and molluscan species from the Travertine Point lie about midway between the "northern" Travertine Point outcrop indicate a Pliocene age. Two extant and "southern" outcrops of the Imperial Formation, but its bivalve mollusks present have not previously been reported fauna correlates with the "southern" outcrops. as fossils Anadara reinharti and forms questionably referred Fossils from the Travertine Point area were first col- to Dosinia semiobliterata. lected in the 1930s by students from the University of Cali- fornia at Berkeley (UCMP localities A1705, A1706, A1707; see appendix for locality information). Two additional collections at or near Travertine Point are known. The first Introduction is a single specimen of the bivalve Pycnodonte? heermanni at the San Diego Museum of Natural History from a ques- The Imperial Formation consists of marine sediments tionable locality vaguely stating as “...area where Riverside/ deposited at the head and western margin of the proto- San Diego/Imperial counties meet” (SDSNH locality 1012), Gulf of California during the late Neogene (late Miocene which is herein assigned generally to the Travertine Point and Pliocene). Molluscan fossils have been reported from area. The second is small collection from “Garnet Wash the Imperial Formation for more than 150 years (Blake, 1.5 mi W of Travertine Point” at the California Academy of 1855) but are still largely unstudied. This paper describes Sciences (CAS locality 2718). This later site does not cor- an invertebrate assemblage composed mostly of mollusks respond to the Travertine Point directly, but to the area west from an Imperial Formation outcrop near Travertine Point, and northwest of Travertine Point in the Santa Rosa Moun- Imperial County, just west of the Salton Sea and very near tains, where fossils from the Imperial Formation have been the boundary between San Diego, Riverside, and Impe- recently rediscovered (King and others, 2002). rial Counties (fig. 1). The only published record of fossils from this area is that of Dibblee (1954) who, as part of his regional study of the Imperial Valley, mentions briefly fos- sils from the Imperial Formation at Travertine Point. Geologic Setting The Imperial Formation has been informally divided into “northern” and “southern” exposures that differ in The Imperial Formation at Travertine Point, referable to provenance of sediments, location in the proto-Gulf of the lower part of the Latrania Sand Member of Hanna (1926) California, age, and macrofauna (Powell, 1986, 1988). Most and Keen and Bentson (1944), consists of about 17 m of tan outcrops from the “northern” exposures are considered to yellow, fossiliferous, medium- to coarse-grained sandstone Miocene in age (Powell, 1986, 1988; McDougall and oth- with abundant calcareous cement. Grains are generally sub- ers, 1994; Rymer and others, 1994) and include outcrops rounded and the outcrop commonly contains well rounded, 2 Pliocene Invertebrates from the Travertine Point Outcrop of the Imperial Formation, Imperial County, California LOS ANGELES SAN BERNARDINO COUNTY 1 2 RIVERSIDE COUNTY RIVERSIDE BANNING 3 4 5 PALM SPRINGS INDIO ORANGE LONG BEACH COUNTY PACIFIC OCEAN SALTON SEA RIVERSIDE COUNTY 6 SAN DIEGO COUNTY ESCONDIDO 7 JULIAN BRAWLEY 9 CALIFORNIA 8 10 COUNTY IMPERIAL Map area N SAN DIEGO 11 12 50 mi MEXICO 100 km 2000 ft -100 500 m X 86 BM 100 SAN DIEGO CO. N Travertine Point Wash X BM 127 100 Wash IMPERIAL CO. IMPERIAL Garner SAN DIEGO CO. sea level 172 200 Palm 367 100 335 Travertine
Recommended publications
  • Calcium Isotopic Variation in Marine Evaporites and Carbonates: Applications To
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Calcium Isotopic Variation in Marine Evaporites and Carbonates: Applications to Late Miocene Mediterranean Brine Chemistry and Late Cenozoic Calcium Cycling in the Oceans A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Earth Sciences by Tabitha Michele Hensley Committee in Charge: J. Douglas Macdougall, Chair Chris Charles Miriam Kastner Kurt Marti Jeff Severinghaus 2006 Copyright Tabitha Michele Hensley, 2006 All rights reserved ii The dissertation of Tabitha Michele Hensley is approved, and it is acceptable in quality and form for publication on microfilm: _____________________________________________ _____________________________________________ _____________________________________________ _____________________________________________ _____________________________________________ Chair University of California, San Diego 2006 iii To my parents, Eddy and Brenda Hensley iv TABLE OF CONTENTS Signature Page …………………………………………………………………. iii Dedication ……………………………………………………………………… iv Table of Contents ………………………………………………………………. v List of Figures ………………………………………………………………….. vii List of Tables …………………………………………………………………… viii Acknowledgements …………………………………………………………….. ix Vita, Publications and Fields of Study …………………………………………. xi Abstract ………………………………………………………………………… xiii Chapter I Introduction and Ca Isotope Background ………………………….. 1 1.1 Introduction ………………………………………………………… 1 1.2 Calcium Isotope Notation and Common Standards ………………… 3 1.3 Double Spiking
    [Show full text]
  • The Recent Molluscan Marine Fauna of the Islas Galápagos
    THE FESTIVUS ISSN 0738-9388 A publication of the San Diego Shell Club Volume XXIX December 4, 1997 Supplement The Recent Molluscan Marine Fauna of the Islas Galapagos Kirstie L. Kaiser Vol. XXIX: Supplement THE FESTIVUS Page i THE RECENT MOLLUSCAN MARINE FAUNA OF THE ISLAS GALApAGOS KIRSTIE L. KAISER Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA 4 December 1997 SiL jo Cover: Adapted from a painting by John Chancellor - H.M.S. Beagle in the Galapagos. “This reproduction is gifi from a Fine Art Limited Edition published by Alexander Gallery Publications Limited, Bristol, England.” Anon, QU Lf a - ‘S” / ^ ^ 1 Vol. XXIX Supplement THE FESTIVUS Page iii TABLE OF CONTENTS INTRODUCTION 1 MATERIALS AND METHODS 1 DISCUSSION 2 RESULTS 2 Table 1: Deep-Water Species 3 Table 2: Additions to the verified species list of Finet (1994b) 4 Table 3: Species listed as endemic by Finet (1994b) which are no longer restricted to the Galapagos .... 6 Table 4: Summary of annotated checklist of Galapagan mollusks 6 ACKNOWLEDGMENTS 6 LITERATURE CITED 7 APPENDIX 1: ANNOTATED CHECKLIST OF GALAPAGAN MOLLUSKS 17 APPENDIX 2: REJECTED SPECIES 47 INDEX TO TAXA 57 Vol. XXIX: Supplement THE FESTIVUS Page 1 THE RECENT MOLLUSCAN MARINE EAUNA OE THE ISLAS GALAPAGOS KIRSTIE L. KAISER' Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA Introduction marine mollusks (Appendix 2). The first list includes The marine mollusks of the Galapagos are of additional earlier citations, recent reported citings, interest to those who study eastern Pacific mollusks, taxonomic changes and confirmations of 31 species particularly because the Archipelago is far enough from previously listed as doubtful.
    [Show full text]
  • Wild About Learning
    WILD ABOUT LEARNING An Interdisciplinary Unit Fostering Discovery Learning Written on a 4th grade reading level, Wild Discoveries: Wacky New Animals, is perfect for every kid who loves wacky animals! With engaging full-color photos throughout, the book draws readers right into the animal action! Wild Discoveries features newly discovered species from around the world--such as the Shocking Pink Dragon and the Green Bomber. These wacky species are organized by region with fun facts about each one's amazing abilities and traits. The book concludes with a special section featuring new species discovered by kids! Heather L. Montgomery writes about science and nature for kids. Her subject matter ranges from snake tongues to snail poop. Heather is an award-winning teacher who uses yuck appeal to engage young minds. During a typical school visit, petrified parts and tree guts inspire reluctant writers and encourage scientific thinking. Heather has a B.S. in Biology and a M.S. in Environmental Education. When she is not writing, you can find her painting her face with mud at the McDowell Environmental Center where she is the Education Coordinator. Heather resides on the Tennessee/Alabama border. Learn more about her ten books at www.HeatherLMontgomery.com. Dear Teachers, Photo by Sonya Sones As I wrote Wild Discoveries: Wacky New Animals, I was astounded by how much I learned. As expected, I learned amazing facts about animals and the process of scientifically describing new species, but my knowledge also grew in subjects such as geography, math and language arts. I have developed this unit to share that learning growth with children.
    [Show full text]
  • Us Department of the Interior
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Palynological Data from the Imperial and Palm Spring Formations, Anza-Borrego Desert State Park, California by R. Parley Fleming! U.S. Geological Survey Open-File Report 93-678 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards (or with the North American Stratigraphic Code). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1 Denver, Colorado 1993 TABLE OF CONTENTS Introduction ...........................................................................................3 Acknowledgments ...................................................................................3 Regional Geology and Stratigraphy ................................................................3 Materials and Methods ...............................................................................4 Age Control ...........................................................................................4 Pliocene Palynology .................................................................................7 Reworked Cretaceous Pollen .......................................................................7 Implications of Reworked Pollen for Pliocene Climate ..........................................8 Conclusions ...........................................................................................9 References ...........................................................................................10
    [Show full text]
  • Mollusks of Manuel Antonio National Park, Pacific Costa Rica
    Rev. Biol. Trop. 49. Supl. 2: 25-36, 2001 www.rbt.ac.cr, www.ucr.ac.cr Mollusks of Manuel Antonio National Park, Pacific Costa Rica Samuel Willis 1 and Jorge Cortés 2-3 1140 East Middle Street, Gettysburg, Pennsylvania 17325, USA. 2Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, 2060 San José, Costa Rica. FAX: (506) 207-3280. E-mail: [email protected] 3Escuela de Biología, Universidad de Costa Rica, 2060 San José, Costa Rica. (Received 14-VII-2000. Corrected 23-III-2001. Accepted 11-V-2001) Abstract: The mollusks in Manuel Antonio National Park on the central section of the Pacific coast of Costa Rica were studied along thirty-six transects done perpendicular to the shore, and by random sampling of subtidal environments, beaches and mangrove forest. Seventy-four species of mollusks belonging to three classes and 40 families were found: 63 gastropods, 9 bivalves and 2 chitons, during this study in 1995. Of these, 16 species were found only as empty shells (11) or inhabited by hermit crabs (5). Forty-eight species were found at only one locality. Half the species were found at one site, Puerto Escondido. The most diverse habitat was the low rocky intertidal zone. Nodilittorina modesta was present in 34 transects and Nerita scabricosta in 30. Nodilittorina aspera had the highest density of mollusks in the transects. Only four transects did not clustered into the four main groups. The species composition of one cluster of transects is associated with a boulder substrate, while another cluster of transects associates with site.
    [Show full text]
  • THE NAUTILUS (Quarterly)
    americanmalacologists, inc. PUBLISHERS OF DISTINCTIVE BOOKS ON MOLLUSKS THE NAUTILUS (Quarterly) MONOGRAPHS OF MARINE MOLLUSCA STANDARD CATALOG OF SHELLS INDEXES TO THE NAUTILUS {Geographical, vols 1-90; Scientific Names, vols 61-90) REGISTER OF AMERICAN MALACOLOGISTS JANUARY 30, 1984 THE NAUTILUS ISSN 0028-1344 Vol. 98 No. 1 A quarterly devoted to malacology and the interests of conchologists Founded 1889 by Henry A. Pilsbry. Continued by H. Burrington Baker. Editor-in-Chief: R. Tucker Abbott EDITORIAL COMMITTEE CONSULTING EDITORS Dr. William J. Clench Dr. Donald R. Moore Curator Emeritus Division of Marine Geology Museum of Comparative Zoology School of Marine and Atmospheric Science Cambridge, MA 02138 10 Rickenbacker Causeway Miami, FL 33149 Dr. William K. Emerson Department of Living Invertebrates Dr. Joseph Rosewater The American Museum of Natural History Division of Mollusks New York, NY 10024 U.S. National Museum Washington, D.C. 20560 Dr. M. G. Harasewych 363 Crescendo Way Dr. G. Alan Solem Silver Spring, MD 20901 Department of Invertebrates Field Museum of Natural History Dr. Aurele La Rocque Chicago, IL 60605 Department of Geology The Ohio State University Dr. David H. Stansbery Columbus, OH 43210 Museum of Zoology The Ohio State University Dr. James H. McLean Columbus, OH 43210 Los Angeles County Museum of Natural History 900 Exposition Boulevard Dr. Ruth D. Turner Los Angeles, CA 90007 Department of Mollusks Museum of Comparative Zoology Dr. Arthur S. Merrill Cambridge, MA 02138 c/o Department of Mollusks Museum of Comparative Zoology Dr. Gilbert L. Voss Cambridge, MA 02138 Division of Biology School of Marine and Atmospheric Science 10 Rickenbacker Causeway Miami, FL 33149 EDITOR-IN-CHIEF The Nautilus (USPS 374-980) ISSN 0028-1344 Dr.
    [Show full text]
  • Preliminary Checklist of Extant Endemic Species and Subspecies of the Windward Dutch Caribbean (St
    Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos, P.A.J. Bakker, R.J.H.G. Henkens, J. A. de Freitas, A.O. Debrot Wageningen University & Research rapport C067/18 Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos1, P.A.J. Bakker2, R.J.H.G. Henkens3, J. A. de Freitas4, A.O. Debrot1 1. Wageningen Marine Research 2. Naturalis Biodiversity Center 3. Wageningen Environmental Research 4. Carmabi Publication date: 18 October 2018 This research project was carried out by Wageningen Marine Research at the request of and with funding from the Ministry of Agriculture, Nature and Food Quality for the purposes of Policy Support Research Theme ‘Caribbean Netherlands' (project no. BO-43-021.04-012). Wageningen Marine Research Den Helder, October 2018 CONFIDENTIAL no Wageningen Marine Research report C067/18 Bos OG, Bakker PAJ, Henkens RJHG, De Freitas JA, Debrot AO (2018). Preliminary checklist of extant endemic species of St. Martin, St. Eustatius, Saba and Saba Bank. Wageningen, Wageningen Marine Research (University & Research centre), Wageningen Marine Research report C067/18 Keywords: endemic species, Caribbean, Saba, Saint Eustatius, Saint Marten, Saba Bank Cover photo: endemic Anolis schwartzi in de Quill crater, St Eustatius (photo: A.O. Debrot) Date: 18 th of October 2018 Client: Ministry of LNV Attn.: H. Haanstra PO Box 20401 2500 EK The Hague The Netherlands BAS code BO-43-021.04-012 (KD-2018-055) This report can be downloaded for free from https://doi.org/10.18174/460388 Wageningen Marine Research provides no printed copies of reports Wageningen Marine Research is ISO 9001:2008 certified.
    [Show full text]
  • Cloaked Bivalve Oocytes
    The Scientific Naturalist Ecology, 100(12), 2019, e02818 © 2019 by the Ecological Society of America entirely benthic development (Ockelman 1958, Collin and Giribet 2010). The next question is, obviously: What makes it? Because the bivalve germinal epithelium has no secre- tory cells, and no auxiliary cells have been observed con- Cloaked bivalve oocytes: lessons in structing such a feature around developing oocytes, the evolution, ecology, and scientific most likely origin is the oocyte itself—and this has also been reported in unpublished work (cited in Gros et al. awareness 1997). Histological sections show a thin cloak around young oocytes (not shown), and a very thick one around 1 PETER G. BENINGER AND DAPHNE CHEREL mature oocytes (Fig. 1B). Manuscript received 20 March 2019; revised 15 May 2019; With respect to evolutionary lessons, coated oocytes accepted 17 June 2019. Corresponding Editor: John Pastor. have been observed in species from four of the six Faculte des Sciences, Universite de Nantes, 2 rue de la subclasses of the Bivalvia. There appears to be no Houssiniere, 44322 Nantes Cedex, France. taxonomic or evolutionary pattern in their occurrence; 1 E-mail: [email protected] they are found both in the primitive Cryptodonta and in the much later Heterodonta and Anomalodesmata Citation: Beninger, P. G., and D. Cherel. 2019. Cloaked (Table 1). In each of these subclasses, there are also bivalve oocytes: lessons in evolution, ecology, and scien- many species without coated oocytes, even within the tific awareness. Ecology 100(12):e02818. 10.1002/ecy.2818 same family (e.g., Pectinidae and Veneridae). The possi- bility that this is the result of multiple convergent evolu- Key words: bivalves; coat; mucopolysaccharides; oocytes; scien- tions of an identical character seems so remote as to be tific awareness.
    [Show full text]
  • Moluscos Bivalvos Y Gastrópodos Asociados a Los Manglares Del Pacífico Centroamericano
    Moluscos bivalvos y gastrópodos asociados a los manglares del Pacífico Centroamericano Jorge Arturo Jiménez§ Universidad Nacional, Costa Rica Los moluscos representan una alta diversidad en ambientes de manglar. La información relacionada con este grupo ha sido incorporada en una publicación adicional (Cruz y Jiménez, 1994). La distribución de las especies de moluscos dentro del manglar, muestra patrones espaciales claramente diferenciables que permiten dividir los manglares en tres zonas típicas: a) La zona estuarina Está compuesta por los canales mareales, por los playones que quedan al descubierto en las mareas bajas y por la laguna estuarina adyacente. En esta zona, los organismos viven inmersos en el agua constantemente y se exponen al aire por cortos períodos de tiempo. Las almejas Chione subrugosa y Protothaca asperrima se encuentran en los playones mareales de la zona estuarina. Gastrópodos carnívoros, tales como Melongena patula y Natica cheminitzii se constituyen en los moluscos predadores más importantes en estos playones. Por otra parte, la definición que describe al molusco como una especie típica de ambientes de manglar, se complica especialmente al analizar los elementos que se encuentran en la zona estuarina. Debido a sus características ecológicas, esta zona presenta una variedad de ambientes y, consecuentemente, gran cantidad de especies que también se encuentran en áreas alejadas del manglar 1 tales como bivalvos y gastrópodos, los cuales habitan bajo el lodo, las barras arenosas y las zonas rocosas de las desembocaduras de los estuarios o de las deltas que poseen manglares asociados. b) La zona externa del bosque Está influenciada por inundaciones mareales diarias. El componente arbóreo dominante se conforma de especies de los géneros Rhizophora y Reluciera.
    [Show full text]
  • Portada Dedicatoria Agradecimientos Objetivos Introducción a La Clase Bivalvia La Clasificación De Los Bivalvos
    INDICE GENERAL 1. INTRODUCCIÓN Autorización del Director de la Tesis Autorización del Tutor de la Tesis Introducción: Portada Dedicatoria Agradecimientos Objetivos Introducción a la Clase Bivalvia La clasificación de los Bivalvos 2. GEOLOGÍA Geología del área estudiada Figura 36 Figuras 37, 38 y 39 Figuras 40 y 41 Figura 42 Figuras 43 y 44 Figuras 45 y 46 Figuras 47 y 48 Figuras 49 y 50 3. METODOLOGÍA Antecedentes en el estudio del Plioceno de la provincia de Málaga Material y Métodos Listado de especies 4. SISTEMÁTICA 4.1. NUCULOIDA Orden Nuculoida Dall, 1889 Lámina 1 a 2 Texto de las láminas 1 y 2 4.2. ARCOIDA Orden Arcoida Stoliczka, 1871 Lámina 3 a 8 Texto de las láminas 3 a 8 4.3. MYTILOIDEA Orden Mytiloidea Férussac, 1822 Láminas 9 a 10 Texto de las láminas 9 a 10 4.4. PTEROIDEA Orden Pteroidea Newell, 1965 Láminas 11 a 12 Texto de las láminas 11 a 12 4.5. LIMOIDA Orden Limoida Vaught, 1989 Láminas 13 a 15 Texto de las láminas 13 a 15 4.6. OSTREINA Orden Ostreoida: Suborden Ostreina Férussac, 1822 Láminas 16 a 18 Texto de las láminas 16 a 18 4.7. PECTININA Orden Ostreoida: Suborden Pectinina Vaught, 1989 Láminas 19 a 37 Texto de las láminas 19 a 37 4.8. VENEROIDA Orden Veneroida Adams & Adams, 1857 Láminas 38 a 51 Texto de la láminas 38 a 51 4.9. MYOIDA Orden Myoida Stoliczka, 1870 Láminas 52 a 53 Texto de las láminas 52 a 53 4.10. PHOLADOMYOIDA Orden Pholadomyoida Newell, 1965 Láminas 54 a 57 Texto de las láminas 54 a 57 5.
    [Show full text]
  • Reproductive Characteristics and Strategies of Reducing-System Bivalves
    Comparative Biochemistry and Physiology Part A 126 (2000) 1–16 www.elsevier.com/locate/cbpa Review Reproductive characteristics and strategies of reducing-system bivalves Marcel Le Pennec a, Peter G. Beninger b,* a Institut Uni6ersitaire Europe´endelaMer, Place Nicolas Copernic, Technopoˆle Brest-Iroise, 29280 Plouzane´, France b Laboratoire de Biologie Marine, Faculte´ des Sciences, Uni6ersite´ de Nantes, 44322 Nantes ce´dex, France Received 23 September 1999; received in revised form 15 February 2000; accepted 25 February 2000 Abstract The reproductive biology of Type 3 reducing-system bivalves (those whose pallial cavity is irrigated with water rich in reducing substances) is reviewed, with respect to size-at-maturity, sexuality, reproductive cycle, gamete size, symbiont transmission, and larval development/dispersal strategies. The pattern which emerges from the fragmentary data is that these organisms present reproductive particularities associated with their habitat, and with their degree of reliance on bacterial endosymbionts. A partial exception to this pattern is the genus Bathymodiolus, which also presents fewer trophic adaptations to the reducing environment, suggesting a bivalent adaptive strategy. A more complete understand- ing of the reproductive biology of Type 3 bivalves requires much more data, which may not be feasible for some aspects in the deep-sea species. © 2000 Elsevier Science Inc. All rights reserved. Keywords: Reproduction; Bivalves; Reducing; Hydrothermal 1. Introduction 1979; Jannasch 1985; Smith 1985; Morton 1986; Reid and Brand, 1986; Distel and Felbeck 1987; Interest in the biology of marine reducing sys- Diouris et al. 1989; Tunnicliffe 1991; Le Pennec et tems has surged since the discovery of deep-sea al., 1995a). In contrast, general principles of the vents and associated fauna (Corliss et al., 1979).
    [Show full text]
  • TREATISE ONLINE Number 48
    TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North
    [Show full text]