Brachyura: Pinnotheridae)

Total Page:16

File Type:pdf, Size:1020Kb

Brachyura: Pinnotheridae) BULLETIN OF MARINE SCIENCE. 32(2): 584-594, 1982 CORAL REEF PAPER ECHINODERM SPINE STRUCTURE, FEEDING AND HOST RELA TrONSHIPS OF FOUR SPECIES OF DISSODACTYLUS (BRACHYURA: PINNOTHERIDAE) Malcolm Telford ABSTRACT Stomach contents of four species of Dissodactylus living on different host echinoids were examined. Estimates were made of the relative degrees of host dependence of these crabs. Dissodactylus primitivus, collected on the spatangoid urchins, Meoma ventricosa and Plagiobrissus grandis, takes about 50 to 60% of its food from the hosts. Both D. crinitichelis and D. mellitae, symbiotic with the c1ypeastroids Mellita sexiesperforata and M. quin- quiesperforata respectively, obtain over 80% of their food from host tissues whilst D. cal- mani appears to feed exclusively on the tissues of its c1ypeasteroid host, Clypeaster rosa- ceus. Differences in behavior and feeding habits can be attributed partly to the structure of host spines, Allometric analysis and scanning electron microscopy indicate that the spines of C. rosaceus are less porous than those of the other species examined. The spines of Mellita are significantly more porous than others, and those of Plagiobrissus grandis are hollow. On host species with porous spines, considerable areas are denuded by the feeding activity of the crabs. Morphometry of crab chelae is clearly related to feeding activity. Dissodactylus calmani, with slender claws, has not been found with spines in the stomach whereas D. me/litae has relatively small but very robust chelae and was always found to include spines in its diet. Differences in feeding habits, morphometry and life cycles indicate that D. primitivus is truly primitive, D. calmani the most specialized, and that D. crinitichelis and D. mellitae occupy an intermediate position. With few exceptions the known species of the genus Dissodactylus are com- mensal with or parasitic upon echinoids, particularly clypeastroids. The exact relationship between these little crabs and their hosts has been the subject of some speculation. Food preferences have been reported for only a single species. In 1935 Glassell (cited by Hyman, 1955 and Dexter, 1977) observed that D. lock- ing/oni eats the feces of its host and therefore appears to be a benign commensal. On the other hand, Dexter (1977) reports that D. nitidus may cause extensive damage to its clypeastroid host, Encope stokesi, by clipping away spines around the lunules. Under laboratory conditions the clipped areas may become very large and impair movement and feeding of the host. Presumably D. nitidus feeds, at least in part, on the clipped spines, in which case it should be regarded as truly parasitic. Although there are a dozen or more species of Dissodactylus reported as symbionts on as many or more host echinoids (Schmitt et aI., 1973), except for the above citations, no other mention has been made of damage to hosts nor offeed- ing activity. However, it has been generally accepted that the relationship presents some advantages to the crabs. In common with other pinnotherids, species of Dissodactylus are small and have greatly reduced eyes. They show little morphological adaptatiQJ1 to the para- sitic habit except for minor species differences in morphometry which adapt them to individual host species. Many species, including those of Dissodactylus, are host-specific or occur on only a small number of related host forms. This paper presents data on the stomach contents of four Atlantic and Caribbean species 584 TELFORD: HOST RELATIONSHIPS OF D1SS0DACTYLUS SPP. 585 which have different degrees of host dependence. Allometric analysis and SEM study of host spines combined with measurements of crab chelae, provide some explanation of feeding activities. Note on Crab Species and Hosts Dissodactylus primitivus Bouvier.-This species is a common symbiont of Meo- ma ventricosa (Spatangoida) in Barbados (Telford, 1978) and in Jamaica, where it is probably the unidentified species of Dissodactylus to which Chesher (1969) referred. In the study reported here, material from both Barbados and Jamaica was used. In the latter location D. primitivus was found also on Plagiobrissus grandis (Spatangoida). This is a new host record for the species, which remains the only one known to infest spatangoids. At Discovery Bay (Jamaica), the two hosts occur in mixed flocks in very shallow water (1.5-5.0 m), and both harbored abundant crabs. On Meoma the crabs generally produce no visible areas of dam- age but on Plagiobrissus they denude large, circular patches on the oral surfac(:. The Jamaican specimens differed from those collected in Barbados by being sparsely spotted and mottled with purple-brown. Dissodactylus crinitichelis Moreira.-Although reported to occur on several species of hosts (Schmitt et al., 1973), specimens were only available from Mel- lita (Leodia) sexiesperforata (Clypeastroida) collected in Barbados. Dissodactylus mellitae (Rathbun).-Specimens were taken from the five-Iunuled sand dollar M. quinquiesperforata in the region of Beaufort, North Carolina. This species has also been reported to occur on other hosts. Like D. crinitichelis, D. mellitae has never been reported free-living. Dissodactylus calmani Rathbun.-Although previously regarded as free-living (Rathbun, 1918; Voss and Voss, 1955) a common host, Clypeaster rosaceus (Cly- peastroida), has now been found. The first specimens were obtained from a solitary host collected at Mosquito Island (B.V.I.). Many additional specimens were collected (by Gerhard Pohle) at Bahia Honda, Florida, and by the author at Discovery Bay, Jamaica. Subsequently the writer has examined a small col- lection in the Smithsonian Institution, Washington (cat #91220), consisting of nine males and four females found by F. M. Bayer in 1950 " ... clinging to the bottom of Clypeaster rosaceus" at Indian Key, Florida. The crabs were always found on the oral (ventral) surface, usually close to the mouth. In Jamiaca an estimated 25-30% of the sea biscuit population harbored crabs, usually only one per host but the maximum number observed on a single host was seven. Subjec- tive estimates suggest that the Bahia Honda population was more heavily infested, probably over 50%. Dissodactylus calmani differs from all other species in having a flatter, more quadrangular carapace with dark brown pigmentation and white .. banded legs. The Caribbean specimens are distinctly rugose, those from Florida smoother. If this species spends time freeliving, as suggested by Voss and Voss (1955), its dark coloration might provide a significant measure of protection from predation. Further, since C. rosaceus is dark colored and does not burrow, th(: crabs remain inconspicuous when in situ on the hosts. MATERIALS AND METHODS Collection and Preservation.-Host organisms were colected by diving and placed in individual plastic: bags. The associated crabs were picked off, chilled in a freezer to prevent autotomy and fixed in 10% neutral butTered formalin for 48 h before transfer to 80% ethanol for storage. Prior to fixation, the posterior margin of the carapace was raised slightly to ensure rapid penetration. Specimens of the 586 BULLETIN OF MARINE SCIENCE, VOL. 32. NO.2. 1982 various hosts were injected peristomially and immersed in the same fixative for 48 h, then stored in 80% ethanol. Crab Stomach Contents.-Following dissection the stomach contents were strewn on microscope slides in 50% ethanediol (ethylene glycol) which retards evaporation. Some permanent mounts were made by air drying and heat fixing slides which were then covered with "Permount" (Fisher Scien- tific). Stomach contents were identified as of host origin (spines, pedicellariae, podia, spicules etc); or of other origin (diatoms, algal filaments, crustacean setae and fine granules of sand). Host Materials.-Temporary mounts of surface tissues, food groove and gut contents were prepared as above, for comparison with the contents of crab stomachs. Cleaned preparations of spines and ossic1es were made by dissolving the soft tissues in commercial bleach (sodium hypochlorite). The residual calcite structures were carefully washed in distilled water and rinsed in ethanol to promote rapid drying. Spine Allometry.-Individual, uniformly shaped spines of several sizes, from each host species, were measured by eye-piece micrometer and weighed on a Mettler ME 22 microgram balance. For each type of spine the volume was modelled geometrically according to its shape. The volume-weight regression line was calculated on log-transformed data, assuming a power curve relationship W = aVh (I) or, W = ala. Vh (2) where "a" in equation 1is a complex constant comprised of two parts: a" the shape coefficient, depends on how closely the geometrical model of volume fits the spines and a., the density coefficient, depends on porosity. Calcite has a density of2.71 gcm3• Provided that at and a2are truly constant, the slope of the line, "b," should be 1.00. Scanning Electron Microscopy.-Washed spines were dried, broken to expose the cross section, mounted on stubs and sputter coated by a SEMPREP 2 (Nannotech Thin Films Ltd., Cambridge, England) before scanning with a Cambridge 180 SEM. The outlines and pore spaces of cross sections were traced from micrographs on to squared paper and porosities were estimated by counting squares. Observations of Feeding.-Specimens of D. primitivus were held individually without access to hosts for 48 h, after which they were placed on living fragments of tests with the spines still moving. Observations on whole urchins were very difficult because the crabs are photophobic and seek shelter beneath the urchins, which are themselves often entirely buried. Crabs were observed for 1 hand either sacrificed immediately or at intervals during the following 5 h. RESULTS Dissodactylus primitivus from M. ventricosa, Barbados .-Stomach and intestine contents of 23 individuals were examined. Nineteen of them contained fragments of spines from the host (Fig. 1), many with tissue still attached; two also had recognizable fragments of pedicellariae. All of the crabs had ingested diatoms, most often naviculoids but sigmoidal and discoidal forms were not uncommon. A few had conspicuous plumose setae, probably from their own exuvia.
Recommended publications
  • Echinoidea) Using Culture-Independent Methods
    Journal of Invertebrate Pathology 100 (2009) 127–130 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/yjipa Short Communication Characterization of the bacterial community associated with body wall lesions of Tripneustes gratilla (Echinoidea) using culture-independent methods Pierre T. Becker a,*, David C. Gillan b, Igor Eeckhaut a,* a Laboratoire de biologie marine, Université de Mons-Hainaut, 6 Avenue du Champ de Mars, 7000 Mons, Belgium b Laboratoire de biologie marine, CP160/15, Université Libre de Bruxelles, 50 Avenue F. D. Roosevelt, 1050 Bruxelles, Belgium article info abstract Article history: The bacterial community associated with skin lesions of the sea urchin Tripneustes gratilla was investi- Received 17 July 2008 gated using 16S ribosomal RNA gene cloning and fluorescent in situ hybridization (FISH). All clones were Accepted 5 November 2008 classified in the Alphaproteobacteria, Gammaproteobacteria and Cytophaga–Flexibacter–Bacteroides (CFB) Available online 11 November 2008 bacteria. Most of the Alphaproteobacteria were related to the Roseobacter lineage and to bacteria impli- cated in marine diseases. The majority of the Gammaproteobacteria were identified as Vibrio while CFB Keywords: represented only 9% of the total clones. FISH analyses showed that Alphaproteobacteria, CFB bacteria Tripneustes gratilla and Gammaproteobacteria accounted respectively for 43%, 38% and 19% of the DAPI counts. The impor- Lesions tance of the methods used is emphasized. Cloning FISH Ó 2009 Published by Elsevier Inc. Sea urchin Bacterial infection 1. Introduction healthy echinoids (Becker et al., 2007). In the present study, a cul- ture-independent method (16S rRNA gene cloning) is used in order Body wall lesions consisting of infected areas of the test with to obtain a thorough identification of the bacterial community loss of epidermis and appendages are recurrently observed in associated with T.
    [Show full text]
  • South Carolina Department of Natural Resources
    FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas.
    [Show full text]
  • Poros Filodiales En La Identificación De Dos Subespecies De Erizos De Mar: Meoma Ventricosa Grandis (Pacífico) Y Meoma Ventricosa Ventricosa (Atlántico) En México
    Poros filodiales en la identificación de dos subespecies de erizos de mar: Meoma ventricosa grandis (Pacífico) y Meoma ventricosa ventricosa (Atlántico) en México M.A. Torres-Martínez1, F.A. Solís-Marín2, A. Laguarda-Figueras2 & B.E. Buitrón Sánchez3 1. Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), México D.F., México;[email protected] 2. Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología (ICML), UNAM, Apdo. post. 70-305, México D.F. 04510, México; [email protected] 3. Instituto de Geología, Departamento de Paleontología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Delegación Coyoacán, 04510, México D.F., México; [email protected] Recibido 23-VIII-2007. Corregido 23-IV-2008. Aceptado 17-IX-2008. Abstract: Phyllodial pores and the identification of two subspecies of sea urchins in Mexico: Meoma ventri- cosa grandis (Pacific) and Meoma ventricosa ventricosa (Atlantic). The genus Meoma inhabits Mexican waters and is represented by the subspecies Meoma ventricosa grandis in the Pacific and Meoma ventricosa ventricosa in the Atlantic. Both subespecies are morphologically similar. We studied the morphological differences between Meoma ventricosa grandis and Meoma ventricosa ventricosa, specifically in the patterns of phyllodial pore pairs and kind of sediments where they live. The number of pores differs among subspecies until M. ventricosa grandis reaches 110 mm of total lenght. The difference in the number of phyllodial pores can be an adaptation to the size of silt grain. Rev. Biol. Trop. 56 (Suppl. 3): 13-17. Epub 2009 January 05. Key words: sea urchins, Meoma ventricosa grandis, Meoma ventricosa ventricosa, México, phyllodial pores.
    [Show full text]
  • Dissodactylus Crinitichelismoreira, 1901 and Leodia Sexiesperforata
    Nauplius 19(1): 63-70, 2011 63 Dissodactylus crinitichelis Moreira, 1901 and Leodia sexiesperforata (Leske, 1778): first record of this symbiosis in Brazil Vinicius Queiroz, Licia Sales, Elizabeth Neves and Rodrigo Johnsson LABIMAR (Crustacea, Cnidaria & Fauna Associada), Universidade Federal da Bahia. Avenida Adhemar de Barros s/nº, Campus Ondina. CEP 40170- 290. Salvador, BA, Brazil. E-mail: (VQ) [email protected]; (LS) [email protected]; (EN) [email protected]; (RJ) [email protected] Abstract The crabs of the genusDissodactylus are well known as ectosymbionts of irregular echinoids belonging to Clypeasteroida and Spatangoida. Dissodactylus crinitichelis is the only species of the genus reported in Brazil. The pea crab species has been already recorded associated with four species of echinoids in Brazilian waters. This paper reviews the known hosts for D. crinitichelis and registers for the first time the association between the pea crab and the sand dollar Leodia sexiesperforata increasing to five the number of known hosts for the crab. Key Words: Ecological association, ectosymbiont, Pinnotheridae. Introduction includes about 302 species of little crabs (Ng et al., 2008) highly specialized in living The diversity of the marine environment, in close association with other invertebrates. specially the benthic substratum is commonly The family is known for their association reflected by many interactions among with various invertebrate taxa, such as organisms, even free living ones. Such event molluscs, polychaetes, ascidians, crustaceans is quite common since many of these species or echinoderms (holothurians and irregular act as substratum or environment for others. echinoids) (Schmitt et al., 1973; Powers, 1977; The existence of many organisms living in Williams, 1984; Takeda et al., 1997; Thoma association and their close relation allows for et al., 2005, 2009; Ahyong and Ng, 2007).
    [Show full text]
  • Essential Fish Habitat Assessment
    APPENDIX L ESSENTIAL FISH HABITAT (PHYSICAL HABITAT) JACKSONVILLE HARBOR NAVIGATION (DEEPENING) STUDY DUVAL COUNTY, FLORIDA THIS PAGE LEFT INTENTIONALLY BLANK ESSENTIAL FISH HABITAT ASSESSMENT JACKSONVILLE HARBOR NAVIGATION STUDY DUVAL COUNTY, FL Final Report January 2011 Prepared for: Jacksonville District U.S. Army Corps of Engineers Prudential Office Bldg 701 San Marco Blvd. Jacksonville, FL 32207 Prepared by: Dial Cordy and Associates Inc. 490 Osceola Avenue Jacksonville Beach, FL 32250 TABLE OF CONTENTS Page LIST OF TABLES ................................................................................................................. III LIST OF FIGURES ............................................................................................................... III 1.0 INTRODUCTION ............................................................................................................ 1 2.0 ESSENTIAL FISH HABITAT DESIGNATION ................................................................. 6 2.1 Assessment ........................................................................................................... 6 2.2 Managed Species .................................................................................................. 8 2.2.1 Penaeid Shrimp .................................................................................................. 9 2.2.1.1 Life Histories ............................................................................................... 9 2.2.1.1.1 Brown Shrimp ......................................................................................
    [Show full text]
  • An Invitation to Monitor Georgia's Coastal Wetlands
    An Invitation to Monitor Georgia’s Coastal Wetlands www.shellfish.uga.edu By Mary Sweeney-Reeves, Dr. Alan Power, & Ellie Covington First Printing 2003, Second Printing 2006, Copyright University of Georgia “This book was prepared by Mary Sweeney-Reeves, Dr. Alan Power, and Ellie Covington under an award from the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of OCRM and NOAA.” 2 Acknowledgements Funding for the development of the Coastal Georgia Adopt-A-Wetland Program was provided by a NOAA Coastal Incentive Grant, awarded under the Georgia Department of Natural Resources Coastal Zone Management Program (UGA Grant # 27 31 RE 337130). The Coastal Georgia Adopt-A-Wetland Program owes much of its success to the support, experience, and contributions of the following individuals: Dr. Randal Walker, Marie Scoggins, Dodie Thompson, Edith Schmidt, John Crawford, Dr. Mare Timmons, Marcy Mitchell, Pete Schlein, Sue Finkle, Jenny Makosky, Natasha Wampler, Molly Russell, Rebecca Green, and Jeanette Henderson (University of Georgia Marine Extension Service); Courtney Power (Chatham County Savannah Metropolitan Planning Commission); Dr. Joe Richardson (Savannah State University); Dr. Chandra Franklin (Savannah State University); Dr. Dionne Hoskins (NOAA); Dr. Charles Belin (Armstrong Atlantic University); Dr. Merryl Alber (University of Georgia); (Dr. Mac Rawson (Georgia Sea Grant College Program); Harold Harbert, Kim Morris-Zarneke, and Michele Droszcz (Georgia Adopt-A-Stream); Dorset Hurley and Aimee Gaddis (Sapelo Island National Estuarine Research Reserve); Dr. Charra Sweeney-Reeves (All About Pets); Captain Judy Helmey (Miss Judy Charters); Jan Mackinnon and Jill Huntington (Georgia Department of Natural Resources).
    [Show full text]
  • 1 What Is a Coral Reef?
    THE NATURENCYCLOPEDIA SERIES THE C L COLOR BOO · by Katherine Katherine Orr was born in New York, received a B.A. in Biology from Goucher College in 1972 and later an M .S. in Zoology at the University of Connecticut. She has spent many years both in the Caribbean and the Pacific on marine research projects and conducted numerous courses on awareness of the marine environment which is increasingly being threatened and destroyed by man. From 1982 until late 1986 she was attached to the Marine Biological Laboratory, Woods Hole, Mass. and now lives at Marathon Shores, Florida. THE CORAL REEF COLORING BOOK by Katherine Orr ~ Stemmer House Publishers 4 White Brook Rd. Gilsum, NH 03448 Copyright © 1988 Katherine Orr This book was first published by Macmillan Publishers Ltd., London and Basingstoke. It is derived from a project funded by World Wildlife - U.S. No part of this book may be used or reproduced in any manner whatsoever, electrical or mechanical, including xerography, microfilm, recording and photocopying, without written permission, except in the case of brief quotations in critical articles and reviews. The book may not be reproduced as a whole, or in substantial part, without pennission in writing from the publishers. Inquiries should be directed to Stemmer House Publishers, Inc. 4 White Brook Rd. Gilsum, NH 03448 A Barbara Holdridge book Printed and bound in the United States of America First printing 1988 Second printing 1990 Third printing 1992 Fourth printing 1995 Fifth printing 1999 Sixth printing 2003 Seventh printing 2007
    [Show full text]
  • New Echinoderm Remains in the Buried Offerings of the Templo Mayor of Tenochtitlan, Mexico City
    New echinoderm remains in the buried offerings of the Templo Mayor of Tenochtitlan, Mexico City Carolina Martín-Cao-Romero1, Francisco Alonso Solís-Marín2, Andrea Alejandra Caballero-Ochoa4, Yoalli Quetzalli Hernández-Díaz1, Leonardo López Luján3 & Belem Zúñiga-Arellano3 1. Posgrado en Ciencias del Mar y Limnología, UNAM, México; [email protected], [email protected] 2. Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología (ICML), Universidad Nacional Autónoma de México, México; [email protected] 3. Proyecto Templo Mayor (PTM), Instituto Nacional de Antropología e Historia, México (INAH). 4. Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Apdo. 70-305, Ciudad de México, México, C.P. 04510; [email protected] Received 01-XII-2016. Corrected 02-V-2017. Accepted 07-VI-2017. Abstract: Between 1978 and 1982 the ruins of the Templo Mayor of Tenochtitlan were exhumed a few meters northward from the central plaza (Zócalo) of Mexico City. The temple was the center of the Mexica’s ritual life and one of the most famous ceremonial buildings of its time (15th and 16th centuries). More than 200 offerings have been recovered in the temple and surrounding buildings. We identified vestiges of 14 species of echino- derms (mostly as disarticulated plates). These include six species of sea stars (Luidia superba, Astropecten regalis, Astropecten duplicatus, Phataria unifascialis, Nidorellia armata, Pentaceraster cumingi), one ophiu- roid species (Ophiothrix rudis), two species of sea urchins (Eucidaris thouarsii, Echinometra vanbrunti), four species of sand dollars (Mellita quinquiesperforata, Mellita notabilis, Encope laevis, Clypeaster speciosus) and one species of sea biscuit (Meoma ventricosa grandis).
    [Show full text]
  • Genus Panopeus H. Milne Edwards, 1834 Key to Species [Based on Rathbun, 1930, and Williams, 1983] 1
    610 Family Xanthidae Genus Panopeus H. Milne Edwards, 1834 Key to species [Based on Rathbun, 1930, and Williams, 1983] 1. Dark color of immovable finger continued more or less on palm, especially in males. 2 Dark color of immovable finger not continued on palm 7 2. (1) Outer edge of fourth lateral tooth longitudinal or nearly so. P. americanus Outer edge of fourth lateral tooth arcuate 3 3. (2) Edge of front thick, beveled, and with transverse groove P. bermudensis Edge of front if thick not transversely grooved 4 4. (3) Major chela with cusps of teeth on immovable finger not reaching above imaginary straight line drawn between tip and angle at juncture of finger with anterior margin of palm (= length immovable finger) 5 Major chela with cusps of teeth near midlength of immovable finger reaching above imaginary straight line drawn between tip and angle at juncture of finger with anterior margin of palm (= length immovable finger) 6 5. (4) Coalesced anterolateral teeth 1-2 separated by shallow rounded notch, 2 broader than but not so prominent as 1; 4 curved forward as much as 3; 5 much smaller than 4, acute and hooked forward; palm with distance between crest at base of movable finger and tip of cusp lateral to base of dactylus 0.7 or less length of immovable finger P. herbstii Coalesced anterolateral teeth 1-2 separated by deep rounded notch, adjacent slopes of 1 and 2 about equal, 2 nearly as prominent as 1; 4 not curved forward as much as 3; 5 much smaller than 4, usually projecting straight anterolaterally, sometimes slightly hooked; distance between crest of palm and tip of cusp lateral to base of movable finger 0.8 or more length of immovable finger P.
    [Show full text]
  • Growth and Sediment Disturbances of Caulerpa Spp
    GROWTH AND SEDIMENT DISTURBANCES OF CAULERPA SPP. (CHLOROPHYTA) IN A SUBMARINE CANYON S. L. WILLIAMS1, V. A. BREDA1, T. W. ANDERSON2 and B. B. NYDEN3 1Marine Sciences Research Center, State University of New York, Stony Brook, New York 11794, USA 2Moss Landing Marine Laboratories, P.O. Box 223, Moss Landing, California 95039, USA 3NOAA's National Undersea Research Program, West Indies Laboratory, Teague Bay, Christiansted, St. Croix, US Virgin Islands 00820 [Converted to electronic format by Damon J. Gomez (NOAA/RSMAS) in 2003. Copy available at the NOAA Miami Regional Library. Minor editorial changes were made.] MARINE ECOLOGY - PROGRESS SERIES Vol. 21 : 275-281, 1985 Published February 11 Mar. Ecol. Prog . Ser . Growth and sediment disturbances of Caulerpa spp . (Chlorophyta) in a submarine canyon S . L . Williams'*, V . A . Breda', T. W. Anderson 2 and B . B . Nyden3 1 Marine Sciences Research Center, State University of New York, Stony Brook, New York 11794, USA 'Moss Landing Marine Laboratories, P .O . Box 223, Moss Landing, California 95039, USA 3 NOAA's National Undersea Research Program, West Indies Laboratory, Teague Bay, Christiansted, St . Croix, US Virgin Islands 00820 ABSTRACT : Growth rates of 7 species of Caulerpa were measured in situ at depths of 20 m in Salt River canyon, St . Croix, US Virgin Islands . Mean stolon elongation rate for all species of Caulerpa studied d_1 . was approximately 1 cm Dry biomass accumulated in this new growth was less than 10 mg d -1 , and specific growth rates were less than 10 % d -1 ; these values are low compared to rates of many benthic macroalgae .
    [Show full text]
  • THE ECHINODERM NEWSLETTER Number 22. 1997 Editor: Cynthia Ahearn Smithsonian Institution National Museum of Natural History Room
    •...~ ..~ THE ECHINODERM NEWSLETTER Number 22. 1997 Editor: Cynthia Ahearn Smithsonian Institution National Museum of Natural History Room W-31S, Mail Stop 163 Washington D.C. 20560, U.S.A. NEW E-MAIL: [email protected] Distributed by: David Pawson Smithsonian Institution National Museum of Natural History Room W-321, Mail Stop 163 Washington D.C. 20560, U.S.A. The newsletter contains information concerning meetings and conferences, publications of interest to echinoderm biologists, titles of theses on echinoderms, and research interests, and addresses of echinoderm biologists. Individuals who desire to receive the newsletter should send their name, address and research interests to the editor. The newsletter is not intended to be a part of the scientific literature and should not be cited, abstracted, or reprinted as a published document. A. Agassiz, 1872-73 ., TABLE OF CONTENTS Echinoderm Specialists Addresses Phone (p-) ; Fax (f-) ; e-mail numbers . ........................ .1 Current Research ........•... .34 Information Requests .. .55 Announcements, Suggestions .. • .56 Items of Interest 'Creeping Comatulid' by William Allison .. .57 Obituary - Franklin Boone Hartsock .. • .58 Echinoderms in Literature. 59 Theses and Dissertations ... 60 Recent Echinoderm Publications and Papers in Press. ...................... • .66 New Book Announcements Life and Death of Coral Reefs ......•....... .84 Before the Backbone . ........................ .84 Illustrated Encyclopedia of Fauna & Flora of Korea . • •• 84 Echinoderms: San Francisco. Proceedings of the Ninth IEC. • .85 Papers Presented at Meetings (by country or region) Africa. • .96 Asia . ....96 Austral ia .. ...96 Canada..... • .97 Caribbean •. .97 Europe. .... .97 Guam ••• .98 Israel. 99 Japan .. • •.••. 99 Mexico. .99 Philippines .• . .•.•.• 99 South America .. .99 united States .•. .100 Papers Presented at Meetings (by conference) Fourth Temperate Reef Symposium................................•......
    [Show full text]
  • Priorities for Effective Management of Coral Diseases
    Priorities for Effective Management of Coral Diseases Andrew W. Bruckner NOAA Fisheries Office of Protected Resources 1315 East West Highway Silver Spring, MD 20910 [email protected] SUMMARY Diseases of scleractinian corals and associated species have proliferated in recent years, and they are now recognized as important phenomena capable of altering the structure and composition of coral reefs. Since the early 1990s there has been a concerted effort to characterize coral diseases, including the application of novel molecular tools to confirm identities of pathogens and understand mechanisms of host response and resistence. Most of the causative agents of emerging diseases, factors contributing to their occurrence and spread, and consequences on coral populations remain incompletely understood, however. A long-term, multi-disciplinary research and monitoring program for coral diseases is necessary to assist resource managers in identifying and responding to emerging coral diseases. These efforts should involve management-driven strategies that include 1) an early warning system to predict and identify disease outbreaks; 2) documentation of spatial distribution and temporal variations of coral diseases and other syndromes at local to global scales; 3) elucidation of relationships of environmental stressors, localized anthropogenic impacts, and widespread phenomena such as global warming and El Niño on coral health, disease, degradation and recovery; 4) development of standardized terminology for diseases and other syndromes through
    [Show full text]