Mollusca: Cassidae), a Heavily Exploited Marine Gastropod?

Total Page:16

File Type:pdf, Size:1020Kb

Mollusca: Cassidae), a Heavily Exploited Marine Gastropod? SHORT REVIEW Ethnobiology and Conservation 2017, 6:16 (27 August 2017) doi:10.15451/ec2017­08­6.16­1­13 ISSN 2238­4782 ethnobioconservation.com What do we know about Cassis tuberosa (Mollusca: Cassidae), a heavily exploited marine gastropod? Thelma Lúcia Pereira Dias1*, Ellori Laíse Silva Mota1,2, Rafaela Cristina de Souza Duarte1,2 and Rômulo Romeu Nóbrega Alves1 ABSTRACT Cassis tuberosa is a key species in reefs and sandy beaches, where it plays an essential role as a predator of sea urchins and sand dollars. Due to the beauty of its shell, it is one of the most exploited species for trade as marine souvenirs throughout its distribution in the Western Atlantic. Despite its ecological importance, there is little available information about population and biological data or the impacts of its removal from its natural habitats. Considering the economic and ecological importance of this species, this study provides a short review of existing studies and highlights research and conservation needs for this highly exploited marine gastropod. Keywords: Brazil; Predatory Gastropod; Marine Curio Trade; Species Conservation; Shell Trade 1 Departamento de Biologia, Universidade Estadual da Paraíba, Av. Baraúnas, 351, Bairro Universitário, Campina Grande, PB, 58429­500, Brazil 2 Programa de Pós­Graduação em Ciências Biológicas (Zoologia), Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, PB, 58059­970, Brazil * E­mail address: DIAS, T.L.P. ([email protected]), MOTA, E.L.S. ([email protected]), DUARTE, R.C.S. ([email protected]), ALVES, R.R.N. ([email protected]) INTRODUCTION species has a heavy and large shell, reaching up to 30 cm in total length (Ardila et The king helmet Cassis tuberosa al. 2002), and occurs from 1 to 10 m deep (Linnaeus 1758) (Figure 1) is a large marine (Rios 2009). Due to the beauty of its shell in gastropod mollusk belonging to the family all growth stages (Figure 1), C. tuberosa has Cassidae and is distributed from North been the target of fishing for decades for Carolina to Brazil (Rios 2009), including the ornamental purposes and to supply trade in Gulf of Mexico, Caribbean and Cape Verde souvenirs and marine curiosities (Dias et al. Islands, Western Africa (Tewfik and Scheuer 2011). 2013). In Brazil, it is found from Pará to Although it is a large species, is broadly Espírito Santo states (Rios 2009). The distributed along the eastern Atlantic coast 1 Dias et al. 2017. What do we know about Cassis tuberosa (Mollusca: Cassidae), a heavily exploited marine gastropod? Ethnobio Conserv 6:16 and is economically relevant, Cassis This short review presents the main tuberosa biology and ecology is poorly information available in the literature known. Little is known about its published in scientific journals, books and representativeness in the ornamental shell book chapters that address this species. The trade, and this is one of the probable literature used was searched in Google reasons for the population decline that has Scholar and on journal websites. Some full been reported for this species in Brazil and papers published in the Proceedings of the Caribbean (Dias et al. 2011; Tewfik Scientific Events were also included. 2015). Figure 1. Cassis tuberosa growth series illustrating shell characteristics from the young phase to the adult phase (Photos: Thelma Dias). 2 Dias et al. 2017. What do we know about Cassis tuberosa (Mollusca: Cassidae), a heavily exploited marine gastropod? Ethnobio Conserv 6:16 Shell morphology, habitat and operculum is elongated, with rounded ends ecology and is light brown in color (Figure 2c). In the soft part, the ample ventral Cassis tuberosa has one of the most muscular foot constitutes a great part of the admired shells by collectors in the Western visceral mass (Figure 2d). Although the Atlantic (Figure 2a–b). As described by siphonal canal is short, the siphon of large Matthews and Coelho (1972), the form of the caliber can extend to reach the dorsal side of shell is subtriangular, with a low spire and it the shell, as reported by Hughes and is cream in general coloration with dark Hughes (1971). According to these authors, brown spots. The dorsal surface is the taenioglossate radula of Cassis tuberosa ornamented by fine growth lines cut by fine is reinforced with seven strong teeth per row, spiral lines, producing a canceled effect. The with a central spinal tooth and heavily spit opening is narrow and long, with an outer lip lateral teeth. Details of the morphology of the containing strong dark teeth. The margin of digestive tract are shown by Hughes and the columella has strong crimps that extend Hughes (1981). through the opening. The small corneal Figure 2. (A) Adult individual emerges on a sandy beach during low tide and (B) Young moving on sandy bottom at Macau, state of Rio Grande do Norte, NE Brazil. (C) View of the back of Cassis tuberosa with detail on the reduced operculum (yellow arrow) and (D) Adult with wide distended foot at Cabo Branco reefs, João Pessoa, state of Paraíba, NE Brazil (Photos: Thelma Dias). 3 Dias et al. 2017. What do we know about Cassis tuberosa (Mollusca: Cassidae), a heavily exploited marine gastropod? Ethnobio Conserv 6:16 Cassis tuberosa is considered a solitary et al. (2013) recorded a density ranging from species (Moore 1956) but may be observed 0.3 to 0.8 individuals/ha. A low density of this in larger numbers, such as while searching predator was also reported by Engstrom for prey (Matthews and Coelho 1972; Tewfik (1982), who mentioned one individual/660 2015). It inhabits shallow coastal waters m2 (=15 individuals/ha) in Pitahaya and one occurring in sandy beaches and reef individual/14,000 m2 (=0.7 individuals/ha) in environments, where it lives associated with Guayacan, both in Puerto Rico. Other seagrass beds, macroalgae banks, rhodolith studies that mention the abundance of C. beds and coral rubble (Schroeder 1962; tuberosa report a low number of individuals Nieto­Bernal et al. 2013; Tewfik and Scheuer (e.g. Hughes and Hughes 1971; McClintock 2013; Tewfik 2015; Dias and Mota 2015; and Marion 1993; Levitan and Genovese Grun and Nebelsick 2017). Figure 3a–e 1989; Grun and Nebelsick 2017). illustrates C. tuberosa using different habitat Young individuals of Cassis tuberosa are types. rarely reported in the literature (e.g. The king helmet is known as a nocturnal Pequeno and Matthews­Cascon 2001; predator that remains buried in 2011). On the other hand, recently Dias and unconsolidated substrates during the day. Mota (2015) first recorded an adult of this According to Grun and Nebelsick (2017), species depositing their spawn in the Cassis tuberosa is mainly semi­epifaunal Tamandaré reefs (State of Pernambuco), and rests semi­buried, leaving an exposed located in a marine protected area in the portion of the shell, which is encrusted by northeast of Brazil. The spawn was released macroalgae, other smaller gastropod on a border of macroalga of the genus molluscs and crustaceans. On the other Padina at 2 m depth during the day. hand, some studies report the feeding According to Dias and Mota (2015), the activity of C. tuberosa in the diurnal period oothecae was arranged in a single layer (e.g. McClintock and Marion 1993; Levitan consisting of a mass of eggs with and Genovese 1989), which, according to approximately 200 vasiform capsules that Grun and Nebelsick (2017), would classify were orange in color (Figure 3f). According this species as metaturnal, feeding during to these authors, the spawn of C. tuberosa the day and at night. resembles that of other Cassidae, especially Several decades ago, the king helmet that of its congener, C. madagascariensis. was once considered one of the most Dias and Mota (2015) also reinforced the abundant gastropod species in Northeastern importance of macroalgae banks as a Brazil (Matthews and Coelho 1972) and spawning substrate and suggest that common in the West Indies (Schroeder measures of protection of this species 1962). Currently, the few studies that should include this type of habitat to mention the abundance of this species have maintain wild populations of C. tuberosa. revealed a low number of individuals. In the Turks and Caicos Islands, the density of Diet and predatory behavior Cassis tuberosa associated with dense seagrass beds (Thalassia testudinum) One of the best­known aspects about ranged from 2.6 to 15.8 individuals/ha Cassis tuberosa is its diet and feeding (Tewfik and Scheuer 2013; Tewfik 2015), behavior. It is a carnivorous predator that while in La Guajira (Colombia), Nieto­Bernal feeds exclusively on echinoid echinoderms 4 Dias et al. 2017. What do we know about Cassis tuberosa (Mollusca: Cassidae), a heavily exploited marine gastropod? Ethnobio Conserv 6:16 (Figure 4). There are at least 14 species of Pequeno and Matthews­Cascon 2010; prey consumed by C. tuberosa in the Tewfik and Scheuer 2013), but the most laboratory and in the wild (e.g. Foster 1947; frequently cited are the sea urchins Diadema Moore 1956; Snyder and Snyder 1970; antillarum, Echinometra lucunter, Lytechinus Figure 3. Adult Cassis tuberosa on different substrates and behaviors. (A) Resting on sandy beach at Macau, state of Rio Grande do Norte, Brazil. (B) Partially buried in sandy bottom, (C) Resting on sandy and gravel bottom near macroalgae, (D) Moving on rocks in a reef environment, (E) Moving on seagrasses in a reef environment, and (F) Spawning (yellow arrow) on macroalgae of the genus Padina at Tamandaré reefs, state of Pernambuco, Brazil (Photos: Thelma Dias). 5 Dias et al. 2017. What do we know about Cassis tuberosa (Mollusca: Cassidae), a heavily exploited marine gastropod? Ethnobio Conserv 6:16 variegatus and Tripneustes ventricosus forward while moving at a speed of 0.3 cm/s.
Recommended publications
  • Redalyc.Proximate Composition of Marine Invertebrates from Tropical
    Latin American Journal of Aquatic Research E-ISSN: 0718-560X [email protected] Pontificia Universidad Católica de Valparaíso Chile Diniz, Graciela S.; Barbarino, Elisabete; Oiano-Neto, João; Pacheco, Sidney; Lourenço, Sergio O. Proximate composition of marine invertebrates from tropical coastal waters, with emphasis on the relationship between nitrogen and protein contents Latin American Journal of Aquatic Research, vol. 42, núm. 2, mayo, 2014, pp. 332-352 Pontificia Universidad Católica de Valparaíso Valparaíso, Chile Available in: http://www.redalyc.org/articulo.oa?id=175031018005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Lat. Am. J. Aquat. Res., 42(2): 332-352, 2014 Chemical composition of some marine invertebrates 332 1 “Proceedings of the 4to Brazilian Congress of Marine Biology” Sergio O. Lourenço (Guest Editor) DOI: 10.3856/vol42-issue2-fulltext-5 Research Article Proximate composition of marine invertebrates from tropical coastal waters, with emphasis on the relationship between nitrogen and protein contents Graciela S. Diniz1,2, Elisabete Barbarino1, João Oiano-Neto3,4, Sidney Pacheco3 & Sergio O. Lourenço1 1Departamento de Biologia Marinha, Universidade Federal Fluminense Caixa Postal 100644, CEP 24001-970, Niterói, RJ, Brazil 2Instituto Virtual Internacional de Mudanças Globais-UFRJ/IVIG, Universidade Federal do Rio de Janeiro. Rua Pedro Calmon, s/nº, CEP 21945-970, Cidade Universitária, Rio de Janeiro, RJ, Brazil 3Embrapa Agroindústria de Alimentos, Laboratório de Cromatografia Líquida Avenida das Américas, 29501, CEP 23020-470, Rio de Janeiro, RJ, Brazil 4Embrapa Pecuária Sudeste, Rodovia Washington Luiz, km 234, Caixa Postal 339, CEP 13560-970 São Carlos, SP, Brazil ABSTRACT.
    [Show full text]
  • Shell Classification – Using Family Plates
    Shell Classification USING FAMILY PLATES YEAR SEVEN STUDENTS Introduction In the following activity you and your class can use the same techniques as Queensland Museum The Queensland Museum Network has about scientists to classify organisms. 2.5 million biological specimens, and these items form the Biodiversity collections. Most specimens are from Activity: Identifying Queensland shells by family. Queensland’s terrestrial and marine provinces, but These 20 plates show common Queensland shells some are from adjacent Indo-Pacific regions. A smaller from 38 different families, and can be used for a range number of exotic species have also been acquired for of activities both in and outside the classroom. comparative purposes. The collection steadily grows Possible uses of this resource include: as our inventory of the region’s natural resources becomes more comprehensive. • students finding shells and identifying what family they belong to This collection helps scientists: • students determining what features shells in each • identify and name species family share • understand biodiversity in Australia and around • students comparing families to see how they differ. the world All shells shown on the following plates are from the • study evolution, connectivity and dispersal Queensland Museum Biodiversity Collection. throughout the Indo-Pacific • keep track of invasive and exotic species. Many of the scientists who work at the Museum specialise in taxonomy, the science of describing and naming species. In fact, Queensland Museum scientists
    [Show full text]
  • Caenogastropoda: Truncatelloidea) from the Aegean Islands: a Long Or Short Story?
    Org Divers Evol DOI 10.1007/s13127-015-0235-5 ORIGINAL ARTICLE Pseudamnicola Paulucci, 1878 (Caenogastropoda: Truncatelloidea) from the Aegean Islands: a long or short story? Magdalena Szarowska1 & Artur Osikowski2 & Sebastian Hofman2 & Andrzej Falniowski1 Received: 31 January 2015 /Accepted: 18 August 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract The aims of the study were (i) to reveal the pattern entities coinciding with clades of the ML tree based on 44 of phylogeny of Pseudamnicola inhabiting the Aegean haplotypes and 189 sequences. The present pattern of diversi- Islands, (ii) to describe and analyse the variation of the mor- ty, together with dating of divergence time, reflects a short phology in 17 populations of Pseudamnicola from the springs story of colonisation/recolonisation, supported by the Late on the Aegean Islands not studied so far and considering also Pleistocene land bridges, rather than the consequences of ear- another seven populations studied earlier and (iii) to find out lier geological events. The principal component analysis which model is more applicable to the island Pseudamnicola (PCA) on the shells of the molecularly distinct clades showed populations: either a model in which a relict fauna rich in differences, although variability ranges often overlap. Female endemics is differentiated in a way that mainly reflects the reproductive organs showed no differences between the geological history of the area or a model in which a relatively clades, and penile characters differed only in some cases. young fauna is composed of more or less widely distributed taxa, with relatively high levels of gene flow among the Keywords mtDNA .
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • The Following Section Has ! Been Excerpted from A
    THE FOLLOWING SECTION HAS ! BEEN EXCERPTED FROM A LARGER DOCUMENT. Handbook of Seagrass Biology: An Ecosystem Perspective Edited by RONALD C. PHILLIPS Departmentof Biology SeattlePacificUniversity Seattle, Washington C. PETER McRoY Instituteof MarineScience University ofAlaska Fairbanks,Alaska Garland STPM Press, New York &London :172 FaunalRelationshipsin 2. 'perate SeagrassBeds biotsenozov v pribrezhnyh vodah zoliva Possiet (Japonskoe More). In Biolsenozy zaliva Possjet, Japonskogo Mora. (English r/sum6, by courtesy of Prs, J. M.) pp. 5-61. Stevens, N. E. (1936). Environmental conditions and the wasting disease of eelgrass. Science 84: 87-89. Taylor, J. L., and Saloman, C. H. (1968). Some effects of hydraulic dredging and coastal development in Boca Ciega Bay, Florida. U.S. Fish. WildI. Ser., Fish.Bull. 67: 213-241. Tenore, K. R., Tietjen, J. H., and Lee, J. J. (1977). Effect of meiofauna on in. corporation of aged eelgrass, Zostera marina, detritw, by the polychaete Nephtys incisa. J.Fish. Res. Bd. Can.34: 563-567. Thayer, G. W., Adams, S. M., and LaCroix, M. W. (1975a). Structural and functional aspects of a recently established Zostera marina community. Estuarine Research 1:518-540. Thayer, G. W., Wolfe, D. A., and Williams, R. B. (1975b). The impact of man on seagrass systems. Amer. Sci. 63: 288-296. Tutin, T. G. (1934). The fungus on Zosteramarina. Nature 134(3389): 573. Welsh, B. L. (1975). The role of grass shrimp, Palaemonetes pugio, in a tidal marsh ecosystem. Ecology 56: 513-530. Wilson, D. P. (1949). The decline of Zostera marina L. at Salcombe and its ef­ fects on the shore. J. Mar.Biol.Ass.
    [Show full text]
  • Invertebrate Predators and Grazers
    9 Invertebrate Predators and Grazers ROBERT C. CARPENTER Department of Biology California State University Northridge, California 91330 Coral reefs are among the most productive and diverse biological communities on earth. Some of the diversity of coral reefs is associated with the invertebrate organisms that are the primary builders of reefs, the scleractinian corals. While sessile invertebrates, such as stony corals, soft corals, gorgonians, anemones, and sponges, and algae are the dominant occupiers of primary space in coral reef communities, their relative abundances are often determined by the activities of mobile, invertebrate and vertebrate predators and grazers. Hixon (Chapter X) has reviewed the direct effects of fishes on coral reef community structure and function and Glynn (1990) has provided an excellent review of the feeding ecology of many coral reef consumers. My intent here is to review the different types of mobile invertebrate predators and grazers on coral reefs, concentrating on those that have disproportionate effects on coral reef communities and are intimately involved with the life and death of coral reefs. The sheer number and diversity of mobile invertebrates associated with coral reefs is daunting with species from several major phyla including the Annelida, Arthropoda, Mollusca, and Echinodermata. Numerous species of minor phyla are also represented in reef communities, but their abundance and importance have not been well-studied. As a result, our understanding of the effects of predation and grazing by invertebrates in coral reef environments is based on studies of a few representatives from the major groups of mobile invertebrates. Predators may be generalists or specialists in choosing their prey and this may determine the effects of their feeding on community-level patterns of prey abundance (Paine, 1966).
    [Show full text]
  • For Peer Review
    Page 1 of 40 Geological Journal Page 1 of 32 1 2 3 Neogene echinoids from the Cayman Islands, West Indies: regional 4 5 6 implications 7 8 9 10 1 2 3 11 STEPHEN K. DONOVAN *, BRIAN JONES and DAVID A. T. HARPER 12 13 14 15 1Department of Geology, Naturalis Biodiversity Center, Leiden, the Netherlands 16 17 2Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada, T6G 2E3 18 For Peer Review 19 3 20 Department of Earth Sciences, Durham University, Durham, UK 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 *Correspondence to: S. K. Donovan, Department of Geology, Naturalis Biodiversity Center, 49 50 Darwinweg 2, 2333 CR Leiden, the Netherlands. 51 52 E-mail: [email protected] 53 54 55 56 57 58 59 60 http://mc.manuscriptcentral.com/gj Geological Journal Page 2 of 40 Page 2 of 32 1 2 3 The first fossil echinoids are recorded from the Cayman Islands. A regular echinoid, Arbacia? sp., the 4 5 spatangoids Brissus sp. cf. B. oblongus Wright and Schizaster sp. cf. S. americanus (Clark), and the 6 7 clypeasteroid Clypeaster sp. are from the Middle Miocene Cayman Formation. Test fragments of the 8 9 mellitid clypeasteroid, Leodia sexiesperforata (Leske), are from the Late Pleistocene Ironshore 10 11 Formation. Miocene echinoids are preserved as (mainly internal) moulds; hence, all species are left 12 13 14 in open nomenclature because of uncertainties regarding test architecture.
    [Show full text]
  • Dissodactylus Crinitichelismoreira, 1901 and Leodia Sexiesperforata
    Nauplius 19(1): 63-70, 2011 63 Dissodactylus crinitichelis Moreira, 1901 and Leodia sexiesperforata (Leske, 1778): first record of this symbiosis in Brazil Vinicius Queiroz, Licia Sales, Elizabeth Neves and Rodrigo Johnsson LABIMAR (Crustacea, Cnidaria & Fauna Associada), Universidade Federal da Bahia. Avenida Adhemar de Barros s/nº, Campus Ondina. CEP 40170- 290. Salvador, BA, Brazil. E-mail: (VQ) [email protected]; (LS) [email protected]; (EN) [email protected]; (RJ) [email protected] Abstract The crabs of the genusDissodactylus are well known as ectosymbionts of irregular echinoids belonging to Clypeasteroida and Spatangoida. Dissodactylus crinitichelis is the only species of the genus reported in Brazil. The pea crab species has been already recorded associated with four species of echinoids in Brazilian waters. This paper reviews the known hosts for D. crinitichelis and registers for the first time the association between the pea crab and the sand dollar Leodia sexiesperforata increasing to five the number of known hosts for the crab. Key Words: Ecological association, ectosymbiont, Pinnotheridae. Introduction includes about 302 species of little crabs (Ng et al., 2008) highly specialized in living The diversity of the marine environment, in close association with other invertebrates. specially the benthic substratum is commonly The family is known for their association reflected by many interactions among with various invertebrate taxa, such as organisms, even free living ones. Such event molluscs, polychaetes, ascidians, crustaceans is quite common since many of these species or echinoderms (holothurians and irregular act as substratum or environment for others. echinoids) (Schmitt et al., 1973; Powers, 1977; The existence of many organisms living in Williams, 1984; Takeda et al., 1997; Thoma association and their close relation allows for et al., 2005, 2009; Ahyong and Ng, 2007).
    [Show full text]
  • Redalyc.Reproductive Biology of Echinometra Lucunter
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil LIMA, EDUARDO J.B.; GOMES, PAULA B.; SOUZA, JOSÉ R.B. Reproductive biology of Echinometra lucunter (Echinodermata: Echinoidea) in a northeast Brazilian sandstone reef Anais da Academia Brasileira de Ciências, vol. 81, núm. 1, marzo, 2009, pp. 51-59 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32713478007 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative “main” — 2008/12/16 — 13:23 — page 51 — #1 Anais da Academia Brasileira de Ciências (2009) 81(1): 51-59 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc Reproductive biology of Echinometra lucunter (Echinodermata: Echinoidea) in a northeast Brazilian sandstone reef EDUARDO J.B. LIMA1, PAULA B. GOMES2 and JOSÉ R.B. SOUZA1 1Departamento de Zoologia, Centro de Ciências Biológicas (CCB), Programa de Pós-Graduação em Ciências Área de Biologia Animal, Universidade Federal de Pernambuco (UFPE), Av. Professor Moraes Rego, 1235 50670-420 Recife, PE, Brasil 2Departamento de Biologia, Universidade Federal Rural de Pernambuco (UFRPE), Área de Ecologia Rua Dom Manoel de Medeiros, s/n, 52171-900 Recife, PE, Brasil Manuscript received on April 2, 2008; accepted for publication on July 22, 2008; presented by ALEXANDER W.A. KELLNER ABSTRACT The edible sea urchin Echinometra lucunter (Linnaeus, 1758) is a very common species on the sublittoral-midlittoral in Brazilian rocky shores.
    [Show full text]
  • Klicken, Um Den Anhang Zu Öffnen
    Gredleria- VOL. 1 / 2001 Titelbild 2001 Posthornschnecke (Planorbarius corneus L.) / Zeichnung: Alma Horne Volume 1 Impressum Volume Direktion und Redaktion / Direzione e redazione 1 © Copyright 2001 by Naturmuseum Südtirol Museo Scienze Naturali Alto Adige Museum Natöra Südtirol Bindergasse/Via Bottai 1 – I-39100 Bozen/Bolzano (Italien/Italia) Tel. +39/0471/412960 – Fax 0471/412979 homepage: www.naturmuseum.it e-mail: [email protected] Redaktionskomitee / Comitato di Redazione Dr. Klaus Hellrigl (Brixen/Bressanone), Dr. Peter Ortner (Bozen/Bolzano), Dr. Gerhard Tarmann (Innsbruck), Dr. Leo Unterholzner (Lana, BZ), Dr. Vito Zingerle (Bozen/Bolzano) Schriftleiter und Koordinator / Redattore e coordinatore Dr. Klaus Hellrigl (Brixen/Bressanone) Verantwortlicher Leiter / Direttore responsabile Dr. Vito Zingerle (Bozen/Bolzano) Graphik / grafica Dr. Peter Schreiner (München) Zitiertitel Gredleriana, Veröff. Nat. Mus. Südtirol (Acta biol. ), 1 (2001): ISSN 1593 -5205 Issued 15.12.2001 Druck / stampa Gredleriana Fotolito Varesco – Auer / Ora (BZ) Gredleriana 2001 l 2001 tirol Die Veröffentlichungsreihe »Gredleriana« des Naturmuseum Südtirol (Bozen) ist ein Forum für naturwissenschaftliche Forschung in und über Südtirol. Geplant ist die Volume Herausgabe von zwei Wissenschaftsreihen: A) Biologische Reihe (Acta Biologica) mit den Bereichen Zoologie, Botanik und Ökologie und B) Erdwissenschaftliche Reihe (Acta Geo lo gica) mit Geologie, Mineralogie und Paläontologie. Diese Reihen können jährlich ge mein sam oder in alternierender Folge erscheinen, je nach Ver- fügbarkeit entsprechender Beiträge. Als Publikationssprache der einzelnen Beiträge ist Deutsch oder Italienisch vorge- 1 Naturmuseum Südtiro sehen und allenfalls auch Englisch. Die einzelnen Originalartikel erscheinen jeweils Museum Natöra Süd Museum Natöra in der eingereichten Sprache der Autoren und sollen mit kurzen Zusammenfassun- gen in Englisch, Italienisch und Deutsch ausgestattet sein.
    [Show full text]
  • Mollusks of Candomblé: Symbolic and Ritualistic Importance Nivaldo a Léo Neto1,3, Robert a Voeks2, Thelma LP Dias3 and Rômulo RN Alves3*
    Léo Neto et al. Journal of Ethnobiology and Ethnomedicine 2012, 8:10 http://www.ethnobiomed.com/content/8/1/10 JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE RESEARCH Open Access Mollusks of Candomblé: symbolic and ritualistic importance Nivaldo A Léo Neto1,3, Robert A Voeks2, Thelma LP Dias3 and Rômulo RN Alves3* Abstract Human societies utilize mollusks for myriad material and spiritual ends. An example of their use in a religious context is found in Brazil’s African-derived belief systems. Candomblé, an Afro-Brazilian religion introduced during the 18th-19th centuries by enslaved Yoruba, includes various magical and liturgical uses of mollusks. This work inventoried the species utilized by adherents and to analyzed their symbolic and magical context. Data were obtained from Candomblé temples in two cities in the northeast of Brazil-Caruaru, in the state of Pernambuco, and Campina Grande, in the state of Paraíba. Questionnaires administered to eleven adepts revealed that at least nineteen mollusk species are being used. Shells from Monetaria moneta, M. annulus and Erosaria caputserpentis were cited by all of the interviewees. Three uses stood out: divination (jogo de búzios); utilization as ritual objects; and employment as sacrificial offerings (Igbin or Boi-de-Oxalá). The jogo de búzios (shell toss), employed in West Africa, Brazil and Cuba, is of fundamental importance to the cult, representing the means by which the faithful enter in contact with the divinities (Orixás) and consult people’s futures (Odu). The utilization of mollusks in Candomblé is strongly influenced by ancient Yoruba myths (Itãs) which, having survived enslavement and generations of captive labor, continue to guide the lives of Brazil’s African Diaspora.
    [Show full text]
  • Journal of Marine Research, Sears Foundation for Marine Research
    The Journal of Marine Research is an online peer-reviewed journal that publishes original research on a broad array of topics in physical, biological, and chemical oceanography. In publication since 1937, it is one of the oldest journals in American marine science and occupies a unique niche within the ocean sciences, with a rich tradition and distinguished history as part of the Sears Foundation for Marine Research at Yale University. Past and current issues are available at journalofmarineresearch.org. Yale University provides access to these materials for educational and research purposes only. Copyright or other proprietary rights to content contained in this document may be held by individuals or entities other than, or in addition to, Yale University. You are solely responsible for determining the ownership of the copyright, and for obtaining permission for your intended use. Yale University makes no warranty that your distribution, reproduction, or other use of these materials will not infringe the rights of third parties. This work is licensed under the Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Journal of Marine Research, Sears Foundation for Marine Research, Yale University PO Box 208118, New Haven, CT 06520-8118 USA (203) 432-3154 fax (203) 432-5872 [email protected] www.journalofmarineresearch.org Bioerosion by two rock boring echinoids (Echinometra mathaei and Echinostrephus aciculatus) on Enewetak Atoll, Marshall Islands 1 2 by Anthony R.
    [Show full text]