Mollusca, Gastropoda

Total Page:16

File Type:pdf, Size:1020Kb

Mollusca, Gastropoda Contr. Tert. Quatern. Geol. 32(4) 97-132 43 figs Leiden, December 1995 An outline of cassoidean phylogeny (Mollusca, Gastropoda) Frank Riedel Berlin, Germany Riedel, Frank. An outline of cassoidean phylogeny (Mollusca, Gastropoda). — Contr. Tert. Quatern. Geo!., 32(4): 97-132, 43 figs. Leiden, December 1995. The phylogeny of cassoidean gastropods is reviewed, incorporating most of the biological and palaeontological data from the literature. Several characters have been checked personally and some new data are presented and included in the cladistic analysis. The Laubierinioidea, Calyptraeoidea and Capuloidea are used as outgroups. Twenty-three apomorphies are discussed and used to define cassoid relations at the subfamily level. A classification is presented in which only three families are recognised. The Ranellidae contains the subfamilies Bursinae, Cymatiinae and Ranellinae. The Pisanianurinae is removed from the Ranellidae and attributed to the Laubierinioidea.The Cassidae include the Cassinae, Oocorythinae, Phaliinae and Tonninae. The Ranellinae and Oocorythinae are and considered the of their families. The third the both paraphyletic taxa are to represent stem-groups family, Personidae, cannot be subdivided and for anatomical evolved from Cretaceous into subfamilies reasons probably the same Early gastropod ancestor as the Ranellidae. have from Ranellidae the Late Cretaceous. The Cassidae (Oocorythinae) appears to branched off the (Ranellinae) during The first significant radiation of the Ranellidae/Cassidaebranch took place in the Eocene. The Tonninae represents the youngest branch of the phylogenetic tree. Key words — Neomesogastropoda, Cassoidea, ecology, morphology, fossil evidence, systematics. Dr F. Riedei, Freie Universitat Berlin, Institut fiir Palaontologie, MalteserstraBe 74-100, Haus D, D-12249 Berlin, Germany. Contents superfamily, some of them presenting a complete classifi- cation. Modern prosobranch classification schemes (e.g. Ponder & Warén, 1988; Vaught, 1989) recognise five Introduction p. 97 cassoid families: Bursidae, Cassidae, Ficidae, Ranellidae Material and methods p. 97 and Tonnidae. Beu (1988a; see also Beu & Maxwell, Classification p. 98 1990) convincingly showed that Distorsio and its allies, habitat and diet 99 Distribution, p. which previously had been attributed to the Ranellidae, masses and 102 Egg intracapsular development .... p. distinct This is represent a family. strongly supported Larval development p. 105 here and was adopted in the latest comprehensive publi- Protoconch and teleoconch p. 107 cation on the Cassoidea by Warén & Bouchet (1990), Anatomical features p. Ill who also introduced the Laubierinidae as a new cassoid Fossil record p. 120 family. The classification has been subsequently revised Phylogenetic cladogram and discussion p. 124 by Riedel (1994), who removed the Ficidae from the Acknowledgements p. 125 Cassoidea and by Bandel & Riedel (1994), who excluded References 125 p. the Laubierinidae. The remaining five families are the subject of this paper, which is an attempt at a clearly defined phylogenetic analysis on which a classification Introduction can be based. The Cassoidea (= Doliacea = Tonnoidea), containing such MATERIAL METHODS spectacular gastropods as the tritons and helmet-shells, AND have been the subject of research for a long time. Many authors have contributed the of to knowledge the Living animals were observed and collected by the author 98 Fig. 1. A: Initial whorl of shell with indication how to measure the maximum diameter (MD) and method of counting whorls; N - of I - initial axis B: of the last nonspiral shell, defining zero point. height protoconch whorl has to be correlated to get a better understanding of height/width ratio. (by snorkeling, diving and dredging) at several places in specimens were photographed using a reflex camera. The New Zealand (including Leigh Laboratory, Portobello method of counting whorls and measuring dimensions of Marine Station), Australia (Long Reef/Sydney, Heron protoconchs is illustrated in Fig. 1. Island, Lizard Island) and Bali (Indonesia). The snails usually were relaxed using a magnesium chloride solution CLASSIFICATION isotonic with seawater (3.5 %) and then fixed in 70 % ethanol or 5 to 10 % formalin. Klaus Bandel shells of The of the is of based (Hamburg, Germany) provided arrangement taxa course on Recent cassoids from the Caribbean, the Mediterranean phylogenetic considerations. However, in contrast to the and the Red Sea. Alan Beu (Lower Hutt, New Zealand) phylogenetic cladogram, it appears preferable to introduce and Bob Penniket (deceased, formerly Warkworth, New the classification as understood by the author, before the donated characters of certain discussed. Zealand) generously several juvenile specimens taxa are This procedure with preserved protoconchs for further comparison. will hopefully avoid possible nomenclatural confusion. Additional and material borrowed from the The main other dry wet was changes or rearrangements, compared to Australian Museum (Sydney), the Institut fiir Hydro- classifications (e.g. Thiele, 1929; D.W. Taylor & Sohl, biologie und Fischereiwissenschaft (Hamburg), the Musee 1962; Golikov & Starobogatov, 1975; Beu, 1981, 1985, royal de l'Afrique Centrale (Tervuren), the National 1988a; Ponder & Waren, 1988; Beu & Maxwell, 1990; Museum of & New Zealand (Wellington) and the Zoo- Waren Bouchet, 1990) are briefly introduced, but will logisches Institut und Museum (Hamburg). be discussed in more detail elsewhere in the present Fossil material originating from the Campanian of paper. Mississippi (Coon Creek) and the Paleocene of Alabama The Ficidae Meek, 1864 have already been removed from the (Matthews Landing) was collected by Klaus Bandel in Cassoidea and been recognised as a superfamily co-operation with David T. Dockery (Jackson). Klaus (Riedel, 1994). The inclusion of the Laubierinidae Waren Bandel and colleagues provided Eocene gastropods from & Bouchet, 1990 and Pisanianurinae Waren & Bouchet, 1990 in the the Brazos River (Texas) and Oligocene gastropods from Cassoidea presents difficulties on account of Glimmerode which cassoids the absence of larval which unites (northern Germany) among a pallial appendage, with the other families Bandel & well-preserved protoconchs were examined. Several (compare Riedel, 1994). No excellently preserved gastropod faunas from various secondary periostracum on the larval shells is documented European Paleocene, Eocene and Miocene localities were in the literature (Waren & Bouchet, 1990). Moreover, the borrowed from the Institut royal des Sciences naturelles Laubierinidae and Pisanianurinae do not show the de Belgique (Brussels), the Nationaal Natuurhistorisch episodic growth of the teleoconch which is characteristic Museum (Leiden) and the Naturhistorisches Museum for cassoids. It is difficult to imagine that this character lost. other (Vienna). was Many gaps in knowledge have to be and Protoconchs, shells of juveniles and radulae were bridged other anatomical features are of uncertain mounted coated with the in the on stubs, gold and examined with interpretation, e.g. monopectinate osphradium the Laubierinidae aid of an electron microscope (CamScan). Larger or the asymmetrical osphradium in the 99 Pisanianurinae have not been recorded in the Cassoidea. 3a - Subfamily Cassinae Latreille, 1825 The Laubierinidae had already been removed from the Cassis Scopoli, 1777 Cassoidea (Bandel & Riedel, 1994) and the Pi- Cypraecassis Stutchbury, 1837 sanianurinae, which, in addition to conchological charac- 3b - Oocorythinae Fischer, 1885 also show anatomical features which Subfamily ters are very similar Dalium Dall, 1889 to those of laubierinids, should be provisionally placed Galeodea Link, 1807 within the superfamily Laubierinioidea.Alan Beu (pers. Oocorys Fischer, 1883 comm.) concurs with this view. Sconsia Gray, 1847 The tun-shells and its (Tonna relatives) are recognised as a subfamily of the Cassidae and the frog-shells (Bursa 3c - Subfamily Phaliinae Beu, 1981 and its the sister of the relatives) possibly represent group Casmaria H. & A. Adams, 1853 Cymatiinae. Sassia and Charonia have been removed Phalium Link, 1807 from the Cymatiinae and are attributed to the Ranellinae Semicassis Morch, 1852 but perhaps represent an independent ranellid branch 3d - Tonninae Suter, 1913 (subfamily). Dalium, Galeodea and Sconsia have usually Subfamily Eudolium Dali, 1889 been assigned to the Cassinae, but are here considered to Malea Valenciennes, 1883 be better placed in the Oocorythinae. Subgenera and Tonna Briinnich, 1772 extinct taxa not included in the classification are pre- sented below. Personopsis currently contains but a single Recent species, which, however, will be reassigned by DISTRIBUTION, HABITAT AND DIET Beu (pers. comm.) to a new personid genus. This means that Personopsis will have to be removed from the list of Personidae live in most warm oceans and are mainly when that Recent genera new name is coined. represented by the genus Distorsio (compare Clench & Turner, 1957; Lewis, 1972; Beu, 1985). Personopsis (?) is known exclusively from the West Pacific (Beu, 1985) Subclass Caenogastropoda Cox, 1959 and Distorsionella appears to be restricted to the southern Order 1991 Neomesogastropoda Bandel, West Pacific (Beu, 1978b, 1985). Suborder Troschelina Bandel & Riedel, 1994 Common species such as Distorsio anus (Linne, 1758) Superfamily Cassoidea Latreille, 1825 and Distorsio reticulata Roding, 1798, can be found in shallow-water habitats
Recommended publications
  • Shell Classification – Using Family Plates
    Shell Classification USING FAMILY PLATES YEAR SEVEN STUDENTS Introduction In the following activity you and your class can use the same techniques as Queensland Museum The Queensland Museum Network has about scientists to classify organisms. 2.5 million biological specimens, and these items form the Biodiversity collections. Most specimens are from Activity: Identifying Queensland shells by family. Queensland’s terrestrial and marine provinces, but These 20 plates show common Queensland shells some are from adjacent Indo-Pacific regions. A smaller from 38 different families, and can be used for a range number of exotic species have also been acquired for of activities both in and outside the classroom. comparative purposes. The collection steadily grows Possible uses of this resource include: as our inventory of the region’s natural resources becomes more comprehensive. • students finding shells and identifying what family they belong to This collection helps scientists: • students determining what features shells in each • identify and name species family share • understand biodiversity in Australia and around • students comparing families to see how they differ. the world All shells shown on the following plates are from the • study evolution, connectivity and dispersal Queensland Museum Biodiversity Collection. throughout the Indo-Pacific • keep track of invasive and exotic species. Many of the scientists who work at the Museum specialise in taxonomy, the science of describing and naming species. In fact, Queensland Museum scientists
    [Show full text]
  • Geometric Morphometric Analysis Reveals That the Shells of Male and Female Siphon Whelks Penion Chathamensis Are the Same Size and Shape Felix Vaux A, James S
    MOLLUSCAN RESEARCH, 2017 http://dx.doi.org/10.1080/13235818.2017.1279474 Geometric morphometric analysis reveals that the shells of male and female siphon whelks Penion chathamensis are the same size and shape Felix Vaux a, James S. Cramptonb,c, Bruce A. Marshalld, Steven A. Trewicka and Mary Morgan-Richardsa aEcology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand; bGNS Science, Lower Hutt, New Zealand; cSchool of Geography, Environment & Earth Sciences, Victoria University, Wellington, New Zealand; dMuseum of New Zealand Te Papa Tongarewa, Wellington, New Zealand ABSTRACT ARTICLE HISTORY Secondary sexual dimorphism can make the discrimination of intra and interspecific variation Received 11 July 2016 difficult, causing the identification of evolutionary lineages and classification of species to be Final version received challenging, particularly in palaeontology. Yet sexual dimorphism is an understudied research 14 December 2016 topic in dioecious marine snails. We use landmark-based geometric morphometric analysis to KEYWORDS investigate whether there is sexual dimorphism in the shell morphology of the siphon whelk Buccinulidae; conchology; Penion chathamensis. In contrast to studies of other snails, results strongly indicate that there fossil; geometric is no difference in the shape or size of shells between the sexes. A comparison of morphometrics; mating; P. chathamensis and a related species demonstrates that this result is unlikely to reflect a paleontology; reproduction; limitation of the method. The possibility that sexual dimorphism is not exhibited by at least secondary sexual some species of Penion is advantageous from a palaeontological perspective as there is a dimorphism; snail; true whelk rich fossil record for the genus across the Southern Hemisphere.
    [Show full text]
  • Determination of the Abundance and Population Structure of Buccinum Undatum in North Wales
    Determination of the Abundance and Population Structure of Buccinum undatum in North Wales Zara Turtle Marine Environmental Protection MSc Redacted version September 2014 School of Ocean Sciences Bangor University Bangor University Bangor Gwynedd Wales LL57 2DG Declaration This work has not previously been accepted in substance for any degree and is not being currently submitted for any degree. This dissertation is being submitted in partial fulfilment of the requirement of the M.Sc. in Marine Environmental Protection. The dissertation is the result of my own independent work / investigation, except where otherwise stated. Other sources are acknowledged by footnotes giving explicit references and a bibliography is appended. I hereby give consent for my dissertation, if accepted, to be made available for photocopying and for inter-library loan, and the title and summary to be made available to outside organisations. Signed: Date: 12/09/2014 i Determination of the Abundance and Population Structure of Buccinum undatum in North Wales Zara Turtle Abstract A mark-recapture study and fisheries data analysis for the common whelk, Buccinum undatum, was undertaken for catches on a commercial fishing vessel operating from The fishing location, north Wales, from June-July 2014. Laboratory experiments were conducted on B.undatum to investigate tag retention rates and behavioural responses after being exposed to a number of treatments. Thick rubber bands were found to have a 100 % tag retention rate after four months. Riddling, tagging and air exposure do not affect the behavioural responses of B.undatum. The mark-recapture study was used to estimate population size and movement. 4007 whelks were tagged with thick rubber bands over three tagging events.
    [Show full text]
  • Diversity of Malacofauna from the Paleru and Moosy Backwaters Of
    Journal of Entomology and Zoology Studies 2017; 5(4): 881-887 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2017; 5(4): 881-887 Diversity of Malacofauna from the Paleru and © 2017 JEZS Moosy backwaters of Prakasam district, Received: 22-05-2017 Accepted: 23-06-2017 Andhra Pradesh, India Darwin Ch. Department of Zoology and Aquaculture, Acharya Darwin Ch. and P Padmavathi Nagarjuna University Nagarjuna Nagar, Abstract Andhra Pradesh, India Among the various groups represented in the macrobenthic fauna of the Bay of Bengal at Prakasam P Padmavathi district, Andhra Pradesh, India, molluscs were the dominant group. Molluscs were exploited for Department of Zoology and industrial, edible and ornamental purposes and their extensive use has been reported way back from time Aquaculture, Acharya immemorial. Hence the present study was focused to investigate the diversity of Molluscan fauna along Nagarjuna University the Paleru and Moosy backwaters of Prakasam district during 2016-17 as these backwaters are not so far Nagarjuna Nagar, explored for malacofauna. A total of 23 species of molluscs (16 species of gastropods belonging to 12 Andhra Pradesh, India families and 7 species of bivalves representing 5 families) have been reported in the present study. Among these, gastropods such as Umbonium vestiarium, Telescopium telescopium and Pirenella cingulata, and bivalves like Crassostrea madrasensis and Meretrix meretrix are found to be the most dominant species in these backwaters. Keywords: Malacofauna, diversity, gastropods, bivalves, backwaters 1. Introduction Molluscans are the second largest phylum next to Arthropoda with estimates of 80,000- 100,000 described species [1]. These animals are soft bodied and are extremely diversified in shape and colour.
    [Show full text]
  • Caenogastropoda: Truncatelloidea) from the Aegean Islands: a Long Or Short Story?
    Org Divers Evol DOI 10.1007/s13127-015-0235-5 ORIGINAL ARTICLE Pseudamnicola Paulucci, 1878 (Caenogastropoda: Truncatelloidea) from the Aegean Islands: a long or short story? Magdalena Szarowska1 & Artur Osikowski2 & Sebastian Hofman2 & Andrzej Falniowski1 Received: 31 January 2015 /Accepted: 18 August 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract The aims of the study were (i) to reveal the pattern entities coinciding with clades of the ML tree based on 44 of phylogeny of Pseudamnicola inhabiting the Aegean haplotypes and 189 sequences. The present pattern of diversi- Islands, (ii) to describe and analyse the variation of the mor- ty, together with dating of divergence time, reflects a short phology in 17 populations of Pseudamnicola from the springs story of colonisation/recolonisation, supported by the Late on the Aegean Islands not studied so far and considering also Pleistocene land bridges, rather than the consequences of ear- another seven populations studied earlier and (iii) to find out lier geological events. The principal component analysis which model is more applicable to the island Pseudamnicola (PCA) on the shells of the molecularly distinct clades showed populations: either a model in which a relict fauna rich in differences, although variability ranges often overlap. Female endemics is differentiated in a way that mainly reflects the reproductive organs showed no differences between the geological history of the area or a model in which a relatively clades, and penile characters differed only in some cases. young fauna is composed of more or less widely distributed taxa, with relatively high levels of gene flow among the Keywords mtDNA .
    [Show full text]
  • Preliminary Appraisal of Imposex in Areas Under the Influence of Southern Brazilian Harbors
    J. Braz. Soc. Ecotoxicol., v. 2, n. 1, 2007, 73-79 JBSE SETAC – Brazil Preliminary Appraisal of Imposex in Areas Under the Influence of Southern Brazilian Harbors I. B. DE CASTRO,1,2 C. E. BEMVENUTI2 & G. FILLMANN2* 1Laboratório de Zoobentos, Instituto de Ciências do Mar, LABOMAR/UFC, Av. da Abolição, 3207, Bairro Meireles, CEP 60165-081, Fortaleza, CE, Brasil 2Fundação Universidade Federal do Rio Grande, C.P. 474, CEP 96201-900, Rio Grande, RS, Brasil (Received November 1, 2006; Accepted January 10, 2007) ABSTRACT Imposex in gastropod mollusks is an efficient and low-cost biomarker for pollution by organotin compounds. Such substances are typically found in areas with an intense flux of vessels, such as marinas and harbors. This study preliminarily evaluated the occurrence of imposex in Stramonita haemastoma (Linnaeus, 1758) populations along the areas under the influence of the main harbors from southern Brazil (Paranaguá, PR; São Francisco do Sul, SC; Itajaí, SC; and Rio Grande, RS). Although no chemical analyses were performed so far to confirm the presence of organotins, the occurrence of imposex strongly suggests a contamination by these compounds in the studied areas and it is likely that the closest from the harbors (as the main sources) the more contaminated the environment. However, due to the limitations of S. haemastoma, it is important to assess the response of alternative species adapted to mesohaline environments and non-consolidated substrates, in order to make up for the lack of indicator species for some areas such as Patos Lagoon and Itajaí-Açu estuaries. Key words: imposex, Stramonita haemastoma, organotin, estuary, southern Brazil.
    [Show full text]
  • Mollusks of Manuel Antonio National Park, Pacific Costa Rica
    Rev. Biol. Trop. 49. Supl. 2: 25-36, 2001 www.rbt.ac.cr, www.ucr.ac.cr Mollusks of Manuel Antonio National Park, Pacific Costa Rica Samuel Willis 1 and Jorge Cortés 2-3 1140 East Middle Street, Gettysburg, Pennsylvania 17325, USA. 2Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, 2060 San José, Costa Rica. FAX: (506) 207-3280. E-mail: [email protected] 3Escuela de Biología, Universidad de Costa Rica, 2060 San José, Costa Rica. (Received 14-VII-2000. Corrected 23-III-2001. Accepted 11-V-2001) Abstract: The mollusks in Manuel Antonio National Park on the central section of the Pacific coast of Costa Rica were studied along thirty-six transects done perpendicular to the shore, and by random sampling of subtidal environments, beaches and mangrove forest. Seventy-four species of mollusks belonging to three classes and 40 families were found: 63 gastropods, 9 bivalves and 2 chitons, during this study in 1995. Of these, 16 species were found only as empty shells (11) or inhabited by hermit crabs (5). Forty-eight species were found at only one locality. Half the species were found at one site, Puerto Escondido. The most diverse habitat was the low rocky intertidal zone. Nodilittorina modesta was present in 34 transects and Nerita scabricosta in 30. Nodilittorina aspera had the highest density of mollusks in the transects. Only four transects did not clustered into the four main groups. The species composition of one cluster of transects is associated with a boulder substrate, while another cluster of transects associates with site.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Cabestana Cutacea (LINNE 1767) (Abb
    Club Conchylia Informationen 37 (1/2) 59 - 61 Ludwigsburg, September 2005 Cabestana cutaca (LINNE 1767) (Gastropoda: Ranellidae), eine neue Art für die griechische marine Molluskenfauna von WOLFGANG FISCHER, Wien Im Juli 1996 wurde im Hafen von Koroni (Messinia, Peloponnes) vom Autor gemeinsam mit O. KROUPA (Brno) ein Gehäuse der Ranellidae-Art Cabestana cutacea (LINNE 1767) (Abb. 1, 2) gefunden. Das Gehäuse besitzt noch Reste des Periostrakums, hat aber viele Merkmale die darauf schliessen lassen, des es schon länger tot im Wasser lag. Zum Vergleich werden je ein Exemplar von Cabestana cutacea aus Italien (Abb. 3,4) und Spanien (Abb. 5,6) abgeblidet. Abbildung 7-12 zeigen die verwandten Cabestana dolaria (LINNE 1767), von der westafrikanischen Küste bis Südafrika vorkommend und Cabestana dolaria africana (A. ADAMS 1855) aus Südafrika. STEYN & LUSSI (1998) bilden auf Seite 74 unter Nr. 272 zwei Exemplare als Cabestana cutacea ab. Das linke Gehäuse ist sicher Cabestana dolaria africana zuzuordnen, das rechte Cabestana dolaria. KILBURN (1984) sah dolaria als nicht valide Art an, HENNING & HEMMEN (1993) stellten sie als Unterart zu cutacea. In der CLEMAM database (http://www.somali.asso.fr/clemam/biotaxis.php?X=14283) vom 10.05.2005 wird C. africanum als Synonym von C. dolaria geführt. Familia Ranellidae GRAY 1854 Subfamila Cymatinae IREDALE 1913 Genus Cabestana RÖDING 1798 Cabestana cutacea (LINNE 1767) Cabestana cutacea (LINNE 1767) ist rezent bis jetzt nur aus dem westlichen Mittelmeer (GIANNUZZI-SAVELLI et al. 1996 Abb. 897 - Levanzo, Abb. 898 - Terrasini (Palermo), Abb. 900 - Isola di Ustica), dem Westafrikanischem Atlantik und den Kanarischen Inseln (NORDSIECK & GARCIA-TALAVERA 1979) sowie den Azoren und Madeira (POPPE & GOTO 1991) bekannt.
    [Show full text]
  • The Marine Fauna of New Zealand: the Molluscan Genera Cymatona and Fusitriton (Gastropoda, Family Cymatiidae)
    ISSN 0083-7903, 65 (Print) ISSN 2538-1016; 65 (Online) The Marine Fauna of New Zealand: The Molluscan Genera Cymatona and Fusitriton (Gastropoda, Family Cymatiidae) by A. G. BEU New Zealand Oceanographic Institute Memoir 65 1978 NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH The Marine Fauna of New Zealand: The Molluscan Genera Cymatona and Fusitriton (Gastropoda, Family Cymatiidae) by A. G. BEU New Zealand Geological Survey, DSIR, Lower Hutt New Zealand Oceanographic Institute Memoir 65 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Citation according to ''World List of Scientific Periodicals" (4th edn.): Mem. N.Z. oceanogr. Inst. 65 Received for publication September 1973 © Crown Copyright 1978 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page Abstract . � 5 INTRODUCTION 5 4AXONOMY 10 Family CYMATIIDAE 10 Genus Cymatona 10 Cymatona kampyla 10 Cymatona kampyla kampyla 12 Cymatona kampyla tomlini . 18 Cymatona kampyla jobbernsi 18 Genus Fusitriton 18 Fusitriton cancellatus 22 Fusitriton cancellatus retiolus 22 Fusitriton cance/latus laudandus 23 ECOLOGY . 25 Benthic sampling programme of N.Z. Oceanographic Institute 25 Sampling methods 25 Distribution anomalies 25 Distribution 26 Distribution with depth 26 Distribution with latitude 27 Distribution with sediment type 27 Ecological conclusions 33 Dispersal times and routes of Fusitriton, and their effect on Cymatona 34 Dispersal and distribution 34 Ecological displacement of Cymatona kampyla kampyla 35 ACKNOWLEDGMENTS 36 REFERENCES 36 APPENDIX 1: Station List 38 APPENDIX 2: Dimensions of Cymatona 41 APPENDIX 3: Dimensions of Fusitriton 42 INDEX 44 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
    [Show full text]
  • ABSTRACT Title of Dissertation: PATTERNS IN
    ABSTRACT Title of Dissertation: PATTERNS IN DIVERSITY AND DISTRIBUTION OF BENTHIC MOLLUSCS ALONG A DEPTH GRADIENT IN THE BAHAMAS Michael Joseph Dowgiallo, Doctor of Philosophy, 2004 Dissertation directed by: Professor Marjorie L. Reaka-Kudla Department of Biology, UMCP Species richness and abundance of benthic bivalve and gastropod molluscs was determined over a depth gradient of 5 - 244 m at Lee Stocking Island, Bahamas by deploying replicate benthic collectors at five sites at 5 m, 14 m, 46 m, 153 m, and 244 m for six months beginning in December 1993. A total of 773 individual molluscs comprising at least 72 taxa were retrieved from the collectors. Analysis of the molluscan fauna that colonized the collectors showed overwhelmingly higher abundance and diversity at the 5 m, 14 m, and 46 m sites as compared to the deeper sites at 153 m and 244 m. Irradiance, temperature, and habitat heterogeneity all declined with depth, coincident with declines in the abundance and diversity of the molluscs. Herbivorous modes of feeding predominated (52%) and carnivorous modes of feeding were common (44%) over the range of depths studied at Lee Stocking Island, but mode of feeding did not change significantly over depth. One bivalve and one gastropod species showed a significant decline in body size with increasing depth. Analysis of data for 960 species of gastropod molluscs from the Western Atlantic Gastropod Database of the Academy of Natural Sciences (ANS) that have ranges including the Bahamas showed a positive correlation between body size of species of gastropods and their geographic ranges. There was also a positive correlation between depth range and the size of the geographic range.
    [Show full text]
  • THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
    August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject.
    [Show full text]