Dissodactylus Crinitichelismoreira, 1901 and Leodia Sexiesperforata

Total Page:16

File Type:pdf, Size:1020Kb

Dissodactylus Crinitichelismoreira, 1901 and Leodia Sexiesperforata Nauplius 19(1): 63-70, 2011 63 Dissodactylus crinitichelis Moreira, 1901 and Leodia sexiesperforata (Leske, 1778): first record of this symbiosis in Brazil Vinicius Queiroz, Licia Sales, Elizabeth Neves and Rodrigo Johnsson LABIMAR (Crustacea, Cnidaria & Fauna Associada), Universidade Federal da Bahia. Avenida Adhemar de Barros s/nº, Campus Ondina. CEP 40170- 290. Salvador, BA, Brazil. E-mail: (VQ) [email protected]; (LS) [email protected]; (EN) [email protected]; (RJ) [email protected] Abstract The crabs of the genusDissodactylus are well known as ectosymbionts of irregular echinoids belonging to Clypeasteroida and Spatangoida. Dissodactylus crinitichelis is the only species of the genus reported in Brazil. The pea crab species has been already recorded associated with four species of echinoids in Brazilian waters. This paper reviews the known hosts for D. crinitichelis and registers for the first time the association between the pea crab and the sand dollar Leodia sexiesperforata increasing to five the number of known hosts for the crab. Key Words: Ecological association, ectosymbiont, Pinnotheridae. Introduction includes about 302 species of little crabs (Ng et al., 2008) highly specialized in living The diversity of the marine environment, in close association with other invertebrates. specially the benthic substratum is commonly The family is known for their association reflected by many interactions among with various invertebrate taxa, such as organisms, even free living ones. Such event molluscs, polychaetes, ascidians, crustaceans is quite common since many of these species or echinoderms (holothurians and irregular act as substratum or environment for others. echinoids) (Schmitt et al., 1973; Powers, 1977; The existence of many organisms living in Williams, 1984; Takeda et al., 1997; Thoma association and their close relation allows for et al., 2005, 2009; Ahyong and Ng, 2007). the emergence of symbiotics relationships However the pinnotherids are also capable (Thiel et al., 2003; Rohde, 2005; Baeza, of showing a short free-living stage (first crab 2007). Symbiosis, sensu De Bary (1879), stage) (Christensen and McDermott, 1958). can be defined as “a phenomenon in which Among the 54 genera of Pinnotheridae, dissimilar organisms live together” (Vermeij, Dissodactylus (Smith, 1870) (Ng et al., 1983; Paracer and Ahmadjian, 2000). These 2008; Ng and van Tri, 2010) is known interactions are commonly observed among as an ectosymbiont of irregular echinoids crustaceans. Therefore, these taxa have many (Griffith, 1987a). The genus is characterized species that have adapted to co-exist in by a discontinuous anterolateral margin symbiosis with other invertebrates (Barel and of the carapace, delicate, ventrally curved Kramers, 1977; Rohde, 2005). labium, epistome dorsoventrally reduced, and The Pinnotheridae De Haan, 1833 subrectangular, medially directed ischium- merus of the third maxilliped (Griffith, 1987a; 64 Queiroz, V. et al.: New host record for Dissodactylus crinitichelis Campos and Griffith, 1990). The distribution aim of this paper is to report the association of Dissodactylus is restricted to the New World, between Dissodactylus crinitichelis and Leodia ranging in the western Atlantic Ocean from sexiesperforata for the first time outside the Massachusetts (USA) to Argentina, with four Caribbean, specifically for Brazil. species recorded, and in the eastern Pacific from Mexico to Peru, where five species are known (Rathbun, 1918; Schmitt et al., 1973; Material and Methods Werding and Sanchez, 1989; Martins and D’lncao, 1996; Fumis et al., 2006). However, Sampling was carried out on May 13th, so far, there are no common records between 2010 at the Porto da Barra beach, Salvador the Pacific and Atlantic regions (Griffith, - BA, Brazil (13°00’24”S - 38°31’48”W). 1987a; Campos and Griffith, 1990). Specimens of Leodia sexiesperforata were The crab Dissodactylus crinitichelis obtained by free diving in the subtidal zone. Moreira, 1901 is typical of the western Only a single specimen of the sand dollar Atlantic, ranging from the USA to Argentina showed an associated pea crab. The host (Rathbun, 1918, (as D. encopei); Martins and and the symbiont were photographed and D’lncao, 1996; Fumis et al., 2006). It has been immediately placed in a plastic bag containing observed maintaining symbiotic relationships sea water and then taken to the laboratory. with several species of irregular echinoids, Posteriorly they were photographed and fixed such as the spatangoid Meoma ventricosa in 70% ethanol. The material was deposited (Lamarck, 1816) and the clypeasteroids Encope in the Crustacean Collection of the Museu de emarginata (Leske, 1778); E. michelini Agassiz, Zoologia da Universidade Federal da Bahia 1841; Clypeaster subdepressus (Gray, 1825); and (UFBA 430) Leodia sexiesperforata (Leske, 1778) (Rathbun, 1918; Telford, 1978; 1982; Campos and Solís- Marín, 1998; Wirtz et al., 2009). Results and Discussion In Brazil, the first report of an association with D. crinitichelis was provided Dissodactylus crinitichelis Moreira, 1901 by Coelho and Ramos-Porto (1995) for Encope (Fig. 1F) sp.; Martins and D’lncao (1996) cited the associations of the crab with E. emarginata, Dissodactylus crinitichelis Moreira, 1901. Mellita sp., Clypeaster sp. and Luidia sp.; finally, - Rathbun, 1933: 83. - Rodrigues da Costa, Wirtz et al. (2009) mentioned the relationship 1969: 260. - Coelho and Ramos, 1972: 196. with Meoma ventricosa in Espirito Santo State. - Fenucci, 1975:172. - Powers, 1977:1 20. Previous records show that the sand - Williams, 1984:438. - Melo, 1985:1 23. - dollar Leodia sexiesperforata is restricted to the Abele and Kim, 1986:64. - Griffith, 1987:412. Americas, ranging from North Carolina (USA) - Martins and D’incao, 1996: 4. - Campos and to Uruguay (Telford and Mooi, 1986). Along Solís-Marín, 1998: 330. - Almeida et al., 2010: the Brazilian coast there are records from 358. Paraiba to Rio de Janeiro (Alves and Cerqueira, Dissodactylus encopei; Rathbun, 1901: 2000; Magalhães et al., 2005; Ventura et al., 22. - Rathbun 1918: 119. - Williams, et al., 2006; 2007; Gondim et al., 2008; Manso et al., 1968:56. 2008). Despite this geographical distribution, all reports of the association of D. crinitichelis Dissodactylus crinitichelis is characterized with this irregular echinoid are restricted to by an almost flat carapace that shows a smooth the Caribbean (Telford, 1978; 1982 - Rockley surface. The length to width ratio of the carapace Beach, Bridgetown, Barbados - 13°04’24”N, is 0.75:1. The third maxilliped covers the oral 59°35’18”W; Campos and Solis-Marin, 1998 cavity completely. The propodus shows a small - Cuba - 21°30’30”N, 77°46’26”W). The Nauplius 19(1): 63-70, 2011 65 dactyl and articulates in the second half of the explained as an evidence of its survival strategy inferior margin. The pereopods are short and due to its mode of living. strong. Outer maxilliped palp is 3-segmented. The family Pinnotheridae is usually Telson forms an equilateral triangle. Females considered as parasitic or at least semi- bear all abdominal segments distinct. All these parasitic. In this context, the dactyli bifid seem characteristics confirm the identification of the adequate, because they have no clear change specimen provided by the literature (Morreira, in morphology to adapt themselves to a 1901; Rathbun, 1918; Martins and D’lncao, parasitic lifestyle (Telford, 1978). Dissodactylus 1996). A relevant point, according to Griffith crinitichelis is always characterized as irregular (1987a), is the similarity of D. crinitichelis and urchin’s symbiont, however there are very few D. latus Griffith, 1987. However, according studies clarifying the correct association of the to the same author, the mean width to length species and its sand dollar hosts. ratio of carapace provides enough bases to Pohle and Telford (1981) state that D. distinguish both species (1.43 ± 0.03 D. crinitichelis is an obligate parasite because it crinitichelis and 1.66 ± 0.05 to D. latus). requires a nearby host to complete its larval development. However, the authors also Leodia sexiesperforata (Leske, 1778) say that sub-adults and adults stages seem (Figs. 1 A-E) to be facultative parasites. In a subsequent study, Telford (1982a), based on cheliped Echinodiscus sexies perforatus Leske, 1778: 199. morphology, stomach contents of the pea Scutella sexforis Lamarck, 1816: 9. - crabs and spine allometry of sand dollars, Desmoulins, 1837: 70. defines the relationship as parasitism, showing Mellita hexapora Agassiz, 1841: 41. - Agassiz that approximately 80% of the food obtained and Desor, 1846: 138. by the crab comes from the host. Mellita similis Agassiz, 1841: 43. However studies carried out by these Leodia richardsonii Gray, 1851: 36. authors (Pohle and Telford, 1981; Telford, Mellita erythraea Gray, 1851: 36. 1982a) are exclusively based on data from Mellita sexiesperforata Bernasconi, 1941: 107. L. sexiesperforata as a single host. Since D. Mellita platensis: Bernasconi, 1947: 117. crinitichelis is recorded as symbiont of four other species of irregular sea urchins (M. ventricosa, The sand dollar Leodia sexiesperforata E. emarginata, E. michelini, C. subdepressus), it (Leske, 1778) can be identified by the presence is important to investigate firstly if there is a of six closed, narrow and elongated lunules preference of the pea crab for one of the sand (five ambulacrals and one interambulacral). dollars and secondly whether D. crinitichelis The testis
Recommended publications
  • Echinoidea) Using Culture-Independent Methods
    Journal of Invertebrate Pathology 100 (2009) 127–130 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/yjipa Short Communication Characterization of the bacterial community associated with body wall lesions of Tripneustes gratilla (Echinoidea) using culture-independent methods Pierre T. Becker a,*, David C. Gillan b, Igor Eeckhaut a,* a Laboratoire de biologie marine, Université de Mons-Hainaut, 6 Avenue du Champ de Mars, 7000 Mons, Belgium b Laboratoire de biologie marine, CP160/15, Université Libre de Bruxelles, 50 Avenue F. D. Roosevelt, 1050 Bruxelles, Belgium article info abstract Article history: The bacterial community associated with skin lesions of the sea urchin Tripneustes gratilla was investi- Received 17 July 2008 gated using 16S ribosomal RNA gene cloning and fluorescent in situ hybridization (FISH). All clones were Accepted 5 November 2008 classified in the Alphaproteobacteria, Gammaproteobacteria and Cytophaga–Flexibacter–Bacteroides (CFB) Available online 11 November 2008 bacteria. Most of the Alphaproteobacteria were related to the Roseobacter lineage and to bacteria impli- cated in marine diseases. The majority of the Gammaproteobacteria were identified as Vibrio while CFB Keywords: represented only 9% of the total clones. FISH analyses showed that Alphaproteobacteria, CFB bacteria Tripneustes gratilla and Gammaproteobacteria accounted respectively for 43%, 38% and 19% of the DAPI counts. The impor- Lesions tance of the methods used is emphasized. Cloning FISH Ó 2009 Published by Elsevier Inc. Sea urchin Bacterial infection 1. Introduction healthy echinoids (Becker et al., 2007). In the present study, a cul- ture-independent method (16S rRNA gene cloning) is used in order Body wall lesions consisting of infected areas of the test with to obtain a thorough identification of the bacterial community loss of epidermis and appendages are recurrently observed in associated with T.
    [Show full text]
  • South Carolina Department of Natural Resources
    FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas.
    [Show full text]
  • Poros Filodiales En La Identificación De Dos Subespecies De Erizos De Mar: Meoma Ventricosa Grandis (Pacífico) Y Meoma Ventricosa Ventricosa (Atlántico) En México
    Poros filodiales en la identificación de dos subespecies de erizos de mar: Meoma ventricosa grandis (Pacífico) y Meoma ventricosa ventricosa (Atlántico) en México M.A. Torres-Martínez1, F.A. Solís-Marín2, A. Laguarda-Figueras2 & B.E. Buitrón Sánchez3 1. Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), México D.F., México;[email protected] 2. Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología (ICML), UNAM, Apdo. post. 70-305, México D.F. 04510, México; [email protected] 3. Instituto de Geología, Departamento de Paleontología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Delegación Coyoacán, 04510, México D.F., México; [email protected] Recibido 23-VIII-2007. Corregido 23-IV-2008. Aceptado 17-IX-2008. Abstract: Phyllodial pores and the identification of two subspecies of sea urchins in Mexico: Meoma ventri- cosa grandis (Pacific) and Meoma ventricosa ventricosa (Atlantic). The genus Meoma inhabits Mexican waters and is represented by the subspecies Meoma ventricosa grandis in the Pacific and Meoma ventricosa ventricosa in the Atlantic. Both subespecies are morphologically similar. We studied the morphological differences between Meoma ventricosa grandis and Meoma ventricosa ventricosa, specifically in the patterns of phyllodial pore pairs and kind of sediments where they live. The number of pores differs among subspecies until M. ventricosa grandis reaches 110 mm of total lenght. The difference in the number of phyllodial pores can be an adaptation to the size of silt grain. Rev. Biol. Trop. 56 (Suppl. 3): 13-17. Epub 2009 January 05. Key words: sea urchins, Meoma ventricosa grandis, Meoma ventricosa ventricosa, México, phyllodial pores.
    [Show full text]
  • For Peer Review
    Page 1 of 40 Geological Journal Page 1 of 32 1 2 3 Neogene echinoids from the Cayman Islands, West Indies: regional 4 5 6 implications 7 8 9 10 1 2 3 11 STEPHEN K. DONOVAN *, BRIAN JONES and DAVID A. T. HARPER 12 13 14 15 1Department of Geology, Naturalis Biodiversity Center, Leiden, the Netherlands 16 17 2Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada, T6G 2E3 18 For Peer Review 19 3 20 Department of Earth Sciences, Durham University, Durham, UK 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 *Correspondence to: S. K. Donovan, Department of Geology, Naturalis Biodiversity Center, 49 50 Darwinweg 2, 2333 CR Leiden, the Netherlands. 51 52 E-mail: [email protected] 53 54 55 56 57 58 59 60 http://mc.manuscriptcentral.com/gj Geological Journal Page 2 of 40 Page 2 of 32 1 2 3 The first fossil echinoids are recorded from the Cayman Islands. A regular echinoid, Arbacia? sp., the 4 5 spatangoids Brissus sp. cf. B. oblongus Wright and Schizaster sp. cf. S. americanus (Clark), and the 6 7 clypeasteroid Clypeaster sp. are from the Middle Miocene Cayman Formation. Test fragments of the 8 9 mellitid clypeasteroid, Leodia sexiesperforata (Leske), are from the Late Pleistocene Ironshore 10 11 Formation. Miocene echinoids are preserved as (mainly internal) moulds; hence, all species are left 12 13 14 in open nomenclature because of uncertainties regarding test architecture.
    [Show full text]
  • Mollusca: Cassidae), a Heavily Exploited Marine Gastropod?
    SHORT REVIEW Ethnobiology and Conservation 2017, 6:16 (27 August 2017) doi:10.15451/ec2017­08­6.16­1­13 ISSN 2238­4782 ethnobioconservation.com What do we know about Cassis tuberosa (Mollusca: Cassidae), a heavily exploited marine gastropod? Thelma Lúcia Pereira Dias1*, Ellori Laíse Silva Mota1,2, Rafaela Cristina de Souza Duarte1,2 and Rômulo Romeu Nóbrega Alves1 ABSTRACT Cassis tuberosa is a key species in reefs and sandy beaches, where it plays an essential role as a predator of sea urchins and sand dollars. Due to the beauty of its shell, it is one of the most exploited species for trade as marine souvenirs throughout its distribution in the Western Atlantic. Despite its ecological importance, there is little available information about population and biological data or the impacts of its removal from its natural habitats. Considering the economic and ecological importance of this species, this study provides a short review of existing studies and highlights research and conservation needs for this highly exploited marine gastropod. Keywords: Brazil; Predatory Gastropod; Marine Curio Trade; Species Conservation; Shell Trade 1 Departamento de Biologia, Universidade Estadual da Paraíba, Av. Baraúnas, 351, Bairro Universitário, Campina Grande, PB, 58429­500, Brazil 2 Programa de Pós­Graduação em Ciências Biológicas (Zoologia), Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, PB, 58059­970, Brazil * E­mail address: DIAS, T.L.P. ([email protected]), MOTA, E.L.S. ([email protected]), DUARTE, R.C.S. ([email protected]), ALVES, R.R.N. ([email protected]) INTRODUCTION species has a heavy and large shell, reaching up to 30 cm in total length (Ardila et The king helmet Cassis tuberosa al.
    [Show full text]
  • Essential Fish Habitat Assessment
    APPENDIX L ESSENTIAL FISH HABITAT (PHYSICAL HABITAT) JACKSONVILLE HARBOR NAVIGATION (DEEPENING) STUDY DUVAL COUNTY, FLORIDA THIS PAGE LEFT INTENTIONALLY BLANK ESSENTIAL FISH HABITAT ASSESSMENT JACKSONVILLE HARBOR NAVIGATION STUDY DUVAL COUNTY, FL Final Report January 2011 Prepared for: Jacksonville District U.S. Army Corps of Engineers Prudential Office Bldg 701 San Marco Blvd. Jacksonville, FL 32207 Prepared by: Dial Cordy and Associates Inc. 490 Osceola Avenue Jacksonville Beach, FL 32250 TABLE OF CONTENTS Page LIST OF TABLES ................................................................................................................. III LIST OF FIGURES ............................................................................................................... III 1.0 INTRODUCTION ............................................................................................................ 1 2.0 ESSENTIAL FISH HABITAT DESIGNATION ................................................................. 6 2.1 Assessment ........................................................................................................... 6 2.2 Managed Species .................................................................................................. 8 2.2.1 Penaeid Shrimp .................................................................................................. 9 2.2.1.1 Life Histories ............................................................................................... 9 2.2.1.1.1 Brown Shrimp ......................................................................................
    [Show full text]
  • An Invitation to Monitor Georgia's Coastal Wetlands
    An Invitation to Monitor Georgia’s Coastal Wetlands www.shellfish.uga.edu By Mary Sweeney-Reeves, Dr. Alan Power, & Ellie Covington First Printing 2003, Second Printing 2006, Copyright University of Georgia “This book was prepared by Mary Sweeney-Reeves, Dr. Alan Power, and Ellie Covington under an award from the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of OCRM and NOAA.” 2 Acknowledgements Funding for the development of the Coastal Georgia Adopt-A-Wetland Program was provided by a NOAA Coastal Incentive Grant, awarded under the Georgia Department of Natural Resources Coastal Zone Management Program (UGA Grant # 27 31 RE 337130). The Coastal Georgia Adopt-A-Wetland Program owes much of its success to the support, experience, and contributions of the following individuals: Dr. Randal Walker, Marie Scoggins, Dodie Thompson, Edith Schmidt, John Crawford, Dr. Mare Timmons, Marcy Mitchell, Pete Schlein, Sue Finkle, Jenny Makosky, Natasha Wampler, Molly Russell, Rebecca Green, and Jeanette Henderson (University of Georgia Marine Extension Service); Courtney Power (Chatham County Savannah Metropolitan Planning Commission); Dr. Joe Richardson (Savannah State University); Dr. Chandra Franklin (Savannah State University); Dr. Dionne Hoskins (NOAA); Dr. Charles Belin (Armstrong Atlantic University); Dr. Merryl Alber (University of Georgia); (Dr. Mac Rawson (Georgia Sea Grant College Program); Harold Harbert, Kim Morris-Zarneke, and Michele Droszcz (Georgia Adopt-A-Stream); Dorset Hurley and Aimee Gaddis (Sapelo Island National Estuarine Research Reserve); Dr. Charra Sweeney-Reeves (All About Pets); Captain Judy Helmey (Miss Judy Charters); Jan Mackinnon and Jill Huntington (Georgia Department of Natural Resources).
    [Show full text]
  • 1 What Is a Coral Reef?
    THE NATURENCYCLOPEDIA SERIES THE C L COLOR BOO · by Katherine Katherine Orr was born in New York, received a B.A. in Biology from Goucher College in 1972 and later an M .S. in Zoology at the University of Connecticut. She has spent many years both in the Caribbean and the Pacific on marine research projects and conducted numerous courses on awareness of the marine environment which is increasingly being threatened and destroyed by man. From 1982 until late 1986 she was attached to the Marine Biological Laboratory, Woods Hole, Mass. and now lives at Marathon Shores, Florida. THE CORAL REEF COLORING BOOK by Katherine Orr ~ Stemmer House Publishers 4 White Brook Rd. Gilsum, NH 03448 Copyright © 1988 Katherine Orr This book was first published by Macmillan Publishers Ltd., London and Basingstoke. It is derived from a project funded by World Wildlife - U.S. No part of this book may be used or reproduced in any manner whatsoever, electrical or mechanical, including xerography, microfilm, recording and photocopying, without written permission, except in the case of brief quotations in critical articles and reviews. The book may not be reproduced as a whole, or in substantial part, without pennission in writing from the publishers. Inquiries should be directed to Stemmer House Publishers, Inc. 4 White Brook Rd. Gilsum, NH 03448 A Barbara Holdridge book Printed and bound in the United States of America First printing 1988 Second printing 1990 Third printing 1992 Fourth printing 1995 Fifth printing 1999 Sixth printing 2003 Seventh printing 2007
    [Show full text]
  • New Echinoderm Remains in the Buried Offerings of the Templo Mayor of Tenochtitlan, Mexico City
    New echinoderm remains in the buried offerings of the Templo Mayor of Tenochtitlan, Mexico City Carolina Martín-Cao-Romero1, Francisco Alonso Solís-Marín2, Andrea Alejandra Caballero-Ochoa4, Yoalli Quetzalli Hernández-Díaz1, Leonardo López Luján3 & Belem Zúñiga-Arellano3 1. Posgrado en Ciencias del Mar y Limnología, UNAM, México; [email protected], [email protected] 2. Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología (ICML), Universidad Nacional Autónoma de México, México; [email protected] 3. Proyecto Templo Mayor (PTM), Instituto Nacional de Antropología e Historia, México (INAH). 4. Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Apdo. 70-305, Ciudad de México, México, C.P. 04510; [email protected] Received 01-XII-2016. Corrected 02-V-2017. Accepted 07-VI-2017. Abstract: Between 1978 and 1982 the ruins of the Templo Mayor of Tenochtitlan were exhumed a few meters northward from the central plaza (Zócalo) of Mexico City. The temple was the center of the Mexica’s ritual life and one of the most famous ceremonial buildings of its time (15th and 16th centuries). More than 200 offerings have been recovered in the temple and surrounding buildings. We identified vestiges of 14 species of echino- derms (mostly as disarticulated plates). These include six species of sea stars (Luidia superba, Astropecten regalis, Astropecten duplicatus, Phataria unifascialis, Nidorellia armata, Pentaceraster cumingi), one ophiu- roid species (Ophiothrix rudis), two species of sea urchins (Eucidaris thouarsii, Echinometra vanbrunti), four species of sand dollars (Mellita quinquiesperforata, Mellita notabilis, Encope laevis, Clypeaster speciosus) and one species of sea biscuit (Meoma ventricosa grandis).
    [Show full text]
  • Growth and Sediment Disturbances of Caulerpa Spp
    GROWTH AND SEDIMENT DISTURBANCES OF CAULERPA SPP. (CHLOROPHYTA) IN A SUBMARINE CANYON S. L. WILLIAMS1, V. A. BREDA1, T. W. ANDERSON2 and B. B. NYDEN3 1Marine Sciences Research Center, State University of New York, Stony Brook, New York 11794, USA 2Moss Landing Marine Laboratories, P.O. Box 223, Moss Landing, California 95039, USA 3NOAA's National Undersea Research Program, West Indies Laboratory, Teague Bay, Christiansted, St. Croix, US Virgin Islands 00820 [Converted to electronic format by Damon J. Gomez (NOAA/RSMAS) in 2003. Copy available at the NOAA Miami Regional Library. Minor editorial changes were made.] MARINE ECOLOGY - PROGRESS SERIES Vol. 21 : 275-281, 1985 Published February 11 Mar. Ecol. Prog . Ser . Growth and sediment disturbances of Caulerpa spp . (Chlorophyta) in a submarine canyon S . L . Williams'*, V . A . Breda', T. W. Anderson 2 and B . B . Nyden3 1 Marine Sciences Research Center, State University of New York, Stony Brook, New York 11794, USA 'Moss Landing Marine Laboratories, P .O . Box 223, Moss Landing, California 95039, USA 3 NOAA's National Undersea Research Program, West Indies Laboratory, Teague Bay, Christiansted, St . Croix, US Virgin Islands 00820 ABSTRACT : Growth rates of 7 species of Caulerpa were measured in situ at depths of 20 m in Salt River canyon, St . Croix, US Virgin Islands . Mean stolon elongation rate for all species of Caulerpa studied d_1 . was approximately 1 cm Dry biomass accumulated in this new growth was less than 10 mg d -1 , and specific growth rates were less than 10 % d -1 ; these values are low compared to rates of many benthic macroalgae .
    [Show full text]
  • The Behavior of the Pea Crab Fabia Subquadrata in Relation to Its Mussel Host, Mytilus Californianus
    AN ABSTRACT OF THE THESIS OF Joseph Stanley Lidrich for the Doctor of Philosophy (Name) (Degree) in Zoology presented on otta 0\-)\(1 (Major) (Rate) Title:THE BEHAVIOR OF THE PEA CRAB FABIASUBQUADRATA IN RELATION TO ITS MUSSEL HOST, MYTILUS CALIFORNIANUS Redacted for privacy Abstract approved: UJohn A. Wiens The pea crab Fabia subquadrata is frequently found as a sym- biont of mussels, living within the mantle cavity.This study exam- ined the nature of this symbiotic relationship by recording the pattern of distribution of individuals in a mussel bed, testing responsiveness to host secretions, and observing the feeding mechanics and behavior of Fabia. Individual pea crabs were unevenly distributed in an intertidal bed of Mytilus californianus at Yaquina Head, near Newport, Oregon. The greatest degree of infestation (25%) was in the largest mussels which were subjected to the most nearly continuous water cover. This pattern of distribution was attributed to a combination of the feeding behavior of the crab and the effects of tidal level. The responsiveness of Fabia to chemical secretions of the mussels was tested by presenting liberated crabs with a choice between sea water conditioned by live mussels and water drawn direct ly from Yaquina Bay.Tests were conducted to determine the role of sex and maturation, by dividing the pea crabs into three groups: im- mature females, adult females, and adult males.The effects of light, darkness, and deprivation of its habitat (the host) were also tested. Under these various test conditions, Fabia showed no measurable response to any host factor from Mytilus. When the crab was inside the mussel it faced the posterior and fed by intercepting the major mucus strand in the food groove of a ctenida.This behavior took full advantage of the feeding tracts of the mussel.
    [Show full text]
  • Zootaxa, Parapinnixa Bolagnosi, a New Species of Pinnotherid Crab
    Zootaxa 1607: 57–62 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Parapinnixa bolagnosi, a new species of pinnotherid crab from Cubagua Island and Los Frailes Archipelago, Venezuela (Crustacea: Brachyura: Pinnotheridae) IVÁN HERNÁNDEZ-ÁVILA1 & ERNESTO CAMPOS2 1Laboratorio de Zoología, Escuela de Ciencias Aplicadas del Mar, Universidad de Oriente, Boca del Río, Margarita Island, Venezu- ela. E-mail: [email protected] 2Facultad de Ciencias, Universidad Autónoma de Baja California, Apartado Postal 296, Ensenada, Baja California, 22800 México. E-mail: [email protected]; [email protected] Abstract Parapinnixa bolagnosi new species, is described from Cubagua Island and Los Frailes Archipelago in the Caribbean Sea off Venezuela based on female specimens. The new species is distinguished from the other nominal species of the genus by having a third maxilliped with a biarticulated palp and by the absence of an exopod. The description of the genus Parapinnixa Holmes, 1894, is amended to accommodate these two distinctive characters. Key words: Crustacea, Brachyura, Pinnotheridae, Parapinnixa bolagnosi, new species, Caribbean, Venezuela Resumen Sobre la base de especimenes hembras, Parapinnixa bolagnosi, nueva especie, es descrita de la Isla Cubagua y el Archipiélago Los Frailes en el Mar Caribe de Venezuela. La nueva especie se distingue de las otras especies nominales de este género por tener un tercer maxilípedo con un palpo biarticulado y la ausencia de su exópodo. El género Parapin- nixa es enmendado para acomodar estos dos caracteres distintivos. Palabras clave: Crustacea, Brachyura, Pinnotheridae, Parapinnixia, Parapinnixa bolagnosi, nueva especie, mar Caribe, Venezuela Introduction The genus Parapinnixa Holmes, 1894, comprises nine American species: four from the Eastern Pacific (Cali- fornia to Ecuador) and five from the Western Atlantic (North Carolina to Colombia) (Thoma et al.
    [Show full text]